移动站通信业务状态的天线调整系统和方法

文档序号:7636062阅读:200来源:国知局

专利名称::移动站通信业务状态的天线调整系统和方法
技术领域
:本发明通常涉及无线电子通信,尤其涉及天线调谐系统及方法。2.
背景技术
在具有不同发射和接收频率的通信系统中,移动站的天线效率在发射频率的最优化与接收频率的最优化之间是均衡的。在典型的操作条件下,典型的天线效率均衡允许最佳地使用发射和接收源。然而,通常会出现典型的天线效率均衡并不是优选的状态。在这样的状态下,可以说前向和反向链路是不均衡的。前向链路是用于数据(音频数据或者其他数据)从基站发射器传送到移动站接收器的通信链路。反向链路是用于数据(音频数据或者其他数据)从移动站发射器传送到基站接收器的通信链路。前向和反向链路不均衡的第一示例发生在衰减状态可能降低前向链路或者反向链路接收的时候。在第二示例中,由于一些緩慢变化的参数或甚至是固定参数的原因,使得发射频率和接收频率之间的天线效率均衡不理想。例如,天线匹配电路或一些其他硬件组件可能按某种方法进行生产或校准,从而使得在发射和接收频率之间具有非理想的均衡。可选地,天线效率均衡可能在某种温度条件(例如,由于长期持续使用而产生的高温)下变得非理想。在第三示例中,由于移动站周围环境变化所引起的性能降低,可使得前向和反向链路变得不均衡。例如,天线可能被用户的手遮住,或者移动站可能被置于金属台上。在第四示例中,通信系统在特定时间的前向和反向链路负载可使得典型的天线效率均衡不是优选的。例如,移动站可能仅仅在一些时间段内进行数据的发射或接收。在另一个示例中,无线通信系统的前向链路在特定时间相对于反向链路而言是过负荷的。例如,如果从基站同时地向多个用户传送数据,则可能在通信系统的前向链路产生过负荷,但相对而言,很少有用户会向基站发送数据。
发明内容前向和反向链路之间的均衡通过响应于反向功率控制信号(比特)、可选地响应于接收信号质量指示、或可选地响应于前向功率控制信号(比特),对天线匹配电路进行调谐而得到改善。所述接收信号质量指示例如是接收信号强度指示(RSSI)和前向帧差错率(FER)。当前向链路由于衰落环境而被降低时,在接收频率增加天线效率,尽管这样会降低发射频率的天线效率。相反地,当反向链路由于衰落环境而被降低时,在发射频率增加天线效率,尽管这样会降低接收频率的天线效率。当发射和接收之间出现非理想的天线效率均衡时,通过重新调"i皆天线效率恢复均衡。当移动站或系统的反向和前向链路使用不均衡时,向发射或者接收频率改变天线效率均衡,这取决于哪里需要提高的效率。例如,如果移动站仅向外发射,则天线效率均衡可向着发射频率改变。天线效率可向发射频率少量或大量改变。天线效率甚至可以完全地;波最优化用于发射频率。又例如,如果与反向链路相比较而言,通信系统主要是装载在前向链路上,则移动站的天线效率均衡可向着接收频率带改变。天线效率均衡通过调谐天线匹配电路而被调谐。一种调谐天线匹配电路的方法是向匹配电if各中的一个或多个铁电的电容施加一个或多个电压,以此改变铁电的电容的容量,从而改变天线系统(天线和匹配电路)的阻抗。通过参照附图对本发明的优选实施方式详细描述后,本发明的其它方面、有益效果以及新颖性特征将变得显而易见。在附图中,通过举例而非限制的方式示出了本发明的优选实施方式,其中图1是示出响应于反向功率控制信号调谐天线匹配的无线通信诏:备的方框图;图2是示出可调天线效率的坐标图;图3是示出响应于反向链路功率控制参数、接收的信号强度指示和帧差错率调谐天线效率的方法的流程图;以及图4是示出响应反向链路功率控制参数和前向链路功率控制参数调谐天线效率的方法的流程图。具体实施方式图1是示出响应于功率控制信号调谐天线匹配的无线通信设备的方框图。无线通信设备100可以是用于与基站,例如码分多址(CDMA)移动站,进行通信的移动电话。然而,无线通信设备100可以是任何的能够从通信系统接收功率控制信号并至少在两个频段内进行通信的无线通信设备。授予Holtzman的第6,788,685Bl号美国专利描述了用于在闭环功率控制系统中控制传送功率的方法和系统,其所有内容通过引用并入本文。无线通信设备100包括天线102,用于将电》兹信号传播到空气中,并且接收来自于空气中的电磁信号。