具有期望概率的视频峰抖动的测量和显示的制作方法

文档序号:7640571阅读:189来源:国知局
专利名称:具有期望概率的视频峰抖动的测量和显示的制作方法
技术领域
本发明涉及抖动的测量(jitter measurement ),并且更特别涉及 包括串行数字接口 (SDI)视频的视频抖动测量。
背景技术
与串行数字数据相关的抖动影响了依靠串行数据进行数据发送或 接收的系统的性能。当信号速度提高时,在精确发送和接收数据的过程 中,抖动的影响提高了故障的概率。现在视频越来越多地以串行数字格 式进行传输,并且数据率持续提高,其使能够对抖动进行精确的测量和 表征变得日益重要。
电影电视工程师学会(SMPTE)颁布了与要求对峰到峰抖动进行限制 的SDI有关的标准。为了确保符合此项和其它标准,需要抖动测量设备。 当前的SDI抖动测量设备使用简单的正负峰值检测器对正抖动和负抖动 进行测量。这些峰值检测器提供出某段时间间隔内最大的峰值。不幸的 是并没有官方的或实际上的此时间间隔的标准值。此外,甚至没有对指 示最大峰值的适当时间间隔或时间窗口的建议参考。也没有制定好的规 范对特定的时间窗口进行判定。相应地,峰值测量设备的制造者简单地 使用时间间隔或等同数量的采样,使其设备得以产生大约每秒更新一次 的抖动峰到峰读出。抖动总是存在随机抖动的成分,其典型地具有无限 制的峰值抖动范围。由于这种随机的抖动,检测窗口越长,或采样尺寸 越大,则测量出更大的最大峰值抖动值的概率越高。 一般来讲,检测窗 口越长,则测量系统提供的最大峰值抖动值越大。现在的一些SDI视频 源中,确定性的抖动得到了显著的减少,从而在不同制造者生产的设备 之间,无限制的随机抖动能够造成峰到峰测量的显著差别。通常是,一 台抖动测量仪器报告峰到峰抖动低于SMPTE规定限制,而另 一台仪器却 报告相同的源高于SMPTE限制,并且因此不符合规定,而这仅仅因为在比第 一 台仪器更长的时间间隔或记录长度上检测最大抖动峰值。
由于随机抖动的存在,使得任何测量实际上自然都是可能的,仅仅 选取任何特定峰值检测窗口将依然无法恰当地解决此问题。需要一种测 量的系统和方法,把发生概率与指定的峰到峰抖动值相关联。 一种更加
全面的特征抖动测量方法还将提供更好的抖动测量与误码率(BER)或比 特误码概率之间的关系,它是一种与只满足最小标准抖动限制的SDI接 收器相关的普通测量。随着适当的整套方法的建立,视频标准的主体不 仅能够规定峰到峰抖动的限制,而且能够规定相关的概率,这将使不同 制造者的测量系统得以对同 一信号返回 一致的抖动值。
下面将对现有解决方案的细节和改进进行更加详细的论述。

发明内容
相应地,提出 一种对与相关概率有关的峰和峰到峰抖动进行测量的 系统和方法。对本系统和方法的实施方式进4亍优4匕,4吏其与现有的标准 视频SDI抖动测量信号处理一同工作,并且替代峰检测器。
一种抖动测量系统,其包括直方图硬件,以直方图的形式存储抖动 数据;抖动分析器,基于所述的直方图数据和提供的概率值确定峰抖动 值。所述的直方图硬件使足够的、大量的数据得以累加进直方图,使其 可以基于概率进行抖动的计算。在某些实施方式中,所述的直方图硬件 从时钟恢复电路获取抖动数据。在其它的实施方式中,抖动数据基于眼 图案采样器。
一种基于由所述的直方图硬件提供的数据计算峰抖动值的方法。对 累积分布函数(CDF)和互补累积分布函数(CCDF)阵列进行计算。基于概 率值,通过把所述的CCDF阵列与所述的概率值进行比较,并且确定所 述CCDF阵列上小于所述概率值的点,从而确定正抖动峰。之后,例如 以UI为单位,提供所述的CCDF阵列上小于所述扭无率值的点所对应的抖 动值作为正峰值。同样地,基于所述的CDF阵列,从而确定负抖动峰。
还提供一种显示,其在眼图案图上叠加动态抖动限制标记,用于指 示对应概率值的各自的抖动峰。
