同步微网间路由的制作方法

文档序号:7947011阅读:169来源:国知局
专利名称:同步微网间路由的制作方法
技术领域
本发明总体上涉及无线通信,尤其涉及在网络内对直接和多跳传输进行调度的多种系统和技术。
背景技术
在传统的无线通信中,接入网通常用于支持多个移动设备的通信。这些接入网通常由分布在一个地理区域中的多个固定基站实现。通常将一个地理区域划分为称为小区的较小区域。可将每个基站配置为服务其小区内的所有移动设备。这样,接入网可能不能进行简单的重新配置,以考虑到不同蜂窝区域之间的变化流量要求。
与传统的接入网相反,自组网是动态的。当多个无线通信设备,通常称为终端,决定相互连接以形成网络时,可形成自组网。由于自组网中的终端既作为主机也作为路由器运行,网络可容易地进行重新配置,以更有效的方式满足现有的流量需求。而且,自组网不需要传统接入网所需的架构,使得自组网成为未来的一种更具吸引力的选择。
包括点对点连接的完全自组网通常导致非常低效的通信。为了改善效率,终端可自行组织为微网集合。“微网”是彼此紧密相邻的一组终端。每个微网可具有一个主终端,其在自身的微网内进行传输调度。
存在多址复用技术,以支持自组网中的通信。例如,频分多址(FDMA)方案是一种非常普遍的技术。FDMA通常涉及将总带宽的不同部分分配给微网中两个终端之间的每个通信。这种方案对于连续通信可能是有效的,而且当不需要这种连续不停的通信时,可获得对总带宽的更好利用。
其它多址复用技术包括时分多址(TDMA)。这些TDMA方案可能对于在不需要连续通信的多个终端之间分配有限的带宽特别有效。TDMA方案通常在指定时间间隔上将整个带宽都用于两个终端之间的每个通信信道。
码分多址(CDMA)技术可与TDMA一起使用,以支持在每个时间间隔期间的多个传输。可通过在指定时间间隔中使用调制载波从而扩展信号的不同编码传送每个信号来实现这个目的。所传输的信号可在接收机终端中由使用相应的编码以对所需要的信号进行反扩展的解调器进行分离。编码不匹配的无用信号不进行反扩展,仅仅作为噪声。
在使用扩频通信的TDMA系统中,每个主终端可在其自身的微网内以不引起过度相互干扰的方式进行传输调度。但是,可能更难以对来自多个微网之间传输的干扰进行管理。因此,需要一种强壮而且有效的调度算法。调度算法可用于以不引起过度干扰的方式对多个微网之间的直接和多跳传输进行调度。

发明内容
在本发明的一个方面,一种调度通信的方法包括,对第一发送和接收终端之间的微网间传输进行调度,包括对满足第一接收终端目标质量参数的微网间传输的功率电平进行调度,以及对第二发送和接收终端之间的微网内传输进行调度,包括对满足第二接收终端目标质量参数的微网内传输的功率电平进行调度。该微网内传输与该微网间传输同时进行调度。该方法可由在通信终端中运行的调度器或者由任何其它装置执行。
在本发明的另一方面,一种调度通信的方法包括,在第一微网中从第二微网接收有关被调度微网间传输的信息,以及对第一微网中多个微网内传输进行调度,而且并未对微网内传输与微网间传输同时进行调度。该方法可由在通信终端中运行的调度器或者由任何其它装置执行。
在本发明的另一方面,一种调度通信的方法包括,在第一微网中接收有关从第二微网中的第一发送终端到第一微网中的第一接收终端的被调度微网间传输的定时信息。该方法进一步包括对第一微网中的第二发送和接收终端之间的微网内传输与微网间传输同时进行调度,对满足第一接收终端目标质量参数的微网间传输的功率电平进行调度,以及对满足第二接收终端目标质量参数的微网内传输的功率电平进行调度。
在本发明的另一方面,通信终端包括用于对第一发送和接收终端之间的微网间传输进行调度,包括对满足第一接收终端目标质量参数的微网间传输的功率电平进行调度装置,以及用于对第二发送和接收终端之间的微网内传输进行调度,包括对满足第二接收终端目标质量参数的微网内传输的功率电平进行调度,并且对微网内传输与微网间传输同时进行调度的装置。
将了解到,本领域中熟练的技术人员将从下面的详细描述中了解到本发明的其它实施方式,其中,通过说明的方式,表示和描述了本发明的多个实施方式。如同所实现,在不偏离本发明原理和范围的前提下,本发明允许具有其它以及不同的实施方式,而且,可在多个其它方面对多个细节进行修正。因此,附图和详细描述作为说明,而非进行限制。


在附图中,通过实例的方式而非限制的方式,说明本发明的各个方面,其中图1是说明一个微网实例的概念图;图2是说明形成微网集群的两个微网实例的概念图;图3是说明用于控制微网通信的媒体接入控制(MAC)帧实例的概念图;图4是说明能够在微网内运行的终端实例的概念框图;图5是说明终端内的收发机和基带处理器实例的功能框图;图6是说明一个拓扑图实例的概念框图;
图7是说明一个微网间通信实例的概念图;以及图8是说明另一个微网间通信实例的概念框图。
具体实施例方式
下面结合

的详细描述旨在作为本发明多个实施方式的描述,并不旨在代表可实现本发明的唯一实施方式。在本说明中描述的每个实施方式仅仅作为本发明的一个实例或者说明,不应当认为其优于其它实施方式。详细描述包括具体的细节,用于提供对本发明的全面理解。但是,本领域中熟练的技术人员将了解到,可能在不具备这些具体细节的条件下实现本发明。在某些情况下,以框图形式表示了已知的结构和设备,以避免本发明的概念模糊不清。缩写词和其它描述性术语的使用可能只是因为方便和清晰,而不旨在限制本发明的范围。