尽管在图1中只示出了单个的天线102,但是实际存在多个天线也是可能的。天线102连接于可调匹配电路104。可调匹配电路104可以是在2004年07月26日提交的共同未决的美国专利申请No.10/899,218、10/899,278和10/899,285,以及在2004年03月22日提交的共同未决的美国专利申请No.10/806,763中描述的铁电的可调匹配电路,上述专利申请的所有内容通过引用并入本文。可选择地,可调天线匹配电路可以通过变容二极管和微电机械开关进行调谐,或通过调谐匹配电路140的任意其它传统方式进行调谐,其中变容二极管和微电机械开关切换匹配电路104内部和外部的不同电抗部分。因此,可调匹配电路104是可切换的匹配电路。匹配电路104连接于双工机106。双工机106在两个方向提供发射和接收信号。可选择地,双工机106可以是用于在两个方向提供发射和接收信号的开关。双工机106连接于用功率放大器(PA)108代表的发射路径107。双工器106还连接于由低噪声放大器(LNA)IIO代表的接收路径109。发射路径107和接收路径109连接于处理器115。处理器115可以是QualcommTM的移动站调制解调器(MSM),例如商业中使用的用于CDMA通信的QualcommTM6000系列MSM。处理器115包括控制器120。处理器115解调在接收路径109上的接收到的信号。接收信号中包含反向功率控制位。即,基站(图1中未示出)向移动站IOO发射的功率控制位。用户界面设备,例如扬声器154、麦克风157、显示器160以及4t盘163,也连接于处理器115。在一个实施方案中,移动站100在IS-2000移动通信系统中进行通信。参见"TIA/EIA/IS-2000,NewYork(纽约),NewYork(纽约),USA"。来自于移动站的发射功率取决于以下两部分的总和,即开环功率控制和闭环功率控制。在开环功率控制中,移动站使用在移动站接收到的总功率调节移动站自身的发射功率;接收到的功率越强,则移动站的发射功率越低。从小区位置接收到强信号表明移动站靠近于小区位置,或具有通于小区位置的非常良好的路径。开环功率控制机构在几微秒的时间内提供非常迅速的响应。在闭环功率控制(典型地使用于通信业务状态中)中,基站在前向功率控制子路径上向移动站发送反向功率控制位,以除了开环功率控制确定的发射功率之外,还调节移动站的发射功率。闭环功率控制考虑到仅影响反向链路的信号的突然降低和改善。闭环功率控制也考虑到在前向链路和反向链路上的、移动站不能估计的瑞利衰落(RayleighFading)的独立性。基本上,闭环功率控制调节被在反向链路上的、移动站的功率放大器和天线效率所限制。在闭环功率控制中,在移动站接收的反向功率控制位可被积累以作为移动站中的发射增益调整信号,因为基站正在通知移动站如何调节移动站的发射增益。基站每隔1.25毫秒将发射增益调整信号(也被称为功率控制位)发送到移动站。发射增益调整信号被累加。发射增益调整信号典型地表现为上信号和下信号的形式。基站通知移动站向上或向下改变其发射功率一个单位。反向功率控制位步长典型地为1.0dB。如式1所示,单位为dBm的平均导频信道输出功率可以表示为式1:式l:平均导频信道输出功率(dBm)=-平均输入功率+偏移功率+干扰修正+ACC—CORRECTIONS+RLGAIN—ADJ+所有闭环功率控制《务正的总和。以下为式1中各项的定义平均导频信道输出功率反向导频信道的平均发射功率;平均输入功率在天线连接器的指定带宽中测量的总的接收的量热功率(calorimetricpower),其中包括所有内部和外部信号以及噪声源;偏移功率移动站使用的转变常数(表示为无单位常数),用以确定移动站的、与移动站的天线连接器接收到的功率有关的发射功率;偏移功率在TIA/EIA/IS-2000中根据特殊的调制模式和操作的频带等级(频率)定义;例如,在移动频带(800MHz)中,偏移功率为-73,或者为-81.5,这取决于使用了哪一种调制模式;干扰修正min(max(-7-ECIO,0),7),其中ECIO为与最强的激活集导频的每个载波对应的Ec/Io(dB),其在500ms内的范围测量;移动站