一种用于基于用户线的通信系统的中心调制解调器的制作方法

文档序号:7591232阅读:211来源:国知局
专利名称:一种用于基于用户线的通信系统的中心调制解调器的制作方法
技术领域
本发明涉及甚高速双向数字数据传输系统。尤其揭示了适于在诸如用户线的成束传输线上进行传输的时分复用数据传输方案。
背景技术
远程通信方案联盟(ATIS),一由ANSI(美国国家标准学会)标准组认可的组织,最近最后确定了在非对称数字用户线(ADSL)上进行数字数据传输的基于离散多音频标准。该标准主要用于在普通电话线上传输视频数据,尽管它也可被在其它应用中使用。北美标准被称作ANSI TI.413 ADSL标准,并被作为参考包含于此。根据ADSL标准传输速率意图使在双绞电话线上的信息传输速率达到至少每秒6百万位(即,6+Mbit/S)。标准化系统规定了离散多音频(DMT)系统的使用,该系统使用256个“音频”或“子信道”,每个信道在前向(下行)有4.3125KHZ带宽。根据电话系统,下行方向被定义为从电话总局(一般由电话公司所有)向可能为一最终用户(即居民或商业用户)的远地传输。在其它一些系统中,所用的音频数量可能被极大地改变。然而,若使用快速傅立叶逆变换(IFFT)高效地进行调制时,可用子信道(音频)数量的典型值为2的整数次幂,如128,256,512,1024或2048个子信道。
非对称数字用户线标准也规定使用以16到800Kbit/S范围内的速率传输的反向信号。反向信号对应上行方向的传输。例如,自远处到总局。因此,非对称数字用户线一词来自于数据传输速率在下行方向比上行方向高许多这一事实。在意图将视频节目或电话会议信息通过电话线传输到远处的系统中,该标准尤其具有实用意义。例如,该系统的一个潜在的用途是可使居民用户通过电话线获取视频信息,如电影,而不必租录象带。另一潜在用途是可视会议。
因为下行和上行信号在相同导线对上传输(即,双工的),它们必须以某种方式被相互分离。ADSL标准中所使用的复用方法是频分复用(FDD),在频分复用系统中,上行和下行信号占用不同的频带,并在发送器和接收器通过滤波器分离。
在本文书写时,ANSI刚开始就下一代基于用户线的传输系统展开工作,它被称作VDSL(甚高数字用户线)标准。VDSL标准意图是使下行方向传输速率至少在25.96Mbit/S并最好至少51.92Mbit/S。为取得这样的速率,在双绞电话线对上的传输距离必须普遍比ADSL所允许使用的长度短。同时,数字,音频和视频协会(DAVIC)也正对类似系统进行研究。该系统被称为“到路边的光纤”(FTTC)。自“路边”到用户房间的传输媒质是标准未屏蔽的双绞(UTP)电话线。
已有许多调制方案被建议在VDSL和FTTC标准(以下称VDSL/FTTC)中使用。在本文书写之时,所有被建议的VDSL/FTTC调制方案采用上行和下行信号的频分复用。例如,一所提出的多载频方案采用频分复用的离散多音频信号,上行通信被容纳在低频带,下行通信被容纳在高频带。该方法大致描述如图2(a)所示。另一所提出的方法设想采用频分复用无载波幅度和相位调制(CAP)信号,上行通信被容纳于高频带,下行通信被容纳在低频带。该方法大致描述如图2(b)所示。
然而,上述两种方法都有潜在的不足。最显著的是,在具有相对较长环路的应用中,高频信号被明显衷减,这使传输对噪声更加敏感,并阻止了所允许的传输速率,的确在以较高频率传输上行信号的系统中,存在完全丢失上行信号的风险,这是不允许的。在非对称应用中,同样存在窄带噪声显著降低系统性能的较大风险。因此,一种协调甚高频数据传输(即,在每一传输线上具有至少每秒10兆位的传输速率)的改进的方法是所期望的。