本申i青只于美国临时才示题为"New, Fast, Jitter Algorithm for Plotting Video PP Jitter Associated with Expected Probability", 由Daniel G. Baker、 Barry A. McKibben、 Evan Albright、 Michael S.0verton、 Gregory L. Hoffman和Daniel H. Wolaver于2005年8月 29日申请,申请编号为60/712,303,要求优先权益,其在此以引用的 方式并入本文中。


图1是执行本方法的系统的方框图。
图2是示出附加的系统细节的方框图。
图3是示出基于恢复时钟的抖动直方图电路的方框图。
图4是阐述在通信中操作硬件控制器和抖动分析器的流程图。
图5是包括基于概率值、具有动态抖动指示的眼图和浴盆曲线的显
具体实施例方式
如图1所示的抖动测量系统10,其包括与抖动分析器14进行数据 通信的抖动直方图(histogram)硬件12。抖动直方图硬件12能够在存 储器中建立直方图16。抖动面元(jetterbin)与测量的抖动值(时间 -间隔-误差)相对应,而计数与已检测的抖动面元对应的抖动值的数量 相对应。抖动分析器14能够基于相关联的概率产生抖动测量值或抖动 值显示18。在本系统和方法的一种实施方式中,抖动直方图硬件12持 续运行选择的输入信号,实时地建立直方图。所述的直方图可以通过从 恢复时钟、或/和串行信号的眼-采样器、或一些确定串行数字信号转换 的时间-间隔-误差的其它装置中,对时间-间隔-误差进行检测产生。在 另一种实施方式中,如有必要,则直方图硬件12会自动地进行重新调 整(rescale)。例如,若所述的直方图具有32比特的深度(面元所能 达到的)或接近32比特的极限,则整个直方图可以除以2,对其重新调 整使额外的抖动值得以计数。如需要,则抖动分析器14周期性地从抖 动直方图硬件12中读取所述的直方图数据,更新抖动的显示值或抖动 的图形显示(例如浴盆曲线)。
如图2所示,对NRZI编码的串行数字^L频进行测量。抖动测量系 统10所示的实施方式产生包含在恢复时钟中的抖动的第一个直方图 20,和从眼图案釆样24中取得的第二个直方图22。为了产生基于恢复 时钟的第一个直方图20,时钟恢复电路26对时钟进行恢复,抖动检波器(demodulator )28为第一个直方图20提供基于恢复时钟的抖动数据。 示出了精密的(低抖动)锁相环(PLL) 30与抖动检波器28和眼图案采 样器24进行连接。精密PLL 30在预选和标准的带宽中跟踪低频抖动, 借以按照测量标准的要求去除抖动的那些低频成分。抖动分析器14能 够选择任意一个直方图,提供相应的抖动测量结果。相应地,所述的抖 动分析器将能够提供基于第一直方图20 (其基于恢复时钟)或者第二直 方图22 (其从眼图案采样器中得出)的抖动分析。在一些实施方式中, 抖动分析器可以对由用户选择的每个直方图提供结果。
图3图解说明了基于恢复时钟的抖动直方图硬件12的另一种实现。 把NRZI串行数据输入具有相位检测器32和振荡器34的PLL 30 (其充 当抖动检波器)。还在相位检测器32和振荡器34之间的反馈通路中提 供误差放大滤波器。在这个例子中,通过PLL 30把NRZI串行数据边缘 检波成模拟抖动信号,PLL 30有效地去除了低于PLL带宽的抖动频谱成 分,从而PLL 30还提供了一些高通滤波作用。之后,模拟到数字(A/D) 转换器38从所述的抖动信号中产生离散的抖动数据采样。 一些抖动测 量标准(诸如IEEE Std 1521-2003 )要求三阶的高通滤波器(HPF),去 除抖动的低频或漂移(wander)成分。为了遵从这些标准,可以要求附加 的才莫拟HPF或数字HPF滤波器。图3示出了可选的HPF40。在一些实施 方式中,对NRZI串行数据进行均衡(equal ize),对依赖于频率的损耗
(例如由同轴电缆传输引起的损耗)进行补偿。所述的抖动数据采样输 入到控制器42,并且写入存储直方图数据的RAM 44中。抖动分析器14