通过获得每码片的接收导频能量(Ec)与总的接收的功率频语密度(噪声和信号)之比确定至多k个可用多径分量的Ec/Io(犯),其中,k为由移动站提供的调制元件的数量;移动站在1.23MHz确定接收到的功率频谱密度(Io);ACC_CORRECTIONS:包括由基站确定并且作为开销消息(overheadmessage)发送给所有移动站的附加功率偏移的修正因子(即,NOM—PWR、INIT—PWR、NOM—PWR—EXT);RLGAIN—ADJ:相对于接入信道、增强型接入信道或反向公共控制信道的发射功率的、应用于业务信道的输出功率的增益调整;以及,所有闭环功率控制修正的总和移动站的有效集中的一个或多个基站发送的反向功率控制位总和。有利地,控制器120保存所有发射增益调整信号的总和,或者该总和被保存在处理器115内。该总和在这里被称为TGA。TGA是方法或者表格的输入,下面将作详细描述。控制器115使用的另一输入是接收信号强度指示(RSSI)。RSSI与接收功率乘以每码片的组合导频能量(Ec)并除以总的接收功率频语密度IO(噪声、信号以及干扰)的大小相等。控制器120包括一个或多个主输入/输出表125、最佳发射(Tx)表130、最佳接收(Rx)表135以及发射/接收(Tx/Rx)表140。控制器120的表125、130、135和140被用来控制天线匹配电路104。主输入/输出表,例如下面的表1,示出了发射增益调整(TGA)、接收信号强度指示(RSSI)输入以及相应天线匹配输出的例子。还有很多其他可能性。表1仅仅示出了其中的一个例子。特别地,表l中的值可以最佳地通过实—验确定,并且可以作为实验确定的结果在表1中增加其他行。<table>tableseeoriginaldocumentpage11</column></row><table>控制器120追踪所有接收于基站的发射增益调整命令。表1的TGA列示出了所有发射增益调整命令的总和。例如,如果TGA大于或等于7,并且RSSI大于-80dBm,则移动站将其天线匹配电路设置为最佳发射(Tx)。最佳发射设置基于被使用的发射信道和温度。最佳发射设置可以存々者于表2中。表2<table>tableseeoriginaldocumentpage11</column></row><table><table>tableseeoriginaldocumentpage12</column></row><table>在表2中,电压随着温度的增加而减小,因为通常FE电容的容量通常随着温度和电压而减小。为了补偿增加的温度,电压被减小。更进一步,在表2中,电压随着信道或组的个数的增加而增加。电压和信道或组个数的关系取决于所选择的特殊匹配电路拓朴和FE电容在匹配电路中的位置。例如,可参见上述引用的专利申请No.10/899,218、10/899,278、10/899,285和10/806,763。表2存储于移动站的存储器内,并且在表1的输出调用时被引用。在表2中,仅示出了两个发射信道用于举例说明。在实际中,更多的信道将被储存。更进一步,表2中示出的信道指定可以不是实际的发射信道。相反,信道指定可以为信道组。例如,在表2中,最低的200个信道可以被指定为信道(或者组)1。在表2中,第二组的200个信道可以被指定为信道(或者组)2。因此,对于任何给定的温度,最低的200个信道可以具有相同的匹配电5各设置。因此,继续上面的举例,如果TGA为7,并且RSSI大于-80dBm,则控制器125从表1可以确定使用最佳的Tx设置。基于温度和当前的发射信道或信道组,控制器在表2中查询最佳Tx设置。例如,如果当前Tx信道为信道l,并且当前温度为30QC,则控制器125基于表2确定匹配电路设置为0.12V。用于表2-4中匹配电路设置的实际值将由实验来确定。处理器115通过控制线路142与匹配电路104相连接。控制线路142为匹配电路104提供控制电压,例如,上述例子中的0.12V。分离的电压源(图中未示出)可以为匹配电路104提供控制电压。或者如图所示,处理器115可响应于表2、3或4的输出直接提供由控制器120确定的控制电压。可以使用多个控制线路来控制多个匹配电路或者多个匹配电路组成部件,例如多个FE电容。