一种wcdma系统中用于多用户接收的信道编码方法

文档序号:7943648阅读:220来源:国知局
专利名称:一种wcdma系统中用于多用户接收的信道编码方法
技术领域
本发明涉及通信系统,尤其涉及宽带码分多址(WCDMA)蜂窝移动通信系统中上行专用物理信道的信道编码技术和基站的多用户检测技术。
背景技术
3GPP的协议汇集了WCDMA系统的全套标准。按照3GPP的协议,上行专用物理信道中专用物理数据信道(DPDCH)的信息比特先进行信道编码,然后进行二相移相键控(BPSK)映射和扩频。而专用物理控制信道(DPCCH)的信息比特直接进行BPSK映射和扩频,其扩频因子为256。扩频后的DPDCH信道码片和DPCCH信道码片构成I、Q两路数据,一起进行加扰处理。加扰后的I、Q两路码片分别进行脉冲成型,然后分别通过载波调制发送给基站。在3GPP的25.104、25.944和25.212协议中,规定了上行专用物理信道中DPDCH信道的信道编码方法。上行专用物理信道的扩频、加扰、脉冲成型和调制方法见3GPP的25.213协议。
以上是WCDMA系统中用户端(UE)在上行专用物理信道上发送比特的过程。在WCDMA系统的基站端对UE在上行专用物理信道上发送的比特的接收可以采用RAKE接收技术。RAKE接收技术的装置如图1所示。但是传统的单用户RAKE接收装置在用户数目增多和远近效应下接收性能降低。
多用户检测技术是克服多址干扰的影响,提高WCDMA系统容量的一种增强型技术。它对多个用户信号进行联合检测,从而尽可能地减小多址干扰对接收机性能的影响,提高系统的容量。文献1提出了专利申请号为02151067.9的一种上行专用物理信道的多用户接收装置,该装置采用多用户检测技术,将双层加权并行干扰对消方法的简化方法应用于上行专用物理信道的信号接收,具有高于传统的单用户RAKE接收装置的性能。
图2显示的是现有的上行专用物理信道多用户接收装置。从图2可以看到,多用户接收装置200包括解调和匹配滤波器201、多径搜索器组205、第一级并行干扰对消(PIC)结构202和最后一级PIC结构204,还包括中间各级PIC结构203。该装置首先对天线的接收信号进行解调及匹配滤波得到基带信号,并将基带信号同时送给多径搜索器组205以及第一级PIC结构202、中间各级PIC结构203和最后一级PIC结构204。
如图2所示,基带信号进入多径搜索器组,设系统有K个用户,多径搜索器组就有K个多径搜索器。每个搜索器负责搜索一个用户的径时延信息。所有用户的径时延信息被同时送给第一级PIC结构202、中间各级PIC结构203和最后一级PIC结构204。
图3显示的是现有的上行专用物理信道多用户接收装置的第一级PIC结构。第一级PIC结构202由K个用户信号处理单元300和一个干扰对消单元320构成。每个用户对应一个用户信号处理单元300。各用户的信号处理单元300完成完全相同的功能。如图3所示,进入第一级PIC结构202的基带信号并行进入各用户的信号处理单元300。进入第一级PIC结构202的各用户的多径时延信息分别进入相应用户的信号处理单元300。
如图3所示,用户信号处理单元300包括DPDCH解扩单元301、DPCCH解扩单元302、功率控制单元303、信道估计单元304、噪声功率估计单元308、DPDCH的RAKE合并单元305、传输格式组合指示(TFCI)译码单元306、DPCCH的RAKE合并单元307、DPDCH软判决和软判决加权单元309、DPCCH软判决和软判决加权单元310和信号再生单元311。干扰对消单元320包括信号求和装置321、成型与匹配滤波单元322和残差计算单元323。用户信号处理单元300由输入的基带信号和该用户的多径时延信息,经过一系列处理,得到该用户的功率控制指令、符号级再生信号和码片级再生信号。用户的功控指令经下行链路分别反馈给发送端的用户设备(UE),UE按照功控指令调整上行发射功率。用户的符号级再生信号则送给下一级PIC结构中同一用户的用户信号处理单元中的符号修正子单元。所有用户的码片级再生信号和基带信号进入干扰对消单元320,该单元对输入信号进行处理得到残差信号。残差信号作为本级PIC的一个输出信号送给下一级PIC结构。