(图3中并未示出)能够对所述的直方图数据进行存取。示出了时钟信 号(CLK) 46。所述的时钟信号对每个抖动采样产生一个时钟。所述的时 钟信号可以由振荡器34生成(虽然并未示出内部连接),但是只有当 发生了 NRZI输入转换时才开启,以便使A/D得以对抖动检波器的输出 进行采样。采样的间隔并不需要恒定。在另一可选实施方式中,例如使 用另外的时钟恢复电路,由NRZI信号产生所述的时钟信号。
图4提供了对控制电路42实施方式的处理流程进行图解说明的流 程图,连同对抖动分析器14实施方式的处理流程进行图解说明的流程 图。如在步骤50所规定的,当接收到抖动数据采样时,则控制器42对 RAM中的直方图进^亍更新。每个RAM地址都与直方图的面元相对应。面 元的数量应当适应抖动数据值所需的范围和分辨率。例如,可以选择1024 x 32比特的直方图。在这种情况下,所提供的抖动数据应当具有可 比较的可用时间值范围,其最好持续至少一个数据时钟间隔。例如,若 所述的直方图具有1024个面元(从0至1023 ),则A/D转换器38可以 提供具有值在-512和511之间的抖动数据,其与具有1/1024单位时钟 间隔分辨率的一个完整时钟间隔相对应。之后,RAM地址将等于抖动数 据值加512,因此-512的抖动数据值将引起计数被写入面元0,而511 的抖动数据值将引起计数写入面元1023。每次,与RAM地址相对应,接 收抖动数据采样,其值存储在增量为1的地址中。在可选实施方式中, 其中附加的RAM用于提供更多的面元,相应地,所述的抖动数据值将成 比例增加。
在步骤52中,所述的控制器确定是否有必要重新调整所述的直方 图。例如,若RAM中存储的特定面元值达到了最大的允许值,或者在预 定的公差内接近了最大的允许值,则所述的直方图可能需要重新调整。 在我们当前的例子中,若任何RAM地址值等于能够作为32比特二进制 值存储的最大值,则将指示重新调整操作。若并不需要进行重新调整, 则过程继续。若指示重新调整,则步骤54通过每个RAM地址,并且4巴 其中的值除以2,其能够实现简单的二进制移位。重复此过程,直到如 步骤60所指示到达最后的地址。 一旦最后的地址完成重新调整,则步 骤50继续更新所述的直方图。在可选实施方式中,抖动分析器14通过 对所述的直方图数据进行读取,并且使其标准化或把所述的数据除以期 望数然后写回到RAM,能够对重新调整操作进行控制。在另一实施方式 中,还可以提供复位,使用所述的抖动分析器通过R/W操作复位所述的 面元值,或者在控制器42中进行复位操作。
在步骤62中,控制器42确定是否从抖动分析器14接收到了读/写 (R/W)请求。若没有,其返回步骤50,继续更新所述的直方图。若抖动 分析器14正在轮询(poll)所述的直方图,例如,如步骤64所提供的, 控制器42将提供与直方图面元相关联的值,作为基于与抖动分析器14 所请求的地址相对应的RAM地址的数据。在步骤66中,所述的控制器 确定R/W操作是否完成。若没有,则返回步骤64;否则返回步骤50, 继续更新所述的直方图。在短时间内,抖动分析器正在读取RAM或正在 对RAM进行重新调整,没有抖动数据会加入所述的直方图,然而这表示 可忽略的数据损失。直方图硬件12能够独立地建立抖动直方图,而不需要从抖动分析
器14输入。抖动分析器14只需要周期性地轮询所述的直方图数据,以 便生成测量输出。典型地,抖动分析器14将会大约一秒更新一次结果 显示,尽管其能够按期望的频率更新得更多或更少。所述的直方图硬件 将能够接收大量的抖动数据采样,并且在那期间建立或更新所述的直方 图。在一些实施方式中,RAM44可以以双端口 RAM的方式加以实现,4吏 所述的抖动分析器得以获得所述的直方图数据,而并不干扰直方图更新 过程。