控制器120在图中被显示为处于处理器U5之内。在实践中,控制器可以在处理器115外部,或者可以部分地处于处理器的外部。可以提供单独的控制器。例如,控制器可以是单独的集成电路,或者可以包括一个或者多个分立部件。在这种情况下,处理器115将在外部为控制器提供功率控制位或者TGA。另外,可以外部地向控制器提供RSSI,即,可以直接从RSSI探测器(图中未示出)向控制器提供RSSI,或者从处理器向控制器提供RSSI。处理器115与存储器144相连接。表l-4被示出处于控制器120之内,控制器120则被显示为位于处理器115之内。表1-4可被存储于存储器144中。用于说明的目的,将表l-4显示为处于控制器120之内,控制器使用表1-4来查询匹配电路的设置。最佳接收匹配电路设置以例如表3的表格形式存储于存储器144中,并且在表1的输出调用最佳接收设置时被引用。表3<table>tableseeoriginaldocumentpage13</column></row><table>表3存储于移动站的存储器中,并且在表1的输出调用时被引用。在表3中,用于说明的目的,仅示出了两个接收信道。在实践中,更多的信道将被储存。此外,表3中示出的信道指定可以不是当前的接收信道。相反,信道指定可以为信道组。例如,在表3中,最低的200个信道可以被指定为信道(或者组)1。在表3中,第二组的200个信道可以被指定为信道(或者组)2。因此,对于任何给定的温度,最低的200个信道可以具有相同的匹配电路设置。设置。当表l的输出是不同于最佳Tx或者最佳Rx的其它输出时,使用逐步移动。例如,根据表1,如果TGA为5或6,并且RSSI大于-85dBm,则移动站在发射方向上调谐天线匹配电路3步(例如,美国CDMA中较低的频率,日本CDMA中较高的频率)。在下面示出了表4,和表1-3的情况一样,表4中的最佳值通过实验提供。表4<table>tableseeoriginaldocumentpage14</column></row><table>表4不包括温度参数。但是可以将温度包括进来,这样会增加表4的复杂性和精确性。更进一步,表4中仅仅示出了8个格(bin)。实际中,推荐使用更多的格。如上所述,控制器120为匹配电路104确定匹配电踏4殳置。图2示出了可响应于确定的匹配电路设置而进行调谐的、可调的天线效率。天线效率147相对于频率150示出。示例性的天线如图2中箭头156和159所示。如在上述引用的共同未决的专利申请No,10/899,278和10/899,218中所述的那样,曲线153可以被调谐从而为当前使用的发射和接收信道提供最大效率。更进一步地,可响应于来自于控制器120的命令,基于表1-4对曲线153进行调谐。例如,如果表1要求最佳Tx设置,则控制器从表2中获取最佳Tx设置,并且调整曲线153,从而使得顶点162被置于对应于当前Tx信道或信道组以及当前温度的频率处。有利地,当改善的Tx效率是必要的时,在当前Tx信道中改善天线效率。在这种情况下,Rx天线效率将会降低,但是这种情况在不需要Rx天线效率时发生。如上所述,当反向链路(从移动站发射)工作不佳但是前向链路(在移动站接收)工作良好时,最佳Tx匹配电路效率被唯一地选择。反向链路和前向链路至少在某种程度上被重新均衡。系统资源被最优地加以利用。如上述参照表1和表3所述,如果反向链路工作良好而前向链路工作不佳,则最佳Rx匹配电路设置被唯一地/A^3中选择。对匹配电i各104进行调谐,以将曲线153的顶点162移动到当前Rx信道或信道组的频率。如上参照表1和表4所述,如果调用匹配电路设置中的改变(不同于最佳Tx或Rx设置),则从表4中选择匹配电路设置。控制器120追踪匹配电路设置当前处于哪一格。然后,当表1调用基于表4的改变时,则基于当前的格、以及改变的格的移动数目和方向(Tx或者Rx),控制器120在表4中查询新的匹配电路设置。例如,如果当前匹配电路设置为0.13V,即,2号格,并且在表1调用向Rx改变2个格的输出,则控制器将查询4号格(从2号格开始增加2个格,用于选择2个格的改变),并且找到与4号格对应的匹配电路设置,在这种情况下匹配电路设置为0.38V。