在下面的详细描述中,可能在超宽带(UWB)无线通信系统的上下文中描述本发明的多个方面。虽然这些发明方面可能适合由本申请使用,但是,本领域中熟练的技术人员将了解,这些发明发面同样可适合在多个其它通信环境中使用。因此,对UWB通信系统的任何引用仅仅旨在说明发明方面,而且应理解,这些发明方面具有广泛的应用范围。
图1说明无线通信系统中微网的网络拓扑实例。所示微网102具有主终端104,支持多个成员终端106之间的通信。终端可能是固定的或者移动的,例如,由走路或者汽车、飞机、轮船等等中的用户所携带的终端。术语“终端”旨在包括任何类型的移动通信设备,包括蜂窝或者无线电话、个人数字助理(PDA)、膝上型计算机、外部或内部调制解调器、PC卡或者任何其它相似的设备。在微网102中,主终端104可能能够与每个成员终端106通信。成员终端106还可能能够在主终端104的控制下彼此直接通信。如下面更详细的描述中所示,微网102中的每个成员终端106还可能能够直接与微网外部的终端通信。
主终端104可使用多址接入方案,例如,TDMA、FDMA、CDMA或者其他多址接入方案,与成员终端106通信。为了说明本发明的多个方面,在本说明中描述的无线网络将位于使用TDMA和CDMA技术的混合多址接入方案的上下文中。本领域中熟练的技术人员将了解到,本发明决不限制于这些多址接入方案。
可以多种方式形成微网。例如,当终端最初开机时,其可能搜索来自多个微网主终端的导频信号。从每个微网主终端广播的导频信号可能是未调制的扩频信号,或者是其他类型参考信号。在扩频通信中,对于每个微网主终端唯一的伪随机噪声(PN)编码可用于对导频信号进行扩频。使用相关过程,终端可在所有可能的PN码中搜索,以定位来自主终端的导频信号,例如,从图1中主终端104广播的导频信号。导频信号可由成员终端106使用,以与主终端104同步。在本领域中,扩频导频信号的捕获是众所周知的。
主终端104可用于管理高数据率传输。可通过仅仅允许可以支持与主终端104的最小或门限数据率的那些终端加入微网102,实现这个目的。例如,在UWB通信系统中,基于传输条件,可在30-100米的距离上支持1.2288Mbps的数据率。在这些系统中,主终端104可配置为,使用可以支持至少1.2288Mbps数据率的成员终端106组成微网102。如果希望更高的数据率,则可进一步限制范围。例如,在UWB系统中,可在10米的范围内获得100Mbps的数据率。
成员终端106可配置为,通过使用从主终端104广播的导频信号测量链路质量,确定其是否可以满足微网的最小数据率要求。如上面的详细描述所述,终端可通过相关过程识别导频信号。然后,可通过以本领域中众所周知的方式计算来自导频信号的载波-干扰(C/I)比,测量链路质量。基于C/I比计算结果,成员终端106则也可使用本领域中众所周知的方式确定是否可支持最小或门限数据率。如果成员终端106确定可支持最小或门限数据率,则其可试图通过向主终端104登记,加入微网102。
能够在最小或门限数据率上与两个(或多个)主终端通信的成员终端成为两个微网之间的“集群内桥接终端”,两个微网则成为同一集群的成员。图2是说明由两个微网102和204形成的集群202的网络拓扑实例。集群202的第一微网102是结合图1描述的同一微网,其主终端104支持多个成员终端106。集群202的第二微网204包括同样支持多个成员终端208的主终端206。成员终端106a是第一和第二微网102和204的成员,因此,是集群内桥接终端。如果在两个微网之间存在多于一个集群内桥接终端,则选择其中一个作为主集群内桥接终端,其它是辅助桥接终端。两个微网102和204中终端之间的通信可能是直接的,或者通过其中一个集群内桥接终端。
在某些情况下,终端可能不能够找到具有足够信号强度以支持最小或门限数据率的导频信号。这可能源于多个原因。例如,终端可能离主终端太远。或者,传播环境可能不足以支持必要的数据率。无论怎样,终端可能不能够加入现有的微网,因此,可通过传送其自身的导频信号,开始作为独立的终端运行。独立的终端可能成为一个新微网的主终端。能够接收从独立终端广播的具有足够强度的导频信号的其它终端可能试图获得那个导频信号,并且加入这个独立终端的微网。
参考图3,周期性帧结构可用于支持终端之间的通信。在本领域中,这个帧通常被称为媒体接入控制(MAC)帧,这是因为,其用于为终端提供对通信媒体的接入。基于特定应用和整体设计限制,帧可能是任何持续时间。为了进行说明,将使用5ms的帧持续时间。5ms帧适宜提供650Mcps的高码片速率以及支持下至19.2kbps的数据率。
所示一个MAC帧结构的实例具有n个帧302。每个帧可划分为多个时隙304,例如,160个时隙。时隙持续时间可能是31.25μs,其对应650Mcps的20,312.5个码片。帧内的多个时隙可专用于开销。例如,帧302中的第一时隙306可由主终端使用,以广播扩频导频信号。导频信号可占用整个时隙306,或者,与图3中所示的控制信道进行时间共享。占用第一时隙306结尾的控制信道可能是以与导频信号相同功率电平广播的扩频信号。主终端可使用这个控制信道,以定义MAC帧的组成。