抖动分析器14实施方式的基本过程流程在步骤110中提供了对抖 动值范围的定义。在一种实施方式中,抖动值的范围与用时钟单位间隔 (UI)表达的直方图硬件阵列范围相对应。抖动值范围能够以测试仪器内 固定值的方式加以提供。或者,如果直方图硬件12能够调整所述的抖 动数据值,从而适合直方图面元的可用数量,那么抖动值的范围能够通 过用户输入加以选择。
之后,如步骤120所提供,将抖动值的范围与所述直方图硬件的直 方图面元相关联。在一些实施方式中,这将对应于把直方图面元的存储 器地址与以UI为单位的抖动值相关联。再者,此关联能够提供作为测 试仪器的固定参数。或者,在软件内能够实现关联表。为了达到图解说 明的目的,抖动分析器的实现方面设计成实现为整数微处理器上的软 件。
例如,若4牛动值的范围,即Jmax至Jmin,定义为/人Jmin = -1. 0 UI 至Jmax = +1. 0 UI,围绕0的2 UI范围,其能够以毫UI (milliUI) 为单位,表达为-1000 mUI至+1000 mlll,使用查找表能够提供所述硬件 直方图内的面元位置与抖动值之间的关联。在整数处理器实现的情况 下,以下代码建立1024 mUI的值,使mlll值得以与1024个面元相关联。
Private Sub Create亂UT()
'Span from -999 mUI to+1000 mUI, where mUI is m训UI Fori = 1 To 1024
UILUT(i -1) - lnt(2000 * i /1024) -1000
Nexti End Sub注意本示例实际提供了从-999 mUI至+1000 mUI的抖动值范围, 其是期望-1000 mUI至+100G mUI的适合的近似。
步骤114中,抖动分析器14从所述的直方图硬件中获取直方图数 据。在一种实施方式中,当抖动分析器14进行轮询时,从所述的直方 图硬件中传送全部的直方图数据。在另一实施方式中,从需要执行计算 的直方图硬件请求个别直方图值。
步骤116中,所述的抖动分析器计算累积分布函数(CDF)。典型地, CDF由概率密度函数(PDF)确定,其与直方图数据的标准化形式相对应。 如在此所用的,术语"累积分布函数(CDF)"既指基于PDF的标准化CDF 也指基于非标准化直方图数据的非标准化形式。若使用非标准化CDF, 则在随后的计算中可能需要对结果进行标准化。在所述抖动分析器的实 施方式中,非标准化CDF生成为基于所述直方图数据的阵列。
同样地,步骤118中,所述的抖动分析器计算互补累积分布函数 (CCDF)。再次,典型地,CCDF由概率密度函数(PDF)确定,其与直方图 数据的标准化形式相对应。由于CCDF与CDF有关,因此其能够由步骤 116中所计算的CDF计算出来。如在此所使用的,术语"互补累积分布 函数(CCDF)"既指标准化CCDF也指基于非标准化直方图数据或步骤116 提供的非标准化CDF的非标准化形式。若使用非标准化CCDF,则在随后 的计算中可能需要对结果进行标准化。在所述抖动分析器的实施方式 中,非标准化CCDF生成为基于所述直方图数据的阵列。
在所述的抖动分析器计算非标准化CDF和CCDF阵列的实施方式中, 还对标准化的标量值进行计算。标准化的标量值与CDF最后的值相对应。 在另一实施方式中,如可选的步骤120所示,还可以对零均值 (zero-mean)抖动的RMS值或方差(Ji tVar)进行计算,其中RMS值等 于方差(variance)的平方根(RMS = V^^)。以下代码提供了非标准化 CDF、 CCDF以及用于标准化的SUMPDF值和可选的方差值(JitVar),其 可以用于计算RMS。Private Sub HistoProc()Dim Sum(1023) As DoubleCDF(O)-Histogram (0)Sum(O) = (Abs(UILUT(O))A 2) * Histogram(O)Forn = 1To1023CDF(n) - CDF(n -1> + Histogram(n)Sum(n) - Sum(n -1> + (Abs(UIL,)) A2) * Histogram(n)NextnSumPDF-CDF(1023) For n - 1 To 1024GCDF(n -1) - SumPDF - CDF<n -1) N欲tn漁r = Int(Sum(1023) / SumPDF) End Sub一旦计算出了非标准化CDF和CCDF值的阵列,标准化值(在本例 中为SUMPDF)也一起计算出来。