图4显示的是现有的上行专用物理信道多用户接收装置的中间级PIC结构。中间级PIC结构203依旧包括K个用户信号处理单元400和一个干扰对消单元420。每个用户对应一个用户信号处理单元400。各用户的用户信号处理单元400完成完全相同的功能。中间级PIC结构203还包括扩频因子计算单元430。中间级PIC结构203的级数可以根据需要确定,可以使用一级或多级中间级PIC结构203,也可以不使用中间级PIC结构203。
如图4所示,用户信号处理单元400包括DPDCH解扩单元401、DPCCH解扩单元402、信道估计单元403、噪声功率估计单元404、符号修正单元405、符号修正单元406、DPDCH的RAKE合并单元407、DPCCH的RAKE合并单元408、DPDCH软判决和软判决加权单元409、DPCCH软判决和软判决加权单元410和信号再生单元411。干扰对消单元420包括信号求和装置421、成型与匹配滤波单元422和残差计算单元423。在中间级PIC结构203中,用户的信号处理单元400的输入信号为残差信号、本用户的符号级再生信号和本用户的径时延信息。输出为用户的符号级再生信号和码片级再生信号。符号级再生信号被送给后一级PIC结构中同一用户的信号处理单元中的符号修正子单元,码片级再生信号被送入干扰对消单元420。基带信号也进入干扰对消单元。该单元对所有用户的码片级再生信号和基带信号处理得到残差信号。残差信号作为本级PIC的一个输出信号送给下一级PIC结构。本级其他后续各级PIC结构处理过程一样。
图5显示的是现有的上行专用物理信道多用户接收装置的最后一级PIC结构。最后一级PIC结构204包括K个用户信号处理单元500,还包括扩频因子计算单元510。每个用户对应一个用户信号处理单元500。各用户的用户信号处理单元500完成完全相同的功能。如图5所示,用户的信号处理单元500包括DPDCH解扩单元501、DPCCH解扩单元502、信道估计单元503、符号修正单元504、符号修正单元505、DPDCH的RAKE合并单元506、DPCCH的RAKE合并单元507、信道解码器508和硬判决器509。用户的多径时延信息和上一级PIC结构的残差信号同时进入信号处理单元500中DPDCH处理通道和DPCCH处理通道。DPDCH通道对输入的残差信号先进行DPDCH解扩,然后对解扩结果进行符号修正、多径合并。该结果被送入DPDCH信道的信道解码器508,经信道解码得到DPDCH信道发送的信息比特。DPCCH通道对输入的残差信号先进行DPCCH解扩,然后对解扩结果进行符号修正、信道估计,最后进行多径合并。多径合并结果被送给DPCCH信道的硬判决器509。硬判决器509对输入信号进行硬判决,得到DPCCH信道发送的信息比特。
在中间级PIC结构203和最后一级PIC结构204中,DPDCH解扩需要知道DPDCH的扩频因子,该扩频因子可以使用前一级PIC结构中DPDCH解扩单元的扩频因子;也可以按照扩频因子计算单元,由本级DPCCH信道的RAKE合并结果进行TFCI译码得到。其中扩频因子计算单元包括TFCI译码单元。
以上是上行专用物理信道的多用户接收装置的信号处理过程。该装置采用的双层加权并行干扰对消方法的简化方法在保证判决代价最小的同时,通过部分干扰对消弥补了统计意义上对用户信号估计的偏差,较大地提高了性能,而且相对于双层加权并行干扰对消方法复杂度降低。