控制器120通过向匹配电路104施加0.38V的电压,从而调谐匹配电路104,以使得曲线153向Rx频率移动两个才各。图3的流程图举例说明了响应于反向链路功率控制参数(例如TGA)、RSSI和FER对天线效率(例如图2中的曲线153)进fl"调谐的方法。方法开始于步骤165。在步骤170中,移动站进入业务状态。业务状态意味着移动站在业务信道中发送或者接收数据(该数据可以是音频数据或其它数据)。在判断步骤180中,移动站判断TGA是大于或等于-5,并且小于等于5。如果不是,则TGA在[-5,5]的范围外。当TGA在[-5,5]的范围内时,该实施例中的反向链路被认为是在期望的范围内工作。如果TGA小于-5,反向链蹈4皮认为是工作良好的,然而当TGA大于5时,反向链路被认为是不适宜地工作。如果TGA在[-5,5]的范围外,下一步则为判断步骤185,在步骤185中,移动站判断TGA是否大于5。如果TGA不大于5,则意味着TGA小于-5并且执行步骤190,在步骤190中,天线效率向着Rx频率改变。有利地,前向链路的质量被改善,因此改善了移动站的小区覆盖和网络资源使用的效率。执行完步骤190后,返回到步骤180。如果在上述步骤185中判断得知TGA大于5,则步骤185后执行判断步骤195,在步骤195中判断FER是否小于1%。如果FER不小于1%,则从步骤195沿着"否"路径返回到步骤180。这说明尽管反向链路处于不良状态,但前向链路也同样处于不良状态,因此,在任一方向上调整天线效率中的偏置都不理想。即使前向和方向链路都不良地工作,还是有可能调整匹配电路,但是在这里对这样的系统和方法不做进一步描述。但是如果判断步骤195判断得知FER小于1%,则下一步执行判断步骤200,在步骤200中判断RSSI是否大于-85dBm。如果判断得知RSSI不大于-85dBm,则从步骤200沿着"否"路径返回到步骤180。但是如果在步骤200中判断得知RSSI大于-85dBm,则下一步扭J亍步骤205。在步骤205中,向着Tx频率改变天线效率。执行完步骤205之后,方法返回到步骤180。返回到对步骤180的描述,如果TGA在-5到5的范围内,则执行判断步骤210,在步骤210中判断FER是否小于1%。如果判断得知FER不小于1%,则下一部执行步骤215,在步骤215中,向着Rx频率改变天线效率。但是如果FER小于1。/q,则步骤210后执行判断步骤220,在步骤220中判断RSSI是否大于-85dBm。如果判断得知RSSI不大于-85dBm,则步骤220后执行步骤215,在步骤215中向着Rx频率改变天线效率,如上所述。但是如果当步骤220中判断结果为RSSI大于-85dBm,则返回到步骤180。这说明前向和方向链路都处于良好的状态;因此,不需要在任一方向调整天线效率。步骤190、205和215的天线效率的改变可以通过任何便利的手段来完成,例如,通过使用如表4的表格。因此,参照图3描述的方法可以通过使用表4而不需要使用表1-3来完成。可选择地,(例如)如果匹配电路设置均相等地间隔,则甚至不需要表4。因此,改变步骤190、205和215可以在不需要表4的情况下完成,而仅仅通过在Tx或Rx方向使匹配电鴻4殳置改变预定的值来完成。例如,响应于步骤190和215,可以将0.1V电压增加到当前匹配电路设置,而响应步骤205,将0.1V电压从当前匹配电路设置减去。尽管在图3中显示了FER和RSSI,但是可以使用任何的接收信号质量指示。更进一步,该方法可以仅包括一个接收信号质量指示,例如FER或RSSI,或者其它的接收信号质量指示。例如,可以使用码元差错率(SER)或信息差错率(MER)。但是如果在例如TIA/EIA/IS-95或IS-2000的系统中使用SER,将不对解码器的增益进行说明。在CDMA系统中,例如在TIA/EIA/IS-2000中所述的系统,巻积编码器在20ms帧中占据一定的比特(例如,194比特,包括末位),并且由于该编码器的编码率不同而产生不同量的码元(例如,394,为编码率的一半)。由于解码器需要例如所有的394个符号将码元解码为原始的信息比特,因此在运行解码器之前确定码元差错。因此,可以使用SER。由于SER快于FER,因此在改善无线通信系统的能力的情况下,SER是理想的。