正抖动(Jpos)和负抖动(Jneg)峰的抖动 值可以相对于概率指数进行确定。步骤130,选择概率。在所述抖动分析器的实施方式中,由用户—— 例如在用户界面上使用数据条目(entry)区域选择概率,对概率指数 进行选择。或者,由系统——例如为确保符合测试标准自动地选择概率 指数。在另一实施方式中,概率值选择为值而不是仅规定概率指数。步骤132,基于所述的概率值确定正抖动峰(Jpos或JitPos )和负 抖动峰(Jneg或JitNeg)。在所述抖动分析器的实施方式中,对基于 所选择的概率指数(Prob)的概率进行调整(scale),以匹配非标准化 CDF和CCDF阵列的比例(scale)。在另一可选实施方式中,能够对CDF 和CCDF阵列进行标准化,使得后续的操作不再需要比例系数或标准化 系数。在一种实施方式中,正抖动峰确定为CCDF值刚好小于所述的概 率值的UI值。例如,为了使用如上所述的CCDF阵列对正抖动峰进行确 定,对CCDF阵列进行扫描,确定CCDF值小于对应的概率值(Po)的索引 (index)。抖动峰为与所述索引对应的UI值。同样地,负抖动峰确定 为CDF值刚好小于所述的概率值的UI值。因此,通过对CDF阵列进行 扫描,确定CDF值刚好低于概率值Po的索引,确定负抖动峰。以下例子提供了对CCDF和CDF进行扫描以分别确定正抖动峰和负抖动峰的方 法。从0至索引范围的末端(1023)对CCDF阵列进行扫描,直到得到4氐 于概率值(Po)的值。之后,把得到的索引(n)用于提供相应的UI值,其 使用本实现中的查找表加以实现。在可选的实现中,将能够基于索引值 直接计算UI。在另一实施方式中,将能够不使用索引直接计算UI值。 同样地,在此例中,从阵列的末端(1 023)至0对CDF阵列进行扫描,直 到CDF值刚好小于所述的概率值。再次,通过取得索引值(n)对应的UI 值,确定负抖动峰。
<formula>formula see original document page 12</formula>
通过取得正抖动峰与负抖动峰之间的差可以较容易地确定峰到峰抖 动。上述示例设计为在整数处理器上运行,其中索引值(n)提供了共同 的索引,其通常由所述的硬件直方图提供,并在所述的直方图中通常是 一致的,在UI查找表中提供UI值,并且基于所述的直方图、CDF和CCDF 计算阵列。如在此所图解说明的,对CDF和CCDF的整个范围进行扫描。 在另 一实施方式中,通过只对一部分阵列进行扫描就能够实现相同或相 似的结果,例如从中间开始(在零时间间隔误差的抖动值)并且以适当 的方向进行扫描。这可以加速处理,并且对于所选择的0和-1之间的斗既 率指数(Prob),防止对JitPos得到负值和对JitNeg得到正值。当所述 的抖动直方图发生扭曲(skewed),使得平均值与中值不同(由于此前所述的高通滤波,典型地为零)时,可能发生此情况。抖动中值与CDF = 0. 5的点相对应。
一旦步骤132完成,处理返回到步骤II4,其获取新的直方图数据。 或者,处理可能返回到步骤110,并且抖动值的范围能够重定义,从头 到尾开始整个处理。
此外,或者在一些实例中,如步骤140所提供的,抖动峰能够在整 个概率值的范围内确定,而不是对单个的概率值确定抖动峰。不是正抖 动峰和负抖动峰的单独值,而是正抖动峰和负抖动峰的阵列分别在整个 预定的概率值范围内被计算。在所述抖动分析器的实施方式中,对于在 概率值范围内所选择的每个概率值,对CCDF和CDF进行扫描,分别确 定正和负的抖动峰,并且产生在整个概率范围内的抖动峰阵列。以类似 以上所述的方式,对每个概率值可以执行实际的扫描过程。以下示例4戈 码产生正抖动峰(Ji tPosPeak)和负抖动峰值(Ji tNegPeak)的阵列。