在上述上行专用物理信道的多用户接收装置中,只考虑DPDCH信道的处理过程。当本级用户的RAKE合并结果的信噪比较高时,RAKE合并的软判决结果就比较准确,用户的符号级再生信号和码片级再生信号就比较准确,因而本级干扰对消的性能就越好,这使得下一级PIC的性能也会相应提高。当本级用户的RAKE合并结果的信噪比较低时,RAKE合并的软判决结果的可靠性降低,用户的符号级和码片级再生信号就不准确,因而本级干扰对消的性能就降低,这使得下一级PIC的性能也会相应降低。因此,提高用户RAKE合并结果的信噪比,可以提高多用户接收装置的性能。这里的性能指用户DPDCH信道的解调误码率。
但是,衡量用户DPDCH信道的检测性能的指标是用户DPDCH信道的误块率。误块率不仅与用户的解调性能有关,而且与该用户译码器的译码深度和编码速率紧密相关。也就是,用户DPDCH信道的误块率不仅取决于用户DPDCH信道的解调性能,而且取决于DPDCH信道译码方法的纠错能力。
对于WCDMA系统中的上行专用物理信道,提高用户DPDCH信道的扩频因子可以提高用户DPDCH信道的RAKE合并结果的信噪比。但是由于WCDMA系统发送端码片速率是3.84*106cps,所以,DPDCH信道的编码增益和扩频增益之和是确定的。当提高扩频增益时,编码增益就减小,这意味着编码复杂度降低、译码器纠错能力下降。因此,当提高扩频因子,使用户DPDCH信道的解调性能提高时,并不一定能提高该用户DPDCH信道的误块率性能。
图6显示的是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法。在3GPP的25.212和25.104协议中,规定了12.2kbps上行专用物理信道的DPDCH信道编码方法。如图6所示,在12.2kbps上行专用物理信道中,DTCH信道和DCCH信道分别进行CRC比特添加、尾比特添加、1/3速率卷积编码、第一次交织、无线帧分割和速率匹配。然后,这两个信道的数据复用在一起进行第二次交织和时隙分割。在这种编码方法下,DPDCH信道的扩频因子为64。1/3速率卷积编码器的框图见协议25.212;速率匹配采用均匀重复方式。该编码方法中,第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割的具体方法参见协议25.212。
表1是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法的参数表

在WCDMA系统中,UE端在12.2kbps上行专用物理信道中发送信息比特的过程如上所述上行专用物理信道的信息比特发送过程。在发送过程中采用如图6所示的信道编码方法进行DPDCH信道的编码、并按扩频因子64对DPDCH信道进行扩频。
WCDMA系统的基站端,采用上述的多用户接收装置来接收UE端在12.2kbps上行专用物理信道发送的信息比特,接收过程如上所述。在DPDCH信道信道解码时,按照图6所示编码过程的反过程进行解码。
研究表明在多用户接收装置中采用如图6所示的现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法效果并不是最佳的,该信道编码方法还可以改进。本发明提出了一种针对12.2kbps上行专用物理信道的用于多用户接收的信道编码方法,该方法在降低编码器和译码器复杂度的同时,使多用户检测性能得到保持并略有提高。

发明内容
本发明的目的在于针对12.2kbps上行专用物理信道提供一种WCDMA系统中用于多用户接收的信道编码方法,该编码方法使用户的DPDCH信道的扩频因子得到提高,而且通过使用该编码方法,多用户接收装置在编码器和译码器复杂度降低的情况下,使用户的DPDCH信道和DPCCH信道的检测性能得到保持并略有提高。
本发明是通过下面的方法实现的,该方法包括以下步骤首先对专用业务信道(DTCH)信号和专用控制信道(DCCH)信号分别进行循环冗余校验(CRC)比特添加、尾比特添加、1/2速率卷积编码、第一次交织、无线帧分割和速率匹配;然后将DTCH信道信号和DCCH信道信号的数据复用在一起,进行第二次交织和时隙分割,形成专用物理数据信道(DPDCH)信号。