可使用占用帧内多个时隙,例如图3中的时隙308和310的一个或多个附加扩频控制信道,广播调度信息。调度信息可包括对于每个活动终端的时隙分配。这些时隙分配可选自占用帧302的一部分312的数据时隙。也可包括附加信息,例如,对于每个活动终端的功率电平和数据率。也可使用CDMA方案将多个终端对分配给任何给定的时隙。在这种情况下,调度信息还可包括扩频编码,以用于终端之间的单个通信。
图4是说明终端的一种可能配置的概念框图。本领域中熟练的技术人员将了解到,终端的精确配置可依赖于特定应用和整体设计限制而改变。为了清晰和完整,将在具有扩频功能的UWB终端的上下文中描述多个发明概念,但是,这些发明概念同样适用于多种其它通信设备。因此,任何对扩频UWB终端的引用仅仅旨在说明本发明的多个方面,而且了解到,这些方面具有广泛的应用范围。
终端可实现为具有与天线404相连的前端收发机402。基带处理器406可与收发机402相连。基带处理器406可使用基于软件的架构或者另一种架构实现。基于软件的架构可配置为具有微处理器(未示出),其作为运行软件程序的平台,该软件程序提供运行控制和整体系统管理功能,以允许终端作为微网中的主终端或者成员终端运行。基带处理器606还可包括具有运行专用算法以降低微处理器处理需求的嵌入式通信软件层的数字信号处理器(DSP)(未示出)。DSP可用于提供多种信号处理功能,例如,导频信号捕获、时间同步、频率跟踪、扩频处理、调制和解调功能以及前向纠错。
终端还可包括多个用户接口408,与基带处理器406相连。例如,用户接口可包括小键盘、鼠标、接触屏、显示器、振铃器、震动器、音频扬声器、扩音器、相机、等等。
图5是说明基带处理器和收发机实例的功能框图。收发机402可包括接收机502和发射机504。接收机502可用于在具有噪声和干扰的情况下检测所需要的信号,以及将其放大至一个等级,使得包含在信号中的信息可以由基带处理器406进行处理。发射机504可用于将来自基带处理器406的信息调制在载波上,以及将调制载波放大至足够的功率电平,以通过天线404辐射到自由空间中。
基带处理器406可包括在终端的发射和接收端的信号处理器508和510。信号处理器508和510可用于导频信号捕获、时间同步、频率跟踪、扩频处理、调制和解调功能、前向纠错和/或适用于支持与其它终端通信的任何其它信号处理器功能。如上所述,这些信号处理功能可由DSP中的嵌入式软件层或者任何其它方式实现。
基带处理器406可在作为主终端工作时启动调度器506。在基带处理器406的基于软件的实现方式中,调度器506可能是运行于微处理器上的软件程序。但是,本领域中熟练的技术人员将了解到,调度器506并不限于这个实施方式,并且可由本领域中已知的其它方式实现,包括能够执行在这里所述的各种功能的硬件配置、固件配置、软件配置或者其任意组合。
在两个终端之间的呼叫建立期间,调度器506可用于协商呼叫。发射和接收端的信号处理器508和510可用于使用扩频技术在适当的控制信道上与两个终端通信。这样,调度器506可用于确定通过信令消息交换支持呼叫所需的数据率。调度器506所选择的数据率可基于使用本领域中已知方式所请求的服务类型。例如,如果成员终端发起与另一个成员终端的呼叫以支持视频应用,则调度器506可确定呼叫要求高数据率。如果另一个成员终端发起到另一个成员终端的语音呼叫,则调度器506可选择较低的数据率,以支持呼叫。
调度器506还可用于在呼叫建立期间向两个终端分配时隙块。调度器506所分配的时隙数量可依照任何调度算法基于多种考量。例如,可基于优先级系统进行块分配,其中,给与语音通信的优先级高于高延时通信。调度器506还可给与高数据率传输优先级,以最大化吞吐率。也可能考虑一种公平标准,其考虑到要在两个终端之间传输的数据量。时隙分配可能是如上所述的块形式,或者分散在MAC帧中。时隙分配可能对于整个呼叫是固定的,或者基于主终端的当前载荷在呼叫期间进行调整。本领域中熟练的技术人员将能够使现有的调度算法适用于任何特定的应用。
调度器506还可配置为调度同时传输,以最大化数据吞吐率。进行同时传输调度的方式应使得其不会在接收终端之间造成互干扰。可使用多种方式实现这个目的。例如,调度器506可使用功率控制技术,以将从事于同时传输中的每个终端的传输功率限制于维持每个接收终端目标质量参数所需的功率。任何给定接收终端的目的质量参数可能是满足调度数据率上服务质量(QoS)要求所需的最小C/I比。
将首先结合微网内传输,对可由调度器506用于调度同时传输的多种功率控制技术进行描述。“微网内”传输是指同一微网内两个终端之间的传输。这些概念则将进行扩展,以覆盖同一集群内多个微网之间的传输。多个微网之间的传输将表示为“微网间”传输。
调度器506还可为点到点传输分配多个时隙。这些传输可能需要高发射功率,而且在某些情况下,可以仅仅维持在低数据率上。如果需要高功率传输以与独立的终端和/或集群外部的微网进行通信,则调度器506可决定不在同一时间调度任何其它传输。
