控制站装置、基站装置及分组数据丢弃方法

文档序号:7949201阅读:303来源:国知局
专利名称:控制站装置、基站装置及分组数据丢弃方法
技术领域
本发明涉及控制站装置、基站装置及分组数据丢弃方法。例如,涉及应用于W-CDMA方式的高速分组传输方式中的控制站装置、基站装置及分组数据丢弃方法。
背景技术
作为W-CDMA方式的高速分组传输方式,HSUPA(HIGH SPEEDUPLINK PACKET ACCESS)已被标准化。在HSUPA中,通过在无线线路中应用HARQ(HYBRIDAUTOMATIC REPEAT REQUEST),及由无线基站装置调度通信对方用户等的方法,实现从移动终端至无线基站装置的上行线路的高速化。并且,为谋求无线基站装置间或扇区间切换时的通信稳定与无间断的同时增加系统容量,移动终端向多个无线基站装置发送同样的分组数据,且通过无线网络控制装置实施进行选择合成的软切换。
在以往,应用HSUPA时,对于因无线区间(UU)接口上的HARQ和有线区间(IUB/IUR)接口(interface)上的流程控制及软切换的实施所产生的分组数据的顺序倒置,在配置于RNC里的缓存器内进行校正。
移动通信系统包括移动终端(以下称为“UE”)、无线基站装置(以下称为“NODE B”)、控制NODE B的无线网络控制装置(以下称为“RNC”)和进行UE的位置管理、呼叫控制等的核心网络(以下称为“CN”)(例如,非专利文献1)。图1是表示移动通信系统的一个例子,经CN11而连接RNC12和RNC13。并且,RNC12和Node B14、Node B15及Node B16相连,RNC13和Node B17及Node B18相连。再有,UE19由无线线路连接到Node B14、Node B15及Node B16之下。UE19向Node B14、Node B15及Node B16发送同样的分组数据且实施软切换。
另外,图2是表示应用HSUPA时的用户面的协议结构的一个例子(例如,非专利文献2)。在Node B和UE之间的UU接口上的MAC-E(MEDIUMACCESS CONTROL FOR ENHANCED DEDICATED CHANNEL)层,实施HARQ和Node B进行的调度。并且,在Node B和RNC之间的EDCH FP层,对上行数据帧实施流程控制。
3GPP,TS25.401 UTRAN OVERALL DESCRIPTION,V6.3.0[专利文献2]3GPP,TS25.309 FDD ENHANCED UPLINK OVERALLDESCRIPTION STAGE 2V1.0.0发明内容发明需要解决的问题然而,在以往的装置中,由于RNC和Node B之间的流程控制而经过规定的时间,会出现由RNC缓存器确定丢弃的分组数据保存在Node B的缓存器中的情况。此时,因RNC的缓存器和Node B的缓存器之间没有协作功能,存在NODE B向RNC发送经RNC确定丢弃的分组数据,使业务量增加的问题。
本发明的目的为提供一种通过不从基站装置向控制站装置发送在控制站装置丢弃的分组数据,而是在基站装置将其丢弃,来抑制业务量的控制站装置、基站装置及分组数据丢弃方法。
解决问题的方案本发明的控制站装置采用具有以下单元的结构,其中包括接收从基站装置发送的分组数据的接收单元;暂时存储上述接收单元接收到的上述分组数据的同时,将存储的上述分组数据的顺序排列为正确顺序的第一存储单元;对已由上述第一存储单元正确排序的分组数据实以规定的协议处理的协议处理单元;设定最大等待时间的定时管理单元,该最大等待时间是上述分组数据从被存储在上述第一存储单元开始直至对其不由上述协议处理单元进行协议处理而被丢弃为止的规定的时间;和通知上述基站装置由上述定时管理单元设定的上述最大等待时间的信息的通知单元。
本发明的分组数据丢弃方法,包括通信终端装置向基站装置发送分组数据的步骤;在上述基站装置暂时存储上述基站装置接收的上述分组数据的步骤;将上述基站装置存储的上述分组数据以规定的定时向控制站装置发送的步骤;在上述控制站装置暂时存储上述控制站装置接收的上述分组数据的同时,将存储的上述分组数据的顺序排列为正确顺序的步骤;对已正确排序的分组数据实施规定的协议处理的步骤;设定最大等待时间的步骤,该最大等待时间是上述分组数据从被存储开始直至对其不进行上述协议处理而被丢弃为止的规定的时间;上述控制站装置向上述基站装置发送设定的上述最大等待时间的信息的步骤;上述基站装置接收从上述控制站装置发送的上述最大等待时间的信息的步骤;和上述基站装置根据接收到的上述最大等待时间的信息,不向上述控制站装置发送由上述基站装置所存储的分组数据中、即使向上述控制站装置发送也会被丢弃的分组数据,而由上述基站装置将其丢弃的步骤。