其中1/2速率卷积编码根据3GPP的25.212协议中的规定操作。第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割均根据3GPP的25.212协议中的规定操作。速率匹配采用3GPP的25.212协议中的速率匹配方法,在本方法中速率匹配采用均匀打孔方式。
通过采用上述信道编码方法使DPDCH信道信号的扩频因子为128。
本发明通过采用1/2速率卷积编码大大地提高了DPDCH信道信号的扩频因子,而且本发明在提高扩频因子并降低编码器和译码器复杂度的情况下,使多用户接收装置的检测性能得到保持并略有提高。


图1是现有的上行专用物理信道单用户RAKE接收装置示意图;图2是现有的上行专用物理信道多用户接收装置示意图;图3是现有的上行专用物理信道多用户接收装置中第一级PIC结构示意图;图4是现有的上行专用物理信道多用户接收装置中中间级PIC结构示意图;图5是现有的上行专用物理信道多用户接收装置中最后一级PIC结构示意图。
图6是现有的WCDMA协议中12.2kbps上行专用物理信道的信道编码方法的示意图;图7是现有的WCDMA协议中12.2kbps上行专用物理信道的扩频加扰过程的示意图;图8是本发明的12.2kbps上行专用物理信道的信道编码方法的示意图。
具体实施例方式
下面结合附图和实施例对本发明作进一步的描述。
在WCDMA系统的发送端,用户设备(UE)按照以下过程在12.2kbps上行专用物理信道上发送信息比特专用物理数据信道(DPDCH)的信息比特先进行信道编码,然后进行BPSK映射,根据信道编码获得的DPDCH信道的扩频因子对BPSK映射得到的信息进行扩频。而DPCCH信道的信息比特直接进行BPSK映射和扩频,扩频因子为256。图7显示的是现有的WCDMA协议中12.2kbps上行专用物理信道的扩频加扰过程的示意图。如图7所示,扩频后的DPDCH信道码片和DPCCH信道码片构成I、Q两路数据,一起进行加扰处理。加扰后的I、Q两路码片分别进行脉冲成型,然后分别通过载波调制发送给基站。上行专用物理信道的扩频、加扰、脉冲成型和调制方法见3GPP的25.213协议。
为了能够得到较高的DPDCH信道的扩频因子,本发明提出了一种WCDMA系统中用于多用户接收的信道编码方法,包含以下步骤首先在12.2kbps专用物理信道下,对专用业务信道(DTCH)信号和专用控制信道(DCCH)信号分别进行循环冗余校验(CRC)比特添加、尾比特添加、1/2速率卷积编码、第一次交织、无线帧分割和速率匹配;然后将DTCH信道信号和DCCH信道信号的数据复用在一起,进行第二次交织和时隙分割,形成专用物理数据信道(DPDCH)信号。
其中1/2速率卷积编码根据3GPP的25.212协议中的规定操作。第一次交织、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割均根据3GPP的25.212协议中的规定操作。速率匹配采用3GPP的25.212协议中速率匹配方法,具体采用均匀打孔方式。
通过采用上述信道编码方法使DPDCH信道信号的扩频因子为128。
表2是本发明的12.2kbps上行专用物理信道的信道编码方法的参数表