图3和图4所示的临界值(例如,丁0八=5和丁0八=-5,11881=-85(18111)可以是不同于如图所示的其它值。例如,如果商业无线通信网络中的移动站运行时的TGA—般为平均值5,则5祐j人为是对于该特定网络的适当的平衡值,因而在图3中可以将5加到TGA的临界值上,例如步骤180可以表示成"是否TGA^O并且TGAS10,,。再如,步骤180可以被表示成"是否TGA^-2并且TGA^3"。换句话说,临界值之间的范围可以更大或更小,并且临界值的大小可以被改变。类似的变化可以在全部图3-4以及表1-4中实现。图4为响应于反向链^各功率控制参数(例如TGA)以及前向链^各功率控制参数调谐天线效率(例如图2中的曲线153)的方法。在一些通信系统中,移动站向基站发送功率控制信号。例如参见TIA/EIA/IS-2000。在那种情况下,如果移动站已经多次通知基站增加其功率,然而基站并没有多次通知移动站增加其功率,则前向链路与反向链路之间可能存在不均衡。前向链路工作不良好而反向链路工作良好。在这种情况下,应该向着Rx频率对天线效率进行调谐。相反地,如果基站已经多次通知移动站增加其功率,并且移动站并没有多次通知基站增加其功率,则前向链路与反向链路之间可能存在着另一种不均衡。前向链路工作良好而反向链路工作不良好。在这种情况下,天线效率应该被向着Tx频率调谐。图4举例说明了重新使前向链路和反向链路均衡的方法,无论哪个链路工作良好,哪个链路工作不良好。移动站(在处理器115或控制器120中)追踪所有由移动站发送到基站的前向链路功率控制信号的总和。该总和在本文中称为反向增益调整(RGA)。图4所示的方法开始于步骤224。在步骤228中,移动站进入业务状态。在判断步骤232中,判断是否TGA《5。如果判断结果为TGA不小于等于5,则下一步执行判断步骤240,在步骤240中,判断是否RGAS5。如果判断结果为RGA不小于等于5,则该方法返回到步骤232。但是如果判断结果为RGA《,则下一步执行步骤244,在步骤244中,向着Tx频率改变天线效率。有利地,前向和反向链路至少在某种程度上被重新均衡。网络资源被更加有效地使用。执行完步骤244后,图4所示方法返回到步骤232。重新回到对判断步骤232的论述,如果TGA《,则下一步执行判断步骤248,以判断是否RGAS5。如果判断结果为RGA^5,则下一步执行步骤252,在步骤252中向着Rx频率改变天线效率。有利地,前向和反向链路至少在某种程度上被重新均衡。网络资源被更加有效地使用。执行完步骤252后,图4所示方法返回到步骤232。如果在上述步骤248中判断结果为RGA不大等于5,则该方法返回到步骤232。此外,尽管显示和描述了实现本发明的实施方式和执行方式,但是在本发明的范围内还具有更多的实施方案以及执行方式,这是显而易见的。因此,除了依照本发明的权利要求书及其等同物外,本发明不受到任何限制。权利要求1.一种调谐无线通信设备的天线匹配电路的方法,包括接收第一功率控制信号;以及调节所述天线匹配电路的阻抗匹配,其中所述调节步骤响应于所述第一功率控制信号执行。2.如权利要求l所述的方法,还包括接收第二功率控制信号,并且所述调节步骤响应于所述第二功率控制信号执行。3.如权利要求2所述的方法,还包括将所述第一功率控制信号加于所述第二功率控制信号,从而产生累加的功率控制信号,其中所述调节步骤响应于所述累加的功率控制信号执行。4.如权利要求3所述的方法,还包括将所述累加的功率控制信号与第一预定功率控制临界值进行比较,从而产生第一功率控制信号比较,并且,其中,所述调节步骤响应于所述第一功率控制信号比较执行,以及所述调节步骤包括在无线通信设备的接收频带中改善天线的效率。5.如权利要求4所述的方法,还包括将所述累加的功率控制信号与第二预定功率控制临界值进行比较,从而产生第二功率控制信号比较,并且,其中,所述调节步骤响应于所述第二功率控制信号比较执行,以及所述调节步骤包括在无线通信设备的发射频带中改善天线的效率。6.如权利要求l所述的方法,还包括将帧差错率与预定帧差错率临界值进行比较。7.如权利要求6所述的方法,其中所述调节步骤包括在无线通信设备的接收频带中改善天线的效率。8.