发明的效果根据本发明,通过不从基站装置向控制站装置发送由控制站装置丢弃的分组数据,而由基站装置将其丢弃,以此来抑制业务量。


图1是表示移动通信系统结构的模式图。
图2是表示应用HSUPA时的用户面的协议结构的图。
图3是表示本发明实施方式的通信系统结构的方框图。
图4是表示本发明实施方式的基站装置及控制站装置的动作的顺序图。
图5是表示本发明实施方式的控制站装置的动作的顺序图。
图6A是表示本发明实施方式的定位缓存器(alignment buffer)的状态的图。
图6B是表示本发明实施方式的定位缓存器的状态的图。
图6C是表示本发明实施方式的定位缓存器的状态的图。
图6D是表示本发明实施方式的定位缓存器的状态的图。
图6E是表示本发明实施方式的定位缓存器的状态的图。
图6F是表示本发明实施方式的定位缓存器的状态的图。
具体实施例方式
以下参照附图详细说明有关本发明的实施方式。
(实施方式)图3是表示本发明实施方式的通信系统100的结构的方框图。通信系统100包括Node B121、RNC122和CN123。并且,在图3中根据说明的需要,省略UE、其他的RNC以及其他Node B的记述。
首先,说明Node B121的结构。FP处理单元119包括缓存器102、发送单元103、接收单元104、速率设定单元105、定时管理单元106和缓存器107。
无线接收单元101接收从未图示的UE以无线发送的作为上行用户数据的分组数据,进行将接收到的上行分组数据的无线帧转换为用户帧的无线处理后,输出到缓存器102及MAC-e处理单元108。
作为第二存储单元的缓存器102暂时存储从无线接收单元101输入的上行分组数据。接着,缓存器102以速率设定单元105设定的传输率及传输定时将存储的上行分组数据输出到发送单元103。并且,缓存器102根据定时管理单元106的指示,在从存储上行分组数据时开始经过了规定的时间后,不向发送单元103输出所存储的上行分组数据,而是将其丢弃掉。
发送单元103对从缓存器102输入的上行分组数据进行FP处理,且将用户帧转换成FP帧后,以有线方式输出到RNC122的接收单元110。
接收单元104对接收到的从RNC122的发送单元116发送的下行分组数据进行FP处理且输出到缓存器107。并且,接收单元104将接收到的从发送单元116发送的传输率的信息输出到速率设定单元105。再有,接收单元104将接收到的从发送单元116发送的最大等待时间(REORDERING RELEASETIMER)的信息输出到定时管理单元106。
速率设定单元105根据从接收单元104输入的传输率的信息设定规定的传输率及传输定时,并指示缓存器102以设定的传输率及传输定时输出上行分组数据。
作为丢弃单元的定时管理单元106根据由接收单元104输入的最大等待时间的信息,对于即使向RNC122发送也会被丢弃的上行分组数据,作出不向RNC122发送而是将其丢弃的指示。具体而言,定时管理单元106具有和后述的RNC122的定时管理单元113的帧丢弃定时器同步的帧丢弃定时器,超过由最大等待时间的信息指示的时间时,向缓存器102作出丢弃上行分组数据的指示。再有,关于分组数据的丢弃方法将后述。
缓存器107暂时存储由接收单元104输入的下行分组数据,并以规定的定时向无线发送单元109输出存储的下行分组数据。
MAC-e处理单元108对由无线接收单元101输入的上行分组数据进行HARQ及调度等的MAC-e处理。具体而言,MAC-e处理单元108解调由无线接收单元101输入的上行分组数据的同时,进行HARQ解码及纠错。并且,MAC-e处理单元108能够以期望的定时接收由无线接收单元101输入的上行分组数据时,生成表示接收成功的ACK信号并输出到无线发送单元109,然而在不能以期望的定时接收由无线接收单元101输入的上行分组数据时,生成表示接收失败的NACK信号并输出到无线发送单元109。再有,MAC-e处理单元108从由无线接收单元101输入的上行分组数据,生成作为表示各个UE的无线线路的线路质量的信息的线路质量信息。接着,MAC-e处理单元108根据生成的、与多个UE之间的无线线路的线路质量信息,决定各个UE的发送定时及发送时所用的调制方式等,并向无线发送单元109输出决定的发送定时的信息及调制方式的信息。