图8显示的是实现本发明的12.2kbps上行专用物理信道的信道编码方法的具体实例。如图8所示,包括以下步骤a、在12.2kbps专用物理信道下,对DTCH信道信号即244比特的信息数据进行16比特的CRC比特添加后形成260比特的信号,同时对DCCH信道信号即100比特的信息数据进行12比特的CRC比特添加后形成112比特的信号;b、对CRC比特添加后的260比特的DTCH信道信号进行8比特的尾比特添加形成268比特的信号,同时对CRC比特添加后的112比特的DCCH信道信号进行8比特的尾比特添加形成120比特的信号;c、对尾比特添加后的268比特的DTCH信道信号进行1/2速率卷积编码形成536比特的信号,同时对尾比特添加后的120比特的DCCH信道信号进行1/2速率卷积编码形成240比特的信号;d、对1/2速率卷积编码后的536比特的DTCH信道信号进行第一次交织即改变信号的比特排列顺序,同时对1/2速率卷积编码后的240比特的DCCH信道信号进行第一次交织即改变信号的比特排列顺序;e、对第一次交织后的536比特的DTCH信道信号进行无线帧分割形成大小为268比特的2帧信号,同时对第一次交织后的240比特的DCCH信道信号进行无线帧分割形成大小为60比特的4帧信号;f、采用均匀打孔方式对无线帧分割后的每帧大小为268比特的2帧DTCH信道信号进行速率匹配,打掉部分比特形成对应的每帧大小为244比特的2帧信号;同时采用均匀打孔方式对无线帧分割后的大小为每帧60比特的4帧DCCH信道信号进行速率匹配,打掉部分比特形成每帧大小为56比特的4帧信号;g、将速率匹配后的DTCH信道信号和DCCH信道信号的数据复用在一起形成大小为300比特的2帧信号,进行第二次交织;并将第二次交织后的4帧信号进行时隙分割形成专用物理数据信道(DPDCH)信号,每帧信号被分割成大小为20比特、时隙数为15的信号。
在WCDMA系统的基站端,采用如图2~图5所示的多用户接收装置来接收UE端在12.2kbps上行专用物理信道发送的信息比特,其具体的接收过程如下如图2所示,天线的接收信号经过解调和匹配滤波器201处理得到基带信号,将基带信号同时送入多径搜索器组205、第一级PIC结构202和中间各级PIC结构203。
多径搜索器组205搜索得到每个用户的径时延信息,并将所有用户的径时延信息同时送给第一级PIC结构202、中间级PIC结构203和最后一级PIC结构204。如图2所示,基带信号进入多径搜索器组205,设系统有K个用户,多径搜索器组205就有K个多径搜索器。每个用户对应一个多径搜索器,其中K是大于1的正整数。
第一级PIC结构的处理图3显示的是上行专用物理信道多用户接收装置中第一级PIC结构。第一级PIC结构202由K个用户信号处理单元300和一个干扰对消单元320构成。每个用户对应一个用户信号处理单元300。如图3所示,进入第一级PIC结构202的基带信号并行进入各用户的信号处理单元300,进入第一级PIC结构202的各用户的多径时延信息分别进入相应用户的信号处理单元300。各用户的信号处理单元300完成完全相同的功能。
进入用户信号处理单元300的基带信号和用户的多径时延信息分别进入DPDCH处理通道和DPCCH处理通道。
DPCCH解扩单元302根据DPCCH信道的扩频码即DPCCH信道码和扰码之积,以及输入的多径时延信息,对输入的基带信号进行多径解扩,并将多径解扩结果送给信道估计单元304、功率控制单元303、噪声功率估计单元308和DPCCH信道的RAKE合并单元307。
信道估计单元304由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元305、DPCCH信道的RAKE合并单元307。
功率控制单元303由输入的DPCCH信道的各径解扩结果得到功率控制指令,并将功率控制指令作为第一级PIC的一个输出,反馈给用户的发送端。
噪声功率估计单元308由DPCCH各径的解扩结果得到DPCCH信道的噪声功率的估计,并将噪声功率的估计结果同时送给DPDCH软判决与软判决加权单元309和DPCCH软判决与软判决加权单元310。
DPCCH信道的RAKE合并单元307,用于结合输入的信道估计结果对输入的DPCCH解扩结果进行去信道调制和RAKE合并,并将合并结果分别送给DPCCH软判决与软判决加权单元310和TFCI译码单元306。
TFCI译码单元306,用于对输入的DPCCH信道的RAKE合并结果进行TFCI译码,得到DPDCH信道的扩频因子,并将扩频因子送给DPDCH解扩单元301。