假设图1所示微网中的活动终端全部进行微网内通信,则调度器506可用于调度同时传输,其方式使得满足每个接收终端的目标C/I比。微网拓扑图可用于实现这个目的。微网拓扑图的一个实例在图6中表示。微网拓扑图可由主终端从其接收自成员终端的传输中进行构造。
参考图5,计算模块516可用于测量在调度传输期间从成员终端接收的信号强度。由于每个成员终端传输的定时和功率电平由调度器506控制,可将定时和功率电平信息提供给计算模块516,结合所测量的接收信号强度,调度器506可能能够计算到每个成员终端的路径损耗。
成员终端还可用于周期性地向主终端提供到微网中其它成员终端的路径损耗测量结果。这些测量结果可能基于成员终端之间的调度传输。路径损耗测量结果可在一个或多个扩频控制信道上传送至主终端。接收端的信号处理器510可用于从控制信道中提取这些测量结果,并将其存储在存储器514中。
参考图6,两个终端之间的虚线表示两个终端之间的已知距离。图中的距离可从在主终端进行以及由成员终端报告回来的路径损耗测量获得的。但是,如下述的详细描述,用于同时传输调度判决的是所测量的路径损耗而非距离。因此,如果主终端具有微网中每个可能终端对组合的路径损耗信息,则可进行同时传输调度,而不必已知每个成员终端相对于主终端的角坐标。但是,实际上,带有角坐标的微网拓扑图可证明在调度同时传输中非常有用。
可使用多种技术,例如,全球定位(GPS)卫星导航系统,构造带有角坐标的微网拓扑图。在这个实施方式中,每个终端可具有一个GPS接收机(未示出),其能够使用本领域中已知的方式计算其坐标。成员终端的坐标可在适当的扩频控制信道上传送至主终端。
参考图5,信号处理器510可用于提取成员终端坐标,并且将其提供给调度器506。调度器506可使用这些坐标以及其自身的坐标,以构造微网拓扑图,如图6中所示。
调度器506可使用微网拓扑图估计终端对之间的路径损耗,其中否则不能得到这个路径损耗信息。路径损耗是终端之间距离以及环境条件的函数。由于多个终端之间的路径损耗是已知的,而且,相同终端之间的距离也是已知的,所以环境条件对信号传播的影响可以由调度器506进行估计。如果我们假设环境条件在微网内是相对不变的,则调度器506能够计算终端之间的路径损耗,否则无路径损耗信息可用。路径损耗计算的结果可存储在存储器514中,以备以后使用。在短距离应用中,例如UWB中,可通过假设环境条件在微网内基本上相同来进行确切的路径损耗估计。
一旦由调度器506构造微网拓扑图,而且路径损耗信息存储在存储器514中,就可进行调度判决。调度器506可使用包含在微网拓扑图中的信息以及有关调度判决的任何其它适当的因素,以保证所调度的传输不会过度地彼此干扰。
在描述用于在同时传输环境中维持每个接收终端目标C/I比的方法之前,将结合图6检查同时传输的影响。假设,微网内的目标C/I要求适当,从成员终端106h到成员终端106g的传输可能可以与从成员终端106c到成员终端106e的传输同时进行调度。这个调度判决应当满足目标C/I要求,这是因为,来自成员终端106h的传输不应当对成员终端106e引起过度的干扰,而且,来自成员终端106c的传输不应当对成员终端106g引起过度的干扰。
更加积极的调度判决还可能包括从成员终端106f到成员终端106b的传输。如果目标C/I要求足够低,则这个调度判决可能不会造成过度的干扰。但是,如果由于例如高数据率应用的成员终端106g的目标C/I比非常高,则从成员终端106h传输的信号功率可能需要足够高,使得其在成员终端106b引起过度的干扰。成员终端106b所经历的来自成员终端106h的干扰可将实际的C/I比降至目标之下,因此,性能恶化到不可接受的等级。在这种情况下,从成员终端106f到成员终端106b的传输应当在不同的时间进行调度。
调度器可进行计算,以保证维持每个接收终端的目标C/I比。调度器进行这个计算的方式可基于特定应用、设计者爱好以及整体设计限制有所变化。下面将提供一个实例,MAC帧中的单个时隙用于三个同时传输。
三个同时传输包括从成员终端106h到成员终端106g的传输、从成员终端106c到成员终端106e的传输以及从成员终端106f到成员终端106b的传输。将首先在成员终端106g处计算C/I比(C/IG)。成员终端106g的信号强度等于成员终端106h的传输功率(PH)减去从成员终端106h到成员终端106g的路径损耗(LH-G)。在成员终端106g的干扰源于成员终端106c和106f的信号传输,并且可以表示为由成员终端106c的传输功率(PC)减去从成员终端106c到成员终端106g的路径损耗(LC-G)加上成员终端106f的传输功率(PF)减去从成员终端106f到成员终端106g的路径损耗(LF-G)。基于这些关系,C/I比可在对数域中由下列等式计算C/IGdB=PH-LH-G-(PC-LC-G+PF-LF-G+M) (1)其中,M等于可用于考虑微网外干扰的干扰余量。
两个相似的等式还可用于计算成员终端接收机106e和106b的C/I比。成员终端106e处的C/I比(C/IE)可在对数域中由下列等式计算
C/IEdB=PC-LC-E-(PH-LH-E+PF-LF-E+M) (2)其中,LC-E是从成员终端106c到成员终端106e的路径损耗;LH-E是从成员终端106h到成员终端106e的路径损耗;以及LF-E是从成员终端106f到成员终端106e的路径损耗。