Private Sub JitterPeakVals()
Dim CDFo<24) As Double, Temp As Double
Dim n As Integer
For k = 1 To 25 'provides for 24 prabab川ty values
Temp = ProbLUT(k -1) y (10 A12)' use LUT to obtain probability
CDFo(k -1) = Temp * SumPDF ' provided scaled probability value
Nextk
Fork-1丁o25 n = 0
Do U柳(CCDF(n) < CDFo(k -") Or (n > 1022) nsn +1 Loop
JitPosPeak(k -1> - UILUT(n) n = 1023
Do關(CDF(n) < CDFo<k -1 Or <n < 1) n = r>* 1 Loop
JitNegP的k(k- 1) = UILUT(n) Nextk
End Sub示例代码创建了与24个概率指数相对应的正抖动峰和负抖动峰的 阵列。;阮率查找表(ProbLUT)用于获取扭克率值。例如,使用以下的查找
表能够提供对于从大约0至-12 —半增量的概率指数。
Private Sub Cr的teProbLUT() Equation: ProbLUT(n)- 10A( ProbExp(n〉 + 12)
'assign the 64-bit fixed, pre-computed probabilities to the array
ProbLUT(O) = 500034534877# 'Prob exponent = -.301 rather than 0
ProbLUT(1) - 316227766017# 'Prob exponent - -.5,
ProbLUT(2) = 100000000000# 'Prob exponent - -1,
ProbLUT(3) - 31622776602# 'Prob exponent - -1.5,
ProbLUT(4) = 10000000000# 'and so on...
ProbLUT(5) - 3162277660#
ProbLUT(6) -1000000000#
ProbLUT(7>-316227766#
ProbLUT(8) = 100000000#
PrabLUT(9> = 31622777#
ProbLUT(10)-10000000沐
ProbLUT(11)-3162278#
ProbLUT(12) -1000000#
PcobLUT(13)-316228弁
PrabLUT(14> = 100000#
PC0bLUT(15> = 31623#
ProbLUT(16〉 = 10000#
ProbLUT(17)-3162#
ProbLUT(18) = 1000#
ProbLUT(19) = 316#
ProbLUT<20> -100#
ProbLUT(21> = 32# ProbLUT(22) 10# ProbLUT(23) - 3# ProbLUT(24>-1# End Sub
因为本示例旨在仅使用整数处理加以实现,所以示例概率查找表中
的值以整数(而不是以实数或浮点)的形式进行输入。注意使用接近 于零的值(O. 5 = 10 A -0.301),而不是使用零的概率指数。这样就避免了可能与使用零相关联的问题,并且改进了概率VS抖动显示的总体 外观。
步骤142中,整个概率范围内的抖动峰值阵列用于提供图表(plot)
或概率vs抖动峰的显示。可以以例如浴盆曲线图表的形式对得到的图