发明内容
为取得上述和其它目标,并根据本发明的目的,一种在中心单元与多个远地单元之间通过共用一连接体的不同双绞传输线协调甚高速双向数据传输的方法被描述。更确切地说,周期同步的上行和下行通信周期被提供以便使其不相互重叠。即,使共用一个连接体的所有线的上行和下行通信周期同步。通过这种方案,所有同一连接体内的甚高速传输被同步、且时分复用,这样下行通信不会在与上行通信重叠的时间进行。
在一实施例中,提供静默周期以分隔上行和下行通信周期。在静默周期,上行和下行通信均不可被传输。在另一实施例中,通信和静默周期被分成码元周期。在这一实施例中,每一下行通信周期包含许多码元周期。每一上行通信周期包含至少一个码元周期。并且每一静默周期包含至少一个码元周期。在一设计多载波调制方案的特定实施例中,下行通信周期包8个到60个码元周期,上行通信周期包含1个到30个码元周期,每一静默周期包含1个到4个码元周期。
所述发明可与许多种调制方案结合使用,包括多载波传输方案,如离散多音频调制(DMT),也包括单载波传输方案,如正交幅度调制;无载波幅度和相位调制(CAP);正交相移键控(QPSK);或残留边带调制。它可被用于包含被用于传输低速信号的连接,不取决于该低速信号是否时分复用且/或与高速信号同步。这是因为标准化的低速信号系统倾向于在较低频工作,不象高频信号那样易受近端串扰。
本发明在甚高性能系统中具有特别优势,如那些设计载波信号频率在大约1.0MHZ以上的系统,和那些能够在不同传输线上以至少每纱10M位的传输速率传输下行信号的系统。
另一方面,本发明将上行数据带宽的按比例分配提供给多个共用一单根传输线的置顶单元。例如,在一实施例中,每一置顶单元可被分配上行通信周期的一个不同的区段。在另一实施例中,每一置顶单元可被分配上行通信频带的一个区段。
不论中心单元是一始发通信的中心局或是一通过一个或多个干线或类似线路接收下行源信号并将包含于下行源信号中的信息作为下行通信信号传送的分布单元(如光网络单元),所述方法都行之有效。分布单元也将包含于上行通信信号中的信息作为上行源信号在光纤上传输。


本发明及其目标和优点可通过参考以下联系附图的描述得到最好的理解。附图中图1a是基于用户线的具有许多自中心单元到各远处单元延伸双绞电话线的通信系统的框图。
图1b是图1a的特例,其中中心单元作为光纤主干线和许多双绞线对间的结点以光网络单元形式出现。
图2a和2b是描述非对称用户线传输的常规频域复用的传输方案的图;图3a和3b是描述对于单根线的时域复用传输方案的图形,图3a代表下行通信,图3b代表上行通信;
图4a-4d是描述共用同一连接体的一对传输线的非同步时域复用传输方案的图形,实线代表发送,虚线代表接收;图5a-5d是描述共有用一连接体的一对传输线的同步时域复用传输方案的图形,实线代表发送,虚线代表接收;图6是描述适于本发明进行同步化操作的总局和远地调制解调器时序结构的框图。
具体实施例方式
通常的双向传输方法设想用基于时分复用(即,“乒乓”)的数据传输方案。即,下行信号首先使用整个带宽进行发送。此后,上行信号使用整个带宽进行发送,等等。申请人的研究表明,在用户线应用中,此法在低频可行。然而,当使用较高的载波频率时,例如,载波频率高于1MHz,共用同一连接体205的线间近端串扰开始显著地使系统性能降低。因此,在本文书写之时,时分复用传输还未被建议给VDSL/FTTC或其它基于用户线的甚高速数据传输应用,大多数这类所提出的调制方案设想在显著高于1MHz的载波频带上进行传输。本发明通过使共用一连接体的甚高速数据传输的时分复用传输同步,路边服了近端串扰问题。