成员终端106b处的C/I比(C/IB)可在对数域中由下列等式计算C/IBdB=PF-LF-B-(PH-LH-B+PC-LC-B+M) (3)其中,LF-B是从成员终端106f到成员终端106b的路径损耗;LH-B是从成员终端106h到成员终端106b的路径损耗;以及LC-B是从成员终端106c到成员终端106b的路径损耗。
将每个接收终端的目标C/I比以及存储在存储器中的路径损耗信息代入等式(1)-(3),我们得到三个等式和三个未知数,可使用代数方法求解。如果三个等式都可以满足,则可在所计算的功率电平上对来自成员终端106h、106c和106f的同时传输进行调度。另一方面,如果没有功率电平组合可以满足所有三个等式,则三个传输不应当进行同时调度。
这个概念可扩展至微网间传输。参考图7,第一微网102中的成员终端106b可与第二微网204中的成员终端208a建立呼叫。当考虑到微网拓扑图时,显然,从成员终端106b到成员终端208a的直接传输不应当与从成员终端106c到成员终端106e的传输同时进行调度。克服到成员终端208a的路径损耗所需的成员终端106b的传输功率将可能过度地干扰成员终端106e的接收。
作为在不同时间对从成员终端106b到成员终端208a的传输进行调度的另一个可供选择,传输可以多跳方式通过集群内桥接终端106a进行路由。在这种情况下,成员终端106b的传输功率可降低,以适应到集群内桥接终端106a的较短距离传输。成员终端106b处的这种传输功率降低转换为在成员终端106e处的C/I比增加。
可以在下一个MAC帧内,可能可以对从集群内桥接终端106a到成员终端208a的第二段传输路径与从成员终端106c到成员终端106e的传输进行同时调度。这是因为,克服到成员终端208a的路径损耗所需的集群内桥接终端106a的传输功率小于在成员终端106b和208a之间进行直接传输所需的传输功率。而且,集群内桥接终端106a比成员终端106b离成员终端106e更远,更不可能干扰成员终端106e的接收。
在微网集群的至少一个实施方式中,第一微网102中的主终端104负责对从成员终端106b到成员终端208a的传输进行调度。第二微网204中的主终端206负责对相反方向的传输进行调度。主终端调度其各自微网间传输的方式可以是相同的,因此,将只结合从第一微网102到第二微网204的传输对调度判决进行描述。这些判决包括对从成员终端106b到成员终端208a的微网间传输的功率电平进行调度,无论是直接传输还是通过集群内桥接终端106a的多跳传输。反向传输的功率电平可能相同也可能不同,关于反向传输是直接还是多跳的确定可与来自成员终端106b的传输的路由方式无关。
第一微网102中的主终端104中的调度器是对成员终端106b和208a之间的直接传输进行调度,还是通过集群内桥接终端106a对该传输进行路由,可能是两个成员终端106b和208a之间路径损耗的函数。但是,路径损耗信息可能不包括在拓扑图中,这是因为,接收终端位于微网之外。实际上,在开销上来说,要求每个主终端构造集群内所有终端的拓扑图可能是低效的,虽然,这在本发明的范围内肯定是可能的。更有效的方法可能是动态地向拓扑图中添加微网外部与微网内成员终端进行通信的终端。微网外部终端的添加以及从拓扑图中删除的方式可能基于特定应用以及整体设计限制有所不同。将在下面详述一个实例。
当成员终端106b希望与其微网外部的成员终端208a建立呼叫时,其向主终端104发送信令。使用集群内桥接终端106a,主终端104可请求集群内的一个或多个其它主终端找到成员终端208a。在这种情况下,主终端104通过集群内桥接终端106a向主终端206发送查询。主终端206响应于查询,指示成员终端208a位于第二微网204中。
响应也可能伴随有成员终端208a和集群内桥接终端106a之间的路径损耗信息。成员终端208a和任何辅助集群内桥接终端(未示出)之间的路径损耗信息也可能包括在响应中。由于成员终端208a和所有集群内桥接终端都是第二微网204的成员终端,这个路径损耗信息可能提供自第二微网204中主终端206所维持的拓扑图。可将这个路径损耗信息添加到第一微网中主终端104的拓扑图中,以支持两个微网之间的多跳传输。
第一微网102中的主终端104也可向第二微网204中的主终端206发送回关于成员终端106b和集群内桥接终端106a之间的路径损耗信息。也可能包括成员终端106b和任何辅助集群内桥接终端(未示出)之间的路径损耗信息。由于成员终端106b和所有集群内桥接终端都是第一微网102的成员,这个路径损耗信息可提供自第一微网102中的主终端104所维持的拓扑图。可将这个路径损耗信息添加到第二微网中主终端206的拓扑图中,以支持两个微网之间的多跳传输。
主终端104和206也可能需要获得成员终端106b和成员终端208a之间的路径损耗信息,以支持直接通信。这个信息可在呼叫建立期间获得。更加具体地,每个成员终端106b和208a可使用本领域中众所周知的方式从嵌入在信令消息中的导频信号计算路径损耗。所计算的路径损耗信息可从成员终端106b和208a报告至其各自的主终端104和206。维持在每个主终端104和206的拓扑图则可相应地进行更新。