表或显示加以呈现,其如图5中条目200所示,其显示了概率是以UI 为单位抖动的函数。浴盆曲线通常以比特误码率(BER)vs抖动(以UI为 单位)的形式进行标记。可以以UI值乘以时钟周期代替时间单位对水 平轴(x轴)加以表达。使用BER是基于以下假设若信号采样中的抖 动超过图中x轴(时间轴)的特定值,则接收器中将会发生比特误码。 其发生的概率是平均BER (错误比特与非错误比特的比率)
一旦基于测量信号直方图,为概率范围计算了正和负抖动峰阵列, 则能够产生浴盆曲线显示200,如图5所示。在此显示的实施方式中,
对计算的抖动峰阈值或接收器调节(receiver accomodation)-对于
所选的BER或概率——进行指示的光标(cursor)叠加所述的显示上。 如此例中所示,显示了对所选的概率进行指示的线202,连同对应的负 抖动峰位置指示符204和正抖动峰位置指示符206。在所示的显示200 示例中,用户输入框208设置成允许选择概率指数。
图5还包括眼图显示300,其配有动态的抖动限制标记302。标记 302的两端304和306分别与负抖动峰和正抖动峰的位置相对应。标记 302的长度将基于所述直方图硬件提供的变化的直方图,随着抖动峰值 的变化而变化。如图5所示,抖动图显示300和浴盆曲线显示200作为 结合的显示一起给出,所述的抖动图显示位于浴盆曲线显示的下方,并 且为了使两个显示之间的关系更容易辨别进行了调整(sca 1 e)。眼图显 示300中/人310至312的眼间隔进^f亍了调整(scale) , 4吏其对应于浴盆 曲线显示200中所示的^v 0至1 UI的尺寸。相应地,负"l牛动峰标记304 和正抖动峰标记306与显示200中相应的位置指示符204和206同样的 比例(scale)。在可选的实施方式中,眼图显示300位于显示200的 上方。尽管两个显示在图5中同时示出,在其它的实施方式中,显示200 和300的任何一个都可以单独显示。眼图显示300还为所选的和无率示出 幅度限制320。同样地,所述的幅度限制将从眼间隔中部信号电平的硬 件直方图中产生。还示出了第二用户输入框318。在一种实施方式中, 所述的两个框将进行链接,以包含同样的概率指数值,并且为用户方便提供冗余。或者,只提供单个的用户输入框。此外,或者改为可以在图
5所示显示区域之外提供用户条目域。
以上阐述了基于硬件直方图,对抖动峰值与概率的函数关系进行确 定的系统和方法。在一些诸如通过标准建立了规定的抖动峰值的应用 中,其有助于从直方图中为所选的抖动峰值或峰到峰值确定概率值或概
率指数。通过使用CDF和CCDF阵列,以UI为单位的所选的正抖动峰阈 值和所选的负抖动峰阈值、会超过各个阈值的概率或概率指数都可以进 行计算。作为一级近似,正和负抖动阈值能够设置为相等,但相反。然 而,通常同一概率并不会产生相等的正和负峰。相应地,在一些实施方 式中,所述的过程可以迭代运行,直到为与期望的峰到峰抖动阈值相对 应的正和负抖动值发现了适当的概率值。
以上所述的系统和方法使用了硬件系统,以比使用基于软件的直方 图系统能够更快地构建直方图。此数据率使本系统能够以及时的方式构 建直方图。以上所述的抖动分析器系统能够使用软件(诸如所述的与整 数处理器一同使用的软件)加以实现。由于用户显示仅需要以每秒一次 的级别进行更新,因此现代的运行软件的处理器都是足够的。在可选实 施方式中,抖动分析器或抖动分析器的一部分使用硬件加以实现。所述 的硬件可以是专用电路,或者是进行编码运行所述方法的现场可编程门 阵列(FPGA)处理器核。尽管以上示例设计成运行在整数处理器上,但也 可以使用浮点处理器,其软件进行修改以利用附加的处理能力。例如, 浮点处理器可以减少使用查找表实现本方法方面的需求或愿望。
对于所属技术领域的专业人员来说显而易见的是,可以对本发明以 上所述实施方式的细节进行许多改变,而不会脱离其涵盖的原理。因此, 本发明的范围应当由以下权利要求加以确定。
权利要求