一典型用户线通信局部环路的描述如图1a所示。由图中可见,中心单元201通过分立的传输线与许多远地单元R1-RN通信,传输线可能为常规双绞电话线对206的形式。远地单元可能为处于家庭、办公室或类似地点的最终用户单元。一般大量远地单元由一特定总局提供服务。在最近安装的系统中,远地单元常为电话,然而,它们也可能是传真线,计算机终端,电视或各种其它能够与“电话线”相连的装置。中心单元201可能对于每条线路包含一发送接收器208,它被按功能分成发送器209和接收器210。
在一些实施例中,中心单元是一位于起始通信总局的主服务器。在其它一些实施例中,“中心单元”可能是系统结构中接收并再发送信号的一较低级分布组件。这类分布组件的一个实施例示于图1b。如图所示,干线202终止于分布单元204。在所示实施例中,主干线采用光缆,分布单元采用光网络单元(ONU)。分布单元204通过分立线与许多远地单元R1-RN通信,分立线同样可能采用常规双绞电话线对206。在前述实施例中,远地单元可能是处于家庭、办公室或其它类似地点的最终用户单元。一般大量远地单元由一特定的ONU提供服务。例如,在北美,典型的ONU可以给4到96个远地单元提供服务。在本实施例中,ONU通过一条或多条干线接收下行源信号,并将包含于其中的信息作为下行通信信号发送给适当的远地单元。类似地,ONU从远地接收上行通信信号,并将包含于其中的信息作为上行源信号发送出去。源信号可被传递给总局,另一分布单元或任何其它适合的位置。
中心单元201、204与最远地之间的距离可能有较大变化。例如,VDSL/FTTC标准要求,对于51.92MHZ下行通信,允许的双绞线环路长度可达1000英尺(300米)。类似地,对于25.96MHZ下行通信,所允许的环路长度可达3000英尺(900米);对于12.97MHZ下行通信,所允许环路长度可达5000英尺(1500米)。本领域的专业技术人员懂得,较短的最大环路长度通常对应较高的可获取数据速率。
本发明可被应用于各种数据传输方案。这在以高于1MHZ载波频率设计有效传输的传输方案中尤其有用。例如,在用户线应用中,同步时分复用概念既可应用于多载波方法中,如离散多音频调制(DMT),又可应用于单载波方法中,如常规正交幅度调制(QAM),无载波幅度和相位调制(CAP);正交相移键控(QPSK);和/或残留边带调制。所述系统也可被用于包含被用于传输低速信号的连接,不取决于该低速信号是否时分复用且/或与高速信号同步。这是因为标准化的低速信号系统倾向于在较低频工作,不象高频信号那样易受近端串扰。当低频噪声或串扰带来问题时,该成为问题的频带可被整个取消。
一普通的时分复用数据传输方案示于图3(a)和3(b),由图可见,下行通信(示于图3(a)),在周期性下行通信周期111被传输。上行通信(示于图3(b)),在与相关下行通信周期之间交替的周期性上行通信周期113被传输。自第一下行通信周期的开始到下一下行通信周期的开始在此被称作一个“超帧”。上行、下行和静默周期的实际持续时间,以及超帧都可能在本发明的领域中有较大改变。
大多数甚高速数据传输方案是具有离散码元的以帧为基的系统。在这样系统中,构成一“下行通信周期”和一“上行通信周期”的码元数量一般为整数个码元。很容易使静默时间成为整数个码元(最典型地1),尽管这并未严格要求。在一使用离散多音频传输的所述多载波实施例中,每一超帧具有至少12DMT码元周期。在这样的系统中,下行通信周期可在8到60DMT码元周期范围内,上行通信周期可在1到30码元周期范围内。静默时间为1到4码元周期。