当确定是将微网间传输调度为直接传输还是通过集群内桥接终端的多跳传输时,调度器可使用微网拓扑图中的信息以最大化吞吐率。例如,如果第一微网102中每个接收终端的目标C/I比可以维持直接传输,则调度器可调度直接传输。如果直接传输的功率电平引起在第一微网102中一个或多个接收终端的目标C/I比降低,则可将不同的时隙块分配给直接微网间传输。或者,微网间传输可通过集群内桥接终端106a进行路由,从而降低了成员终端106b所需的传输功率。仍然应当对第一微网102中每个接收终端的目标C/I比进行检查,以保证多跳传输不会引起过度的干扰。
在直接微网间传输的情况下,第一微网102中主终端104的调度器可用于保证传输功率适用于满足接收终端208a的目标C/I比。这可用多种方式进行确定。例如,高功率传输可使用高扩频因子和低数据率,使得,即使在第二微网204内存在干扰的情况下也可在接收终端208b对信号进行解码。但是,高功率传输可在第一微网102中引起过度的干扰,因此,限制了可以同时发生的传输数量。
或者,两个微网可协调微网间传输。在两个终端106b和208a之间的呼叫建立期间,主终端104中的调度器可用于基于所请求服务类型确定支持呼叫所需的数据率。然后可由主终端104选择接收终端208a的目标质量参数。目标质量参数可能是目标C/I比或者任何其它目标质量参数。在至少一个实施方式中,目标质量参数可能是满足所确定数据率的QoS要求所需的最小C/I比(也就是,目标C/I比)。
一旦对接收终端208a确定了目标质量参数,就可由主终端104中的调度器分配时隙块,以支持呼叫。如前面的详细描述,时隙分配的方式使得对第一微网102中每个接收终端保持目标C/I比。这将依赖于成员终端106a所需的传输功率(P106b),这可以由下面的等式表示P106bdB=C/I208a+L106b-208a+I+M (4)其中,C/I208a是接收终端208a的目标C/I比;L106b-208a是从第一微网102中的发送终端106b到第二微网中的接收终端208a的路径损耗;I是第二微网204中接收终端208a的微网内干扰;以及M等于可用于考虑微网外部干扰的干扰余量。
在至少一个实施方式中,第二微网204中的主终端206可选择在从成员终端106b到成员终端208a的微网间传输期间不进行任何传输调度。在这个实施方式中,微网间传输的时隙分配可通过集群内桥接终端106a从第一微网102中的主终端104传送至第二微网204中的主终端206。这些时隙分配成为第二微网204的调度算法的限制,而且不可用于对第二微网204内的微网内传输进行调度。这样,等式(4)中的变量“I”可以设置为零,传输功率(P106b)可由第一微网中主终端104的调度器进行计算。
在另一个实施方式中,第二微网204中主终端206中的调度器可在微网间传输的同时对微网内传输进行调度。在这个实施方式中,等式(4)中的变量“I”将具有非零值,因此,增加了成员终端106a所需的传输功率(P106b),以满足成员终端208a的目标C/I比(C/I208a)。
参考图8,表示了第二微网204内与微网间传输同时的两个微网内传输。两个微网内传输包括从成员终端208b到成员终端208c的传输以及从成员终端208d到成员终端208e的传输。调度算法可用于将每个传输的功率限制为满足第二微网204中每个接收终端目标C/I比的功率。以与结合等式(1)-(3)描述的相似方式,第二微网204中主终端206中的调度器可使用代数方式解下面的等式C/I208cdB=P208b-L208b-208c-(P208d-L208d-208c+P106b-L106b-208c+M) (5)C/I208edB=P208d-L208d-208e-(P208b-L208b-208e+P106b-L106b-208e+M) (6)C/I208adB=P106b-L106b-208a-(P208b-L208b-208a+P106d-L106d-208a+M) (7)其中,对于终端x到终端y的任何给定传输C/Iy是终端y的目标C/I比;Px是终端x的调度功率电平;Lx-y是从终端x到终端y的路径损耗;以及Pz是终端z的调度功率电平(也就是,终端y的干扰源);Lz-y是从终端z到终端y的路径损耗。
可将成员终端208a的目标C/I比(C/I208a)从第一微网的主终端104传送至第二微网204的主终端206。成员终端106b和成员终端208a之间的路径损耗信息(L106b-208a)由主终端206在呼叫建立期间进行计算。目标C/I比和路径损耗的剩余值可以与以上结合第一微网102内的微网内传输描述的相同方式从主终端206中的计算模块和存储器中获得。