无线发送单元109无线处理从缓存器107输入的下行分组数据并以无线方式发送到未图示的UE。并且,无线发送单元109无线处理从MAC-e处理单元108输入的发送定时的信息及调制方式的信息等、及ACK信号或NACK信号并以无线方式发送到相应的UE。
接着说明RNC122的结构。FP处理单元120包括接收单元110、选择合成单元111、定位缓存器(REORDERING缓存器)112、定时管理单元113、缓存器114、速率控制单元115和发送单元116。
接收单元110对从发送单元103发送且输入的上行分组数据进行FP处理,将FP帧转换成用户帧后,输出到选择合成处理单元111及速率控制单元115。
选择合成处理单元111选择合成从接收单元110输入的多个的Node B的上行数据并输出到定位缓存器112。
作为第一存储单元的定位缓存器112为校正由于因HARQ而不同的重发次数、因IUB/IUR接口上的流程控制而产生的传输延迟、及应用软切换时的多个的Node B间的不同传输延迟等所产生的上行数据的顺序倒置的单元,暂时存储从选择合成处理单元111输入的上行分组数据的同时,将存储的上行分组数据的顺序排列为正确顺序并输出到MAC-d处理单元117。并且,定位缓存器112根据定时管理单元113的指示,在从存储上行分组数据时开始经过了规定的时间后,不向MAC-d处理单元117输出存储的上行分组数据,而是将其丢弃。
定时管理单元113有和Node B的定时管理单元106的帧丢弃定时器同步的帧丢弃定时器。而且,定时管理单元113通过帧丢弃定时器设定最大等待时间,该最大等待时间为定位缓存器112中存储的上行分组数据从存储开始到输出到MAC-d处理单元117为止所允许时间,并向定位缓存器112发出指示,以丢弃超过最大等待时间的上行分组数据。并且,定时管理单元113向发送单元116输出最大等待时间的信息。
缓存器114暂时存储从MAC-D处理单元117输入的下行分组数据,并以规定的定时向发送单元116输出存储的下行分组数据。
速率控制单元115根据从接收单元110输入的上行分组数据,监视RNC122和Node B121之间的有线传输路径上的业务量状态等,并设定从Node B121向RNC122发送的上行分组数据的传输率。而且,速率控制单元115向发送单元116输出设定的传输率的信息。
发送单元116对从缓存器114输入的下行分组数据进行FP处理,生成FP帧后,以有线方式向Node B121的接收单元104发送。并且,发送单元116以有线方式向Node B121的接收单元104发送从速率控制单元115输入的传输率的信息。再有,发送单元116以有线方式向Node B121的接收单元104发送从定时管理单元113输入的最大等待时间的信息。
MAC-d处理单元117对从定位缓存器112输入的上行分组数据进行MAC-d层处理后输出到RLC处理单元118。并且,MAC-d处理单元117对从RLC处理单元118输入的下行分组数据进行MAC-d层处理后输出到缓存器114。
RLC处理单元118为进行重发控制等的RLC处理的单元,对从MAC-d处理单元117输入的上行分组数据进行RLC处理后以有线方式向CN123发送的同时,对接收到的从CN123以有线方式发送的下行分组数据进行RLC处理后输出到MAC-d处理单元117。然而,有关RLC处理及MAC-d处理的详细内容记录在3GPP,TS25.322 RADIO LINK CONTROL(RLC)PROTOCOL SPECIFICATION,V6.1.0及3GPP,TS25.321 MEDIUMACCESS CONTROL(MAC)PROTOCOL SPECIFICATION,V3.14.0中。
CN123将接收到的从RNC122的RLC处理单元118发送来的上行分组数据转发到未图示的其他的RLC的同时,向RLC处理单元118发送从其他的RNC转发来的下行分组数据。并且,CN123进行UE的位置管理及呼叫控制等。
下面,用图4~图6说明有关Node B121及RNC122的动作。图4是表示Node B121及RNC122的动作的顺序图,图5是表示RNC122的动作的顺序图,同时图6是表示定位缓存器112状态的图。
RNC122的定时管理单元113在每次启动最大等待时间时,在监视定位缓存器112的同时,设定最大等待时间的设定值T1,并将最大等待时间的设定值T1、设定对象的TSN(T1_TSN)、及包含以设定时的CFN为信息因素的最大等待时间的信息的控制帧发送到Node B121的定时管理单元106(步骤ST201)。于是,接收到控制帧的Node B121的定时管理单元106启动帧丢弃定时器,并监视缓存器102。这里,所谓CFN即为Node B121和RNC122共用的计数的帧号。由此,RNC122和Node B121可取得双方的帧丢弃定时器的同步。