例如,在图3(a)和3(b)所示的实施例中,超帧具有38码元周期,且每一静默周期为一码元周期。因此,有36个码元周期待在上行和下行通信间被划分。非对称应用中下行与上行带宽间的典型关系是8∶1。附图中描述了这类系统,其中下行通信周期是32个码元周期,上行通信周期是4个码元周期。此处称作32∶1∶4∶1实施例。在对称系统中,18个码元周期可分配给每一上行和下行通信周期。即,可使用18∶1∶18∶1分配比例。当然,如果上行通信需比下行通信更多的带宽,分配给上行通信的码元周期的数量可在自1到18或更多数量上任意变动。另一具体的离散多音频实例设计使用20码元的超帧。在这样的系统中,可使用16∶1∶2∶1或8∶1∶8∶1码元分布。当然,每一超帧中码元周期的数量和其各自的分配可有很大改变。
当码元率是32KHZ时,码元周期是31.25微秒。在码元率为32KHz的38码元超帧中,具有32∶1∶4∶1码元分布的系统中,对于远地最大发送时间是38码元周期或大约1.2毫秒。若要求更短的访问时间,更短的超帧时间可能会适合。若要求相对下行带宽更宽的上行带宽,需要减少分配给下行通信的码元数量,增加上行码元。若需求更宽的系统带宽,增加超帧长度和减少静默周期长度可能是有利的。的确,在一些应用中,可能需要完全去除静默周期,尽管应该了解去除静默周期增加了干扰的可能性。应该理解,所有这些因素数可根据特定系统的要求作大幅度改变。
应该理解,单载波传输方案一般具有相当短的码元周期(例如,可能在微秒量级上)。因此,在这样的系统中,相当大数量的码元可被提供在每一下行、上行和静默周期。例如,对于下行通信周期,其周期大约在1000到2000码元量级上;对于静默周期为100到500码元;对于上行通信周期为400到10,000码元较为适合。
参考图4(a)-4(d),非同步系统的不足描述如下。在所示实例中,双绞传输线对206(a)和206(b)都传输时分复用离散多音频信号。每一传输线提供16码元下行通信周期111,2码元上行通信周期113和其间1码元静默周期。在本实施例中,通信不是同步的。因此,线206(a)和206(b)的上的下行通信传输与线206(b)和206(a)上的上行传输分别同时出现,将导致近端串扰进入两分布单元的相关接收器内。类似地,上行发送器RT(a)和RT(b)将造成(即使有点减少)近端串扰进入每一其它接收器。即分别进入RT(a)和RT(b)处的接收器。因此,如箭头217和219所描述,系统遭受近端串扰,将极大降低系统性能。
为克服这一问题,所有共用一连接体的甚高速传输如图5(a)-5(d)所示被同步。在同步系统中,下行通信周期111都同时起始和终止,上行通信周期113都同时起始和终止。这样的上行和下行通信周期的同步有效消除了由近端串扰造成的问题。
适用于构成此类结构的调制解调器时序和同步方案如图6所示。在所示实施例中,同步由中心单元(或ONU)(它将超帧时钟提供给所有中心单元发送器209)的主时钟产生。更确切地说,中心单元201包含一提供取样时钟222、一码元时钟224和一超帧时钟226的主振荡器(主时钟)220。三个时钟222,224,226之中每一时钟提供被提供给每一发送接收器208的单个时钟。发送接收器基于输入的时钟信号同步其各自的码元和超帧,并将数据下行传输到远地单元204。每一远地单元204包含一接收器231,一发射器233和一控制器235(它从下行信号中获得超帧、码元和取样时钟,并使用本技术领域中广为人知的各种时钟恢复方法中的任一方法同步上行信号)。一般控制器235采用锁相环形式。当然,接收器、发送器和控制器的实际构成可根据所使用的编码、纠错和调制方案等而有很大变化。