一旦将第二微网204中每个接收终端的目标C/I比以及路径损耗信息代入等式(5)-(7),就可计算功率电平。如果三个等式都可以满足,则可将第一微网102中成员终端106b的计算功率电平(P106b)通过集群内桥接终端106a传送至第一微网102中的主终端104。第一微网102中主终端104的调度器则可在微网间传输的同时调度一个或多个微网内传输。例如,第一微网102中主终端的调度器可在微网间传输的同时调度成员终端106c和106d之间的传输以及成员终端106e和106f之间的传输。可通过代数方法解下面的等式,对功率电平进行调度C/I106ddB=P106c-L106c-106d-(P106e-L106e-106d+P106b-L106b-106d+M) (8)C/I106fdB=P106e-L106e-106f-(P106c-L106c-106f+P106b-L106b-106f+M) (9)其中,对于终端x到终端y的任何给定传输C/Iy是终端y的目标C/I比;Px是终端x的调度功率电平;Lx-y是从终端x到终端y的路径损耗;以及Pz是终端z的调度功率电平(也就是,终端y的干扰源);Lz-y是从终端z到终端y的路径损耗。
等式(8)和(9)中的所有变量都是已知的,除了发送终端106c和106e的功率电平,因此,我们只剩下两个等式和两个未知数。
如果第一微网102中主终端104的调度器确定没有功率电平的组合可以满足等式(8)和(9),或者如果任何所需的功率电平超过一个或多个终端的最大发射功率,则调度器可将一个或多个微网内传输重新分配给另一个时隙块。或者,调度器可决定使微网间传输通过集群内桥接终端106a进行路由。结合这个多跳传输的调度判决应当包括确认在相关时隙期间可以满足微网102和204中所有目标C/I比的过程。
结合在这里所述各实施方式描述的多个示意性逻辑块、模块和电路可由通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑设备、离散门阵列或者晶体管逻辑、离散硬件组件或者设计来执行在这里所述功能的任何组合,来实现或者执行。通用处理器可能是微处理器,或者,处理器可能是任何传统的处理器、控制器、微控制器或者状态机。处理器也可能实现为计算设备的组合,例如,DSP和微处理器、多个微处理器、一个或多个具有DSP核心的微处理器的组合或者任何其它这种配置。
结合在这里所述的各实施方式描述的方法或算法可直接实现在硬件、由处理器运行的软件模块、或者这两者的组合中。软件模块可位于RAM存储器、闪存存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动硬盘、CD-ROM或者本领域中已知的任何其它形式的存储器媒体中。存储器媒体可与处理器相连,使得,处理器可以从存储器媒体读取信息以及向其写入信息。或者,存储器媒体可能与处理器相集成。处理器和存储器媒体可位于ASIC中。ASIC可位于终端或其它位置中。或者,处理器和存储器媒体可作为离散组件位于终端或其它位置中。
所说明实施方式的前述描述用于使本领域中熟练的技术人员实现或者使用本发明。本领域中熟练的技术人员将显而易见了解到这些实施方式的各种修正,而且,在不偏离本发明原理和范围的前提下,在这里定义的一般原理可应用于其它实施方式。从而,本发明并不旨在限于在这里所示的各实施方式,而是符合在这里说明的原理和新颖特性的最广范围。
权利要求
1.一种调度通信的方法,包括对第一发送和接收终端之间的微网间传输进行调度,包括对满足所述第一接收终端处目标质量参数的所述微网间传输的功率电平进行调度;以及对第二发送和接收终端之间的微网内传输进行调度,包括对满足所述第二接收终端处目标质量参数的所述微网内传输的功率电平进行调度,对所述微网内传输与所述微网间传输同时进行调度。
2.根据权利要求1所述的方法,进一步包括向所述第一发送终端发送所述微网间传输的调度,以及向所述第二发送终端发送所述微网内传输的调度。
3.根据权利要求1所述的方法,其中,所述质量参数包括载波-干扰比。
4.根据权利要求1所述的方法,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是第二微网的成员。
5.根据权利要求1所述的方法,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是所述第一微网和第二微网的成员。
6.根据权利要求5所述的方法,其中,所述微网间传输包括发往第三终端的信息,所述第三终端是所述第二微网的成员,而非所述第一微网的成员,所述方法进一步包括对从所述第一接收终端到所述第三终端的该信息的传输进行调度。
7.根据权利要求1所述的方法,进一步包括接收有关所述第一发送和接收终端之间路径损耗的信息,用于所述微网间传输的所述被调度功率电平是该信息的函数。
8.根据权利要求1所述的方法,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是第二微网的成员,所述方法进一步包括向所述第二微网中的第三终端发送所述微网间传输调度,所述第三终端负责对所述第二微网中的微网内传输进行调度。
9.根据权利要求1所述的方法,进一步包括向所述微网间传输分配第一扩频码,向所述微网内传输分配第二扩频码,所述第一扩频码与所述第二扩频码不同。
10.一种调度通信的方法,包括在第一微网中接收来自第二微网的有关被调度微网间传输的信息;以及对所述第一微网中的多个微网内传输进行调度,并且未对所述微网内传输与所述微网间传输同时进行调度。