DPDCH解扩单元301根据DPDCH信道的扩频码即DPDCH信道码和扰码之积,以及输入的多径时延信息和经TFCI译码后得到的扩频因子,对基带信号进行多径解扩,并将多径解扩结果送给DPDCH信道的RAKE合并单元305。
DPDCH的RAKE合并单元305,用于结合输入的信道估计结果对DPDCH解扩结果进行去信道调制和RAKE合并,并将合并结果送给DPDCH软判决与软判决加权单元309。
DPDCH软判决与软判决加权单元309由DPDCH的RAKE合并结果和噪声功率的估计结果得到DPDCH每个符号的软判决,然后进行软判决加权。DPCCH软判决与软判决加权单元310由DPCCH的RAKE合并结果和噪声功率的估计结果得到DPCCH每个符号的软判决,然后进行软判决加权。DPDCH信道的软判决加权的权值和DPCCH信道软判决加权的权值可以取不同的数值。DPDCH信道在计算软判决时,首先要由DPCCH信道噪声功率的估计折算出DPDCH信道的噪声功率。
信号再生单元311由DPDCH信道软判决结果、DPCCH信道的软判决结果和用户的各径时延信息得到用户的符号级再生信号和码片级再生信号,并将码片级再生信号送入干扰对消单元320;将符号级再生信号输送给中间级PIC结构203中同一用户的信号处理单元400的符号修正子单元。
所有用户的码片级再生信号和基带信号进入干扰对消单元320中的信号求和装置321。该信号求和装置321对输入的各用户的码片级再生信号进行求和,然后将求和结果送给成型与匹配滤波单元322。该成型与匹配滤波单元322对输入信号进行成型滤波和匹配滤波。成型滤波器同上行专用物理信道调制部分采用的成型滤波器,匹配滤波器就是上行专用物理信道接收端采用的匹配滤波器。滤波结果送入残差计算单元323。基带信号也进入残差计算单元。残差计算单元323从基带信号中减去滤波结果,得到残差信号,并将残差信号作为本级PIC的输出信号送给下一级PIC结构,在下一级PIC结构中,该信号被并行送给各用户的信号处理单元。
对第一级PIC结构,TFCI译码得到的扩频因子可以只供本级PIC结构使用,也可以传输给后续各级PIC结构,供后续PIC结构中DPDCH解扩单元使用。
中间各级PIC结构的处理中间各级PIC的结构完全一样,下面以第二级PIC结构为例来说明中间各级PIC结构的处理过程。
图4显示的是上行专用物理信道多用户接收装置中中间级PIC结构。第一级PIC结构202得到的残差信号、各用户的符号级再生信号和各用户的径时延信息进入中间级PIC结构203。中间级PIC结构203依旧由K个用户信号处理单元400和一个干扰对消单元420构成。每个用户有一个用户信号处理单元400。各用户的用户信号处理单元400完成完全相同的功能。
如图4所示,在中间级PIC结构203中,用户的信号处理单元400的输入信号为残差信号、本用户的符号级再生信号和本用户的径时延信息。
用户的信号处理单元400首先把用户的多径时延信息和残差信号同时送给DPDCH信道处理通道和DPCCH信道处理通道。
DPDCH解扩单元401根据DPDCH信道的扩频码即DPDCH信道码和扰码之积,以及输入的多径时延信息和DPDCH信道的扩频因子,对输入的残差信号进行多径解扩,并将解扩结果送给DPDCH信道的符号修正单元405;DPCCH解扩单元402根据DPCCH信道的扩频码即DPCCH信道码和扰码之积,以及输入的多径时延信息,对输入的残差信号进行多径解扩,并将解扩结果送给信道估计单元403、噪声功率估计单元404和DPCCH信道的符号修正单元406。
信道估计单元403由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元407、DPCCH信道的RAKE合并单元408。