如权利要求l所述的方法,还包括将接收信号强度指示与预定的接收信号强度指示临界值进行比较。9.如权利要求8所述的方法,其中所述调节步骤包括在无线通信设备的发射频带中改善天线的效率。10.如权利要求l所述的方法,其中所述调节步骤包括将电势施加于铁电的可调电容,所述可调电容具有可调介电常数的铁电材料。11.一种无线通信设备,包括天线;连接于所述天线的可调天线匹配电路;连接于所述可调天线匹配电路的基带处理器,所述基带处理器被配置以接收功率控制信号,并响应于所述功率控制信号对所述天线匹配电路进行调谐。12.如权利要求11所述的无线通信设备,还包括储存表格的存储器,所述表格包括功率控制标记和相应的可调天线匹配电路设置,其中,所述基带处理器被配置以在所述表格中查询所述功率控制标记,并将所述天线匹配电路调谐于所述相应的可调天线匹配电絲"没置。13.如权利要求11所述的无线通信设备,还包括储存表格的存储器,所述表格包括接收信号强度标记和相应的可调天线匹配电路设置,其中,所述处理器被配置以在所述表格中查询所述接收信号强度标记,并将所述天线匹配电路调谐于所述相应的可调天线匹配电路设置。14.如权利要求11所述的无线通信设备,还包括储存表格的存储器,所述表格包括帧差错标记和相应的可调天线匹配电路设置,其中,所述处理器被配置以在所述表格中查询所述帧差错率标记,并将所述天线匹配电路调谐于所述相应的可调天线匹配电^各设置。15.如权利要求11所述的无线通信设备,还包括电压源,连接于所述基带处理器或位于所述基带处理器中;以及其中,所述可调天线匹配电路包括铁电的可调电容,所述可调电容包括具有可调介电常数的铁电材料,其中所述电压源被配置以响应于来自于所述基带处理器的控制信号对所述介电常数进行调整。16.—种无线通信设备,包括发射装置,用于发射电磁信号;可调阻抗匹配装置,其用于调谐所迷发射装置的阻抗匹配,并连接于所述发射装置;用于处理基带信号的处理装置,其连接于所述可调阻抗匹配装置,并配置以接收功率控制信号,以及响应于所述功率控制信号调谐所述可调阻抗匹配装置。17.如权利要求16所述的无线通信设备,还包括用于储存表格的存储装置,所述表格包括功率控制标记和相应的可调阻抗匹配装置设置,其中所述处理装置被配置以在所述表格中查询所述功率控制标记,并将所述可调阻抗匹配装置调谐于所述相应的可调阻抗匹配装置i殳置。18.如权利要求16所述的无线通信设备,还包括储存表格的存储装置,所述表格包括接收信号强度标记和相应的可调阻抗匹配装置设置,其中所述处理装置被配置以而在所述表格中查询所述接收信号强度标记,并将所述可调阻抗匹配装置调谐于所述相应的可调阻抗匹配装置设置。19.如权利要求16所述的无线通信设备,还包括储存表格的存储装置,所述表格包括帧差错率标记和对应的可调阻抗匹配装置设置,其中所述处理装置被配置以在所述表格中查询所述帧差错率标记,并将所述可调阻抗匹配装置调谐于所述相应的可调阻抗匹配装置设置。20.如权利要求16所述的无线通信设备,还包括电压装置,用于提供电压并连接于所述处理装置;以及其中,所述可调阻抗匹配装置包括铁电的可调电容,所述可调电容具有可调介电常数的铁电材料,其中所述电压装置被配置以响应来自于所述处理装置的控制信号调整所述介电常数。全文摘要响应于功率控制信号以及可选地响应于在业务信道中的接收信号质量指示调谐无线通线系统设备的天线匹配电路。基于衰落的和环境的状态、非理想的天线效率均衡、移动站前向和反向链路的使用以及系统前向和反向链路的使用,在被需求的发射频率或接收频率中,提供增加天线效率的系统和方法。天线效率可以被递增地改变,或完全最优化用于发射频率或接收频率。通过调谐天线匹配电路完成重新均衡。一种调谐天线匹配电路的方法是在匹配电路中为一个或多个的铁电的电容施加一个或多个电压,因此,可以改变铁电制电容的容量,还可以改变天线系统的阻抗。文档编号H04B7/005GK101133560SQ200680004123公开日2008年2月27日申请日期2006年2月16日优先权日2005年2月17日发明者乔治·法夫雷加-桑什,亨利·常,格雷戈里·普瓦拉斯内申请人:京瓷公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1