在Node B121的定时管理单元106,根据被通知的T1和CFN,用式(1)设定缓存器102中的帧丢弃定时器。
帧丢弃定时器=T1-2×(RNC122和Node B121间的传输延迟)(1)另外,RNC122和Node B121间的传输延迟#210可通过式(2)而求。RNC122和Node B121间的传输延迟=(接收控制帧时的Node B121的CFN)-(由控制帧设定的CFN) (2)另一方面,定位缓存器112中有作为变量的接收窗口尺寸和最大等待时间的设定值T1。另外,定位缓存器112中还有作为状态变量的表示下一个应向MAC-D处理单元117转发的分组数据的TSN计数值的NEXT_EXPECTED_TSN、表示接收窗口的上限的TSN计数值的RcvWindow_UpperEdge、及表示最大等待时间的设定值T1的启动对象的TSN计数值的T1_TSN。最大等待时间的设定值T1的值根据HARQ的最大重发次数,发送时间间隔(TTI)、HARQ的步骤数、或IUB/IUR接口的延迟等被设定。
在定位缓存器112中,分组数据存储在相应的TSN计数值的位置。例如,由图6A~图6F,接收窗口尺寸#401为4,TSN计数值#402为“0”(TSN=0)的分组数据存储在定位缓存器112,被转发到MAC-d处理单元117后,定位缓存器112变成图6A所示的状态。此时,Next_Expected_TSN=1、RcvWindow_UpperEdge=3,不启动最大等待时间的设定值T1。
接着,RNC122接收TSN计数值为“3”(TSN=3)的分组数据后,如图5所示,通过将比Next_Expected_TSN=1大的TSN计数值#350为“3”的分组数据#330从选择合成处理单元111存储到定位缓存器112(步骤ST301),启动最大等待时间的设定值T1后,T1_TSN=3,定位缓存器112变成图6B所示的状态。
接着,通过接收TSN计数值#351为“4”(TSN=4)的分组数据#331并从选择合成处理单元111存储到定位缓存器112(步骤ST302),接收计数#401被更新,RcvWindow_UpperEdge=4,定位缓存器112变成图6C所示的状态。
另外,通过接收TSN计数值#352为“5”(TSN=5)的分组数据#332并从选择合成处理单元111存储到定位缓存器112(步骤ST303),接收窗口#401被更新,RcvWindow_UpperEdge=5,因接收窗口#401不包括TSN计数值“1”(TSN=1),Next_Expected_TSN=2,定位缓存器112变成图6D所示的状态。此后,因不能接收TSN计数值为“2”(TSN=2)的分组数据,且不能向MAC-D处理单元117转发TSN计数值为“3”以后的分组数据,帧丢弃定时器期满,如图5所示,已存储的TSN计数值为“3”~“5”(TSN=3~5)的分组数据#333、#334、#335被转发到MAC-D处理单元117(步骤ST304、步骤ST305、步骤ST306),Next_Expected_TSN为在T1_TSN=3以后不被定位缓存器112接收的分组数据的Next_Expected_TSN=6,定位缓存器112变成如图6E所示的状态。
在帧丢弃定时器期满时,Node B121的定时管理单元106对缓存器102发出丢弃上行分组数据的指示(步骤ST202)。接收到帧丢弃指示的缓存器102检查存储的上行数据的TSN,丢弃在所存储的分组数据中的设定对象的TSN(T1_TSN)以下的所有上行分组数据。例如,Node B121要向RNC122发送TSN计数值为“2”的分组数据时,NODE B121的定时管理单元106通过在步骤ST201接收到最大等待时间的信息,区别出最大等待时间的设定值T1已期满后,向缓存器102发出丢弃TSN计数值为“2”的分组数据的指示。其结果,不会从Node B121向RNC122发送TSN计数值为“2”的分组数据。这里,在Node B121中,向缓存器102通知丢弃分组数据的定时为,从设定最大等待时间的设定值的时刻T250开始经过了从最大等待时间的设定值T1减去传输延迟#212的时间之后的时刻T251,该传输延迟#212为从Node B121向RNC122发送分组数据时的在RNC122和Node B121之间的传输延迟。而且,由时间管理单元106设定了帧丢弃定时器的时刻开始到通知缓存器102帧丢弃的时间为止的时间#211为,从最大等待时间的设定值T1减去RNC122和Node B121之间的传输延迟#211及RNC122和Node B121之间的传输延迟#212之后的时间。