噪声功率估计单元404由输入的DPCCH信道的各径解扩结果得到DPCCH信道的噪声功率的估计,并将噪声功率的估计结果同时送给后面的两个软判决与软判决加权单元。
DPDCH信道的符号修正单元405对输入的DPDCH信道的解扩结果进行符号级修正,即将DPDCH信道某径的解扩结果和该径的符号级再生信号相加。DPCCH信道的符号修正单元406对输入的DPCCH信道的解扩结果进行符号级修正,即将DPCCH信道某径的解扩结果和该径的符号级再生信号相加。
DPDCH信道的RAKE合并单元407和DPCCH信道的RAKE合并单元408,分别对DPDCH符号修正结果和DPCCH符号修正结果进行去信道调制和多径合并,并将合并结果分别送给DPDCH软判决与软判决加权单元409和DPCCH软判决与软判决加权单元410。
DPDCH软判决与软判决加权单元409由输入信号即DPDCH信道的RAKE合并结果以及噪声功率的估计结果得到DPDCH每个符号的软判决,然后进行软判决加权;DPCCH软判决与软判决加权单元410由输入信号即DPCCH信道的RAKE合并结果以及噪声功率的估计结果得到DPCCH每个符号的软判决,然后进行软判决加权。DPDCH信道的软判决加权的权值和DPCCH信道软判决加权的权值可以取不同的数值。但本级DPDCH的软判决加权的权值要大于前一级软判决加权的权值。DPCCH信道的软判决加权的权值也是如此。
信号再生单元411由DPDCH信道软判决结果、DPCCH信道的软判决结果和用户的各径时延信息得到用户的符号级再生信号和码片级再生信号,并将码片级再生信号送入干扰对消单元420;将符号级再生信号输送给后一级PIC结构204中同一用户的信号处理单元的符号修正子单元。
所有用户的码片级再生信号和基带信号进入干扰对消单元420中的信号求和装置421。该信号求和装置421对输入的各用户的码片级再生信号进行求和,然后将求和结果送给成型与匹配滤波单元422。该成型与匹配滤波单元422对输入信号进行成型滤波和匹配滤波。滤波结果送入残差计算单元423。基带信号也进入残差计算单元。残差计算单元423从基带信号中减去滤波结果,得到残差信号,并将残差信号作为本级PIC的输出信号送给下一级PIC结构,在下一级PIC结构中,该信号被并行送给各用户的信号处理单元。
DPDCH的解扩单元需要知道DPDCH的扩频因子,扩频因子可以使用第一级PIC结构中TFCI译码得到的扩频因子,也可以由本级PIC的扩频因子计算单元得到。本级PIC的扩频因子计算单元430包括TFCI译码器431,通过对DPCCH信道的RAKE合并结果进行TFCI译码,得到DPDCH信道的扩频因子。经过前一级PIC结构的干扰对消,本级PIC结构中DPCCH信道的RAKE合并结果的信噪比应该比前一级PIC结构中DPCCH信道的RAKE合并结果的信噪比高,所以,本级TFCI译码得到的扩频因子的误码率将更小。因此,在本级采用扩频因子计算单元430,并使用该单元得到的扩频因子进行DPDCH的解扩,对用户的检测将更有利。但是,TFCI译码不仅增加了复杂度,而且增加了时延。可以根据需要确定是否在本级采用扩频因子计算单元。
以后的各中间级PIC结构进行完成相同的操作。
最后一级PIC结构的处理图5显示的是上行专用物理信道多用户接收装置中最后一级PIC结构。最后一级PIC结构204由K个用户信号处理单元500构成。用户的信号处理单元500如图5所示。
信号处理单元500的输入为前一级得到的残差信号和符号级再生信号,以及多径时延信息。用户信号处理单元500首先将多径时延信息和残差信号分别送入DPDCH处理通道和DPCCH处理通道。
DPDCH解扩单元501根据DPDCH信道的扩频码即DPDCH信道码和扰码之积,以及输入的多径时延信息和DPDCH信道的扩频因子,对输入的残差信号进行多径解扩,并将解扩结果送给DPDCH信道的符号修正单元504;DPCCH解扩单元502根据DPCCH信道的扩频码即DPCCH信道码和扰码之积,以及输入的多径时延信息,对输入的残差信号进行多径解扩,并将解扩结果送给信道估计单元503和DPCCH信道的符号修正单元505。