1.一种抖动测量系统,其包括直方图硬件,其将抖动数据存储为直方图;和抖动分析器,该抖动分析器连接到所述直方图硬件,以获取抖动数据的直方图,基于所述的直方图计算CDF和CCDF,并且基于概率值确定抖动值。
2. 如权利要求1的抖动测量系统,其中所述的直方图硬件进一步 包括时钟恢复电路,以基于从串行视频信号恢复的时钟提供所述抖动数据。
3. 如权利要求2的抖动测量系统,其中串行视频信号为NRZI信号。
4. 如权利要求1的抖动测量系统,其中所述的直方图硬件进一步 包括眼图案采样,以基于串行视频信号提供所述抖动数据。
5. 如权利要求1的抖动测量系统,其中所述的抖动分析器包括运 行在整数处理器上的软件。
6. 如权利要求l的抖动测量系统,其中所述的抖动分析器使用FPGA 实现。
7. 如权利要求1的抖动测量系统,其中所述的抖动分析器包括运 行软件的浮点处理器。
8. 如权利要求1的抖动测量系统,其进一步包括具备叠加于眼图 上的动态抖动限制标记的显示,其中所述的动态抖动限制标记具有与基 于概率值获取的正抖动值相对应的第一端和与基于概率值的负抖动值 相对应的第二端。
9. 如权利要求1的抖动测量系统,其中所述的抖动分析器基于概 率范围提供抖动值阵列,并且所述的抖动测量系统进一步包括作为抖动 值的函数的概率值的显示。
10. 如权利要求1的抖动测量系统,其中所述的抖动分析器基于概 率范围提供抖动值阵列,并且所述的抖动测量系统进一 步包括作为抖动 值的函数的BER值的显示。
11. 一种进行抖动测量的方法,其包括.-在直方图硬件中创建抖动值的直方图; 把所述的直方图从直方图硬件传输到抖动分析器; 计算累积分布函数(CDF);计算互补累积分布函数(CCDF);和基于所选的概率值以及累积分布函数或互补累积分布函数确定抖 动峰。
12. 如权利要求11的方法,其中确定抖动峰包括通过基于达到所 选的概率,对小于或等于概率值的CCDF值进行识别,以确定正抖动峰, 并且返回相应的4牛动值。
13. 如权利要求12的方法,其中通过对CCDF值的阵列进行扫描, 直到发现小于概率值的CCDF值,以实现对CCDF值的识别。
14. 如权利要求11的方法,其中确定抖动峰包括通过基于达到所 选的概率,对CDF进行扫描,直到CDF值低于概率值,以确定负抖动峰, 并且返回相应的纟牛动值。
15. 如权利要求14的方法,其中通过对CDF值的阵列进行扫描, 直到发现小于概率值的CDF值,以实现对CDF值的识别。
16. 如权利要求11的方法,其进一步包括确定整个概率范围内的 正抖动值和负抖动值,并且生成概率对抖动值的图表。
17. 如权利要求11的方法,其进一步包括基于所选的概率确定正 抖动值和负抖动值,并且生成具有动态抖动限制标记的眼图,其一端与 正抖动值相对应而另 一端与负抖动值相对应。
18. —种抖动测量系统,其包括 存储抖动数据的硬件直方图;把所述的硬件直方图传输到抖动分析器的装置; 基于所述的硬件直方图,在抖动分析器中计算累积分布函数阵列的 装置;基于所述的硬件直方图,在抖动分析器中计算互补累积分布函数阵 列的装置;基于概率值和互补累积分布函数阵列,在抖动分析器中确定正抖动 峰的装置;基于概率值和累积分布函数阵列,在抖动分析器中确定负抖动峰的 装置;和显示正抖动峰和负抖动峰的装置。
全文摘要
一种用于在直方图硬件内生成抖动峰值直方图的系统和方法。之后,把所述的直方图传输到抖动分析器,该抖动分析器以专用硬件的方式或运行于通用处理器上的软件的方式加以实现。所述的抖动分析器根据所述的直方图计算累积分布函数(CDF)阵列和互补累积分布函数(CCDF)阵列,并且根据概率值确定峰抖动值。
文档编号H04N17/00GK101300599SQ200680040570
公开日2008年11月5日 申请日期2006年8月28日 优先权日2005年8月29日
发明者B·A·麦基本, D·G·巴克 申请人:特克特朗尼克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1