应理解,本发明可被应用到许多通信方案中。申请人的经验是,在载波频带大大高于1MHZ进行传输的调制方案尤其易受近端串扰的影响,并可从同步化中得到最大收益。大多数为VDSL/FTTC考虑的调制技术和要求比特率高于10Mbit/S的其它应用设想用高于1.5MHz的载波频率,并可从本发明中得到巨大收益。注意,在许多应用中,将使用一些共用连接体的线进行甚高速传输(用从上述同步方案中得益的同步方案),而另一些线用于传输常规低速信号。由于在载波频率低于约1MHz时,近端串扰不是一个普遍严重的问题,这种通信不会显著干扰高速,或采用本发明同步方案的高载波频率时分复用信号。
VDSL/FTTC系统的一个非常可取的特征是,用双绞线对就能够将多路复用通信提供给一个用户房间内的多个置顶单元(称作STU)。每一置顶单元接收、解调并解码整个下行信号,并选择对其寻址的信息。每一STU可允许在连续时间周期进行通信;这即为时分多址(TDMA)。或者,每一STU可被分配独立的频带;这即为频分多址(FDMA)。TDMA和FDMA均是本领域众所周知的,但它们通常被配合以频分复用以分离上行和下行信号。然而,在这样多点对点上行通信中,本发明很适于处理上行带宽的分配。来自多个STU的上行信号的协调即为媒体访问控制(MAC)。例如,可使用本领域为人熟知的方法将媒体通信控制信息作为头包含于下行文件头中。
作为TDMA的一个实例,设想一其中有如图1b远地204(e)中所示的4个STU共用一传输线的实施例。在使用32∶1∶4∶1码元模式的实施例中,每一STU可被分配上行码元中指定的一个码元。在具有比STU更多的上行码元周期的实施例中,特定STU可被分配多个上行码元周期。在具有比上行码元周期更多的STU的实施例中,稍微复杂一点的媒体通信控制过程将使码元分配频度少于每超帧一个。作为FDMA的一个实例,设想一如图1b远地204(e)所示其中有许多STU共用单根线的实施例。一所选实施例使用16∶1∶2∶1码元模式,并且在上行通信周期,每一STU将根据其数据传输需要被分配大量副载频(当使用离散多音频调制)或一频率副带(当使用单载频调制)。一般,需要将分配给每一STU副载频交错以减小低带噪声显著影响其中一STU与中心单元通信能力的概率。当然,交错所分配的副载频是不要求的。
尽管本发明仅就其应用于几种调制方案作了描述,应该理解,在不偏离本发明的精神或范围的情况下,本发明可包含于许多其它特定形式中。例如,尽管本技术说明已描述了其在VDSL/FTTC和其它基于用户线的甚高频数据传输系统用途,它也可被用于其它遭受近端串扰的系统中。在主实施例中,本发明在使用离散多音频调制方案系统中的应用已被描述。然而,它也被用于使用其它调制技术的系统中。例如,正交幅度调制(QAM);无载波幅度和相位调制(CAP);正交相移键控(QPSK);且/或残留边带调制都可被使用。重要的是,本发明即使在共用同一连接体的线上使用不同调制技术的情况下,也可被使用。当使用不同调制技术传输高载频信号时,重要的是使其时分复用上行和下行通信周期同步。当通过共用一连接体的相邻导线传输低载频信号时,时分复用同步信号将被可靠传输,而与该低载频信是否时分复用且/或是否与高速信号同步无关。这是因为标准化的低速信号传输系统能在不象高频信号那样易受近端串扰影响的低频段工作。
此外,应该理解,本发明可在中心和远地站点使用各种调制解调器而得以实施。因此,本例可认为是描述性而非限制性的,本发明不限于此处所述的细节,而可在所附权利要求的范围内改动。
权利要求