接着,在RNC122中,通过接收TSN计数值#353为“7”(TSN=7)的分组数据#336并从选择合成处理单元111存储到定位缓存器112(步骤ST307)、接收窗口#401被更新,RcvWindow_UpperEdge=7。而且,因TSN计数值#353比Next_Expected_TSN=6大,T1被启动,T1_TSN=7,定位缓存器112变成如图6F所示的状态。在定位缓存器112中通过上述处理实施分组数据的顺序校正。
如上所述,根据本实施方式,因为不向控制站装置发送由控制站丢弃的分组数据,而由基站装置将其丢弃,所以能够抑制业务量。
而且,在上述实施方式中,虽然使用CFN通知最大等待时间,但不限于此方法,也可使用CFN以外的任何方法通知最大等待时间。
本说明书基于2004年10月27日申请的2004-312077号日本专利。该内容全部包含于此。
工业实用性本发明的控制站装置、基站装置及分组数据丢弃方法例如适合应用于W-CDMA方式的高速分组传输方式。
权利要求
1.一种控制站装置,包括接收单元,接收由基站装置发送的分组数据;第一存储单元,暂时存储上述接收单元接收的上述分组数据,同时将存储的上述分组数据的顺序排列为正确顺序;协议处理单元,对已由上述第一存储单元正确排序的分组数据进行规定的协议处理;定时管理单元,设定最大等待时间,该最大等待时间是上述分组数据从被存储到上述第一存储单元中开始,直至对其不由上述协议处理单元进行协议处理而被丢弃为止的规定的时间;以及通知单元,向上述基站装置通知由上述定时管理单元设定的上述最大等待时间的信息。
2.如权利要求1所述的控制站装置,其中,上述定时管理单元用与上述基站装置同步的定时器设定上述最大等待时间。
3.一种基站装置,与如权利要求1所述的和控制站装置进行通信,上述基站装置包括无线接收单元,接收由通信终端装置发送的分组数据;第二存储单元,暂时存储由上述无线接收单元接收的上述分组数据;发送单元,以规定的定时向上述控制站装置发送由上述第二存储单元存储的分组数据;以及丢弃单元,根据由上述通知单元通知的最大等待时间的信息,不由上述发送单元发送在上述第二存储单元中所存储的分组数据中,即使向上述控制站装置发送也会被丢弃的分组数据,而是将其丢弃。
4.一种分组数据丢弃方法,包括以下步骤通信终端装置向基站装置发送分组数据;由上述基站装置暂时存储上述基站装置接收的上述分组数据;以规定的定时向控制站装置发送上述基站装置存储的上述分组数据;由上述控制站装置暂时存储上述控制站装置接收的上述分组数据,同时将存储的上述分组数据的顺序排列为正确顺序;对已被正确排序的分组数据进行规定的协议处理;设定最大等待时间,该最大等待时间是上述分组数据从存储开始至对其不进行上述协议处理而被丢弃为止的规定的时间;上述控制站装置向上述基站装置发送所设定的上述最大等待时间的信息;上述基站装置从上述控制站装置接收上述最大等待时间的信息;以及根据上述基站接收的上述最大等待时间的信息,不向上述控制站装置发送由上述基站装置存储的分组数据中,即使向上述控制站装置发送也会被丢弃的分组数据,而是由上述基站装置将其丢弃。
全文摘要
通过不从基站装置向控制站装置发送由控制站装置丢弃的分组数据而由基站将其丢弃,从而抑制业务量的控制站装置。在该装置中,缓存器(102)在从存储了上行数据时起经过了规定的时间后,不输出所存储的上行分组数据而将其丢弃。定时管理单元(106)根据最大等待时间的信息,发出不向RNC(122)发送上行分组数据而将其丢弃的指示,该上行分组数据为即使向RNC发送也会被丢弃的上行分组数据。定位缓存器(112)校正上行分组数据的顺序倒置的同时,丢弃经过了最大等待时间的上行分组数据。定时管理单元(113)设定最大等待时间,并对定位缓存器(112)发出指示,以丢弃经过了最大等待时间的上行分组数据。
文档编号H04W28/06GK101044730SQ20058003561
公开日2007年9月26日 申请日期2005年10月19日 优先权日2004年10月27日
发明者田村智史, 福井章人, 饭田健一郎 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1