信道估计单元503由DPCCH各径的解扩结果得到各径的信道估计,并将信道估计结果同时送给DPDCH信道的RAKE合并单元506、DPCCH信道的RAKE合并单元507。
DPDCH信道的符号修正单元504对输入的DPDCH信道的解扩结果进行符号级修正,即将DPDCH信道某径的解扩结果和该径的符号级再生信号相加。DPCCH信道的符号修正单元505对输入的DPCCH信道的解扩结果进行符号级修正,即将DPCCH信道某径的解扩结果和该径的符号级再生信号相加。
DPDCH信道的RAKE合并单元506和DPCCH信道的RAKE合并单元507,分别结合信道估计结果对DPDCH符号修正结果和DPCCH符号修正结果进行去信道调制和多径合并。将DPDCH信道的合并结果送入DPDCH通道的信道解码器508,DPCCH信道的合并结果送给DPCCH通道的硬判决器509。
信道译码器508对输入信号进行信道解码得到DPDCH信道发送的信息比特。对12.2kbps上行专用物理信道,信道解码过程是图8所示过程的反过程。
硬判决器509对输入信号进行硬判决,得到DPCCH信道发送的信息比特。
其中DPDCH的解扩单元501需要知道DPDCH的扩频因子,扩频因子可以使用前一级PIC结构中TFCI译码得到的扩频因子,也可以由本级PIC的扩频因子计算单元510得到。可以根据需要确定是否在本级采用扩频因子计算单元。
PIC结构的级数可以根据需要确定。可以只采用第一级和最后一级PIC结构,也可以采用更多级的PIC结构。
权利要求
1.一种宽带码分多址(WCDMA)系统中用于多用户接收的信道编码方法,其特征在于,所述信道编码方法包括以下步骤a、对专用业务信道(DTCH)信号和专用控制信道(DCCH)信号分别进行循环冗余校验(CRC)比特添加;b、对循环冗余校验比特添加后的专用业务信道信号和专用控制信道信号分别进行尾比特添加;c、对尾比特添加后的专用业务信道信号和专用控制信道信号分别进行1/2速率卷积编码;d、对1/2速率卷积编码后的专用业务信道信号和专用控制信道信号分别进行第一次交织;e、对第一次交织后的专用业务信道信号和专用控制信道信号分别进行无线帧分割;f、对无线帧分割后的专用业务信道信号和专用控制信道信号分别进行速率匹配;g、将速率匹配后的专用业务信道信号和专用控制信道信号的数据复用在一起,进行第二次交织和时隙分割,形成专用物理数据信道(DPDCH)信号。
2.如权利要求1所述的信道编码方法,其进一步特征在于,所述1/2速率卷积编码根据3GPP的25.212协议中的规定操作。
3.如权利要求1所述的信道编码方法,其进一步特征在于,所述第一次次交、无线帧分割、速率匹配、数据复用、第二次交织和时隙分割均根据3GPP的25.212协议中的规定操作。
4.如权利要求1或3所述的信道编码方法,其进一步特征在于,所述速率匹配采用3GPP的25.212协议中的速率匹配方法,具体采用均匀打孔方式。
5.如权利要求1所述的信道编码方法,其进一步特征在于,所述DPDCH信道信号的扩频因子为128。
全文摘要
本发明提出了一种宽带码分多址(WCDMA)系统中用于多用户接收的信道编码方法,该方法是针对12.2kbps上行专用物理信道的专用物理数据信道(DPDCH)的信道编码方法。该方法在提高扩频因子、降低编码器和译码器复杂度的情况下,使多用户接收装置的专用物理数据信道(DPDCH)和专用物理控制信道(DPCCH)的检测性能得到保持并略有提高。
文档编号H04B1/69GK1508993SQ0215500
公开日2004年6月30日 申请日期2002年12月17日 优先权日2002年12月17日
发明者魏立梅 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1