11.一种调度通信的方法,包括在第一微网中接收有关从第二微网中第一发送终端到所述第一微网中第一接收终端的被调度微网间传输的定时信息;对所述第一微网中的第二发送和接收终端之间的微网内传输与所述微网间传输同时进行调度;对满足所述第一接收终端处目标质量参数的所述微网间传输的功率电平进行调度;以及对满足所述第二接收终端处目标质量参数的所述微网内传输的功率电平进行调度。
12.根据权利要求11所述的方法,进一步包括向所述第二微网中的第三终端发送所述微网间传输的所述被调度功率电平,所述第三终端负责对所述第二微网中的微网内传输进行调度。
13.一种通信终端,包括调度器,配置为对第一发送和接收终端之间的微网间传输进行调度,包括对满足所述第一接收终端处目标质量参数的所述微网间传输的功率电平进行调度,所述调度器进一步配置为对第二发送和接收终端之间的微网内传输进行调度,包括对满足所述第二接收终端处目标质量参数的所述微网内传输的功率电平进行调度,对所述微网内传输与所述微网间传输同时进行调度。
14.根据权利要求13所述的通信终端,进一步包括发射机,配置为向所述第一发送终端发送所述微网间传输的调度,以及向所述第二发送终端发送所述微网内传输的调度。
15.根据权利要求14所述的通信终端,进一步包括具有所述发射机的收发机,以及用户接口,配置为允许用户通过所述收发机与另一个终端进行通信。
16.根据权利要求15所述的通信终端,其中,所述用户接口包括小键盘、显示器、扬声器和扩音器。
17.根据权利要求13所述的通信终端,其中,所述质量参数包括载波-干扰比。
18.根据权利要求13所述的通信终端,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是第二微网的成员。
19.根据权利要求13所述的通信终端,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是所述第一微网和第二微网的成员。
20.根据权利要求19所述的通信终端,其中,所述微网间传输包括发往第三终端的信息,所述第三终端是所述第二微网的成员,而非所述第一微网的成员,所述调度器进一步配置为对从所述第一接收终端到所述第三终端的该信息的传输进行调度。
21.根据权利要求13所述的通信终端,进一步包括接收机,配置为接收有关所述第一发送和接收终端之间路径损耗的信息,用于所述微网间传输的所述被调度功率电平是该信息的函数。
22.根据权利要求13所述的通信终端,其中,所述第一发送终端以及所述第二发送和接收终端是第一微网的成员,所述第一接收终端是第二微网的成员,所述通信终端进一步包括发射机,配置为向所述第二微网中的第三终端发送所述微网间传输调度,所述第三终端负责对所述第二微网中的微网内传输进行调度。
23.根据权利要求13所述的通信终端,进一步包括处理器,配置为向所述微网间传输分配第一扩频码,向所述微网内传输分配第二扩频码,所述第一扩频码与所述第二扩频码不同。
24.运行于第一微网中的通信终端,包括接收机,配置为从第二微网接收有关被调度微网间传输的信息;以及调度器,配置为对所述第一微网中的多个微网内传输进行调度,并且未对所述微网内传输与所述微网间传输同时进行调度。
25.运行于第一微网中的通信终端,包括接收机,配置为接收有关从第二微网中第一发送终端到所述第一微网中第一接收终端的被调度微网间传输的定时信息;以及调度器,配置为对所述第一微网中的第二发送和接收终端之间的微网内传输与所述微网间传输同时进行调度,所述调度器进一步配置为对满足所述第一接收终端处目标质量参数的所述微网间传输的功率电平进行调度,以及对满足所述第二接收终端处目标质量参数的所述微网内传输的功率电平进行调度。
26.根据权利要求25所述的通信终端,进一步包括发射机,配置为向所述第二微网中的第三终端发送用于所述微网间传输的所述被调度功率电平,所述第三终端负责对所述第二微网中的微网内传输进行调度。
27.一种通信终端,包括用于对第一发送和接收终端之间的微网间传输进行调度,包括对满足所述第一接收终端处目标质量参数的所述微网间传输的功率电平进行调度的装置;以及用于对第二发送和接收终端之间的微网内传输进行调度,包括对满足所述第二接收终端处目标质量参数的所述微网内传输的功率电平进行调度,并且对所述微网内传输与所述微网间传输同时进行调度的装置。
全文摘要
提出有关无线通信的系统和技术。所述系统和技术涉及无线通信,其中,过程、模块或者通信终端进行通信调度。调度功能可包括对第一发送(106b)和接收终端(208a)之间的微网间传输进行调度,包括对满足第一接收终端目标质量参数的微网间传输的功率电平进行调度。调度功能还可包括对第二发送(106c)和接收终端(106e)之间的微网内传输进行调度,包括对满足第二接收终端目标质量参数的微网内传输的功率电平进行调度。可对微网内传输与微网间传输同时进行调度。
文档编号H04L12/56GK1957571SQ200580016517
公开日2007年5月2日 申请日期2005年3月15日 优先权日2004年3月26日
发明者兰加纳坦·克里希南, 桑吉夫·南达 申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1