1.一种用于基于用户线的通信系统的中心调制解调器,该通信系统通过与第二传输线共用一连接体的第一传输线促进中心调制解调器与远地单元之间的通信,该中心调制解调器包括接收发送器,用于经第一传输线传送离散多音频调制信号,并且用于接收来自第一传输线的离散多音频调制信号;同步单元,用于输出至少一个时钟信号以控制接收发送器在与正携载在第二传输线上的下行时分双工传输相对应的下行通信周期期间,传送多载波离散多音频调制信号到一相关远地单元,而在与正被携手前进载在第二传输线上的上行时分双工传输相对应的上行通信周期期间,不传送多载波离散多音频调制信号到该相关远地单元。
2.如权利要求1所述的中心调制解调器,其中,发送接收器在上行通信周期期间接收来自第一传输线的多载波离散多音频调制信号。
3.如权利要求1所述的中心调制解调器,其中,发送接收器还经第一传输线传送所述至少一个时钟信号给所述远地单元。
4.如权利要求3所述的中心调制解调器,其中,所述至少一个时钟信号包括与所述上行和下行通信周期相对应的时钟信号。
5.如权利要求1所述的中心调制解调器,其中,所述至少一个时钟信号包括与所述上行和下行通信周期相对应的时钟信号。
6.如权利要求5所述的中心调制解调器,其中,所述至少一个时钟信号还包括一码元时钟信号和一取样时钟信号。
7.如权利要求1所述的中心调制解调器,其中,所述的同步单元包括第一时钟,输出与所上行和下行通信周期的周期相对应的时钟信号给所述的接收发送器;第二时钟,输出一码元时钟信号给所述的接收发送器;且第三时钟,输出一取样时钟信号给所述的接收发送器;而且其中所述的时钟信号被所述的接收发送器使用来调整上行和下行通信周期。
8.如权利要求2所述的中心调制解调器,其中,所述的同步单元控制所述接收发送器在连续的上行和下行通信周期之间的静默周期也不传送多载波离散多音频调制信号;且其中所述的接收发送器不接收在静默周期期间来自所述第一传输线的多载波离散多音频调制信号。
9.如权利要求2所述的中心调制解调器,其中,所述的静默周期不存在于连续的上行和下行通信周期之间。
10.一种基于用户线的通信系统的调制解调器,包括接收发送器,用于经一指定的传输线传送上行离散多音频调制信号给一中心单元,该指定的传输线与携载时分双工通信的第二传输线共用一连接体;接收器,用于经该指定的传输线接收来自该中心单元的下行离散多音频调制信号;控制器,用于检测在该下行通信信号中的至少一个时钟信号,且用于控制该接收发送器来传送其与正由该第二传输线携载的上行通信相对应的在上行通信周期期间的通信信号,而不传送其与正由该第二传输线携载的下行通信相对应的在下行通信周期期间的通信信号。
11.如权利要求10所述的调制解调器,其中,所述控制器还用于控制所述接收器在所述下行通信周期期间经所述指定的传输线接收其通信信号。
12.如权利要求10所述的调制解调器,还包括用于恢复来自所述接收器接收的通信信号的至少一个时钟信号。
全文摘要
一种在中心单元与远地单元之间通过共用一连接体的不同传输双绞线协调甚高速双向数据传输的方法被描述。更确切地说,周期同步的上行和下行通信周期被提供以便使其不相互重叠。共用一连接体的所有线的上行和下行通信的周期被同步。通过这种方案,所有同一连接体内的甚高速传输被同步且时分复用,这样下行通信不会在与上行通信重叠的时间进行。在一些实施例中,提供静默周期以分隔上行和下行通信周期。所述发明可与许多调制方案结合使用,包括多载波和单载波传输方案。它向后与现存系统兼容,并在高性能系统中具有特别优势。
文档编号H04L25/49GK1555148SQ20041003296
公开日2004年12月15日 申请日期1996年6月19日 优先权日1995年7月11日
发明者约翰·宾厄姆, 波·东, 约翰 宾厄姆 申请人:得克萨斯仪器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1