eNB间载波聚合中的上行链路控制信息的传输的制作方法

文档序号:13677373阅读:303来源:国知局
eNB间载波聚合中的上行链路控制信息的传输的制作方法

本申请基于35U.S.C.§119(e)要求享有于2012年9月28日递交的美国临时专利申请No.61/707,784(代理人案号no.P49082Z)的优先权,故以引用方式将其全部内容明确地并入本文。

技术领域

概括地说,本公开内容的实施例涉及无线通信,更具体地说,涉及诸如根据用于长期演进(LTE)网络的第三代合作伙伴计划(3GPP)标准来操作的演进型通用陆地无线接入(E-UTRA)网络(EUTRAN)之类的无线网络。



背景技术:

常规的蜂窝网络(包括常规的LTE网络)采用频繁的用户设备(UE)切换,特别是在包括宏小区和小型小区(即,微微小区、毫微微小区、远程无线电头端(RRH)以及其它小型小区类型)的异构网络部署场景中。例如,因为小型小区覆盖区域与宏小区的区域相比可以覆盖更小的区域,所以当UE从初始的小型小区覆盖区域转移时,仅仅无线地连接到小型小区的UE可能需要切换到宏小区或切换到第二小型小区。另一方面,当UE已经连接到宏小区并且在其较大的覆盖区域内时,切换可能不是必要的,但是如果UE仅仅连接到宏小区,则由小型小区所服务的卸载(offload)数据传输带宽将不是可用的。

先前用于实现卸载和降低切换的频率的尝试已经采用了载波聚合(CA)。在CA系统中,UE同时由至少两个服务小区来服务:主小区(PCell)和一个或多个辅助小区(SCell)。例如,宏小区可以用作PCell,其提供非接入层(NAS)移动性信息和安全输入,而小型小区可以用作SCell下行链路辅助分量载波,其提供了UE向小型小区卸载的另外的数据传输带宽。因为PCell负责UE的网络连接移动性管理,所述只要UE正在宏小区覆盖区域内移动,UE就不必切换。

附图说明

图1是根据一些实施例的无线网络的框图。

图2是示出了根据一些实施例的载波聚合部署场景的时间线。

图3是示出了EUTRAN节点B间载波聚合(eNB间CA)中的上行链路控制信息(UCI)转发的示例的框图。

图4和图5是用于一对上行链路(UL)和下行链路(DL)信道的子帧索引传输时序图,其分别示出了子帧限制和聚合。

图6是示出了小型小区偷听(overhear)去往宏小区的主上行链路控制信道(PUCCH)传输的框图。

图7是根据一些实施例的无线通信设备UE的框图。

具体实施方式

通过参照前述的附图来进行的以下对实施例的详细描述,本公开内容的方面和优势将是显而易见的。

1.用于载波聚合的示例性网络

图1示出了根据一些实施例的无线网络。无线网络100包括UE 102和向诸如UE 102之类的UE提供通信服务的多个eNB 104、106以及108。在一些实施例中,eNB 104、106以及108可以通过X2接口110来彼此进行通信。每一个eNB 104、106以及108可以与一个或多个服务小区(其可以包括宏小区和小型小区)的集合相关联。在一些实施例中,eNB 104和eNB106(或其它eNB)可以参加eNB间CA。在eNB间CA中,服务小区(PCell和SCell)在不同eNB之中操作。例如,PCell是通过eNB 104的宏小区来服务的,SCell是通过eNB 106的小型小区来服务的,那些服务小区通过X2接口110来进行通信。利用eNB间CA,不同小区的两个或更多个分量载波共同地对UE 102进行服务,UE 102从两个或更多个eNB(例如,eNB104、106或108)可用的下行链路信道112的资源块。

典型地,PCell被配置为具有一个物理下行链路控制信道(PDCCH)和一个物理上行链路控制信道(PUCCH)。其还可以具有物理下行链路共享信道(PDSCH)或物理上行链路共享信道(PUSCH)。SCell可以被配置为具有那些共享的信道和PDCCH,但是通常没有常规LTE中的PUCCH。在一些实施例中,下行链路信道112包括PDSCH和PDCCH。在一些实施例中,上行链路信道114可以包括PUSCH或PUCCH。

图2示出了示例性CA部署场景200,其示出了当UE 102在宏小区覆盖区域(PCell)204内以及在小型小区覆盖区域(PCell)206、216之间转移时所执行的SCell添加/去除过程(代替切换)。在示例200中,PCell 204可以是宏小区,并且SCell 206、216可以是小型小区,然而,其它配置是可能的。UE 102可以在时刻t1由宏小区A来服务,可以在时刻t2添加小型小区B,可以在时刻t3去除小型小区B,可以在时刻t4添加小型小区C,以及可以在时刻t5去除小型小区C。利用SCell添加/去除而不是切换来支持从小型小区B向小型小区C的变化。可以将数据从PCell 204卸载到SCell206、216中的一个或多个SCell,从而降低PCell 204的带宽要求。

2.向SCell提供UCI

常规LTE CA系统已经支持了在属于相同eNB的服务小区的集合之间的CA。这意味着UE不需要向其PCell和SCell两者提供UCI(例如混合自动重传请求确认(HARQ-ACK)、信道状态信息(CSI)以及调度请求(SR)),因为那些小区将属于相同eNB并且其UCI可以在服务小区的该集合之中容易地共享。因此,诸如LTE版本10CA(LTE Rel-10)中的常规LTE CA系统通过使用一个载波传输UCI来降低并行的上行链路(UL)传输并且扩展UL覆盖。

与LTE Rel-10CA相比,利用eNB间CA,PCell和SCell可以通过与不同eNB相关联的宏小区和小型小区来服务。用于在eNB间CA中向SCell提供UCI的尝试已经提出了在SCell的PUCCH上进行该消息的另外的(冗余的)传输。然而,这种技术使用两个独立的PUCCH传输,当同时发送两个PUCCH时,两个独立的PUCCH传输因此增大最大功率降低(MPR)。增大的MPR导致降低的最大发射功率,并且因此降低UL覆盖区域的大小。

以下的部分讨论用于向不同eNB之中的服务小区的集合提供UCI的各个实施例。本公开内容的2.1节、2.2节以及2.3节描述了用于小型小区接收UCI的实施例,其中,小型小区被配置成SCell(例如,微微eNB)并且UE正在由不同eNB的宏小区来服务。2.4节和2.5节描述了用于eNB间CA的实施例,其中,UE在宏小区和小型小区两者上进行发送。2.6节描述了不论UE是否仅仅在宏小区中进行发送或向宏小区和小型小区两者进行发送都可应用的实施例。

2.1.向SCell转发HARQ-ACK和CSI信息

在与不同eNB相关联的eNB间CA服务小区的集合中,PCell和SCell可以通过在不同eNB之间使用X2接口110(图1)来交换在单个传输中接收到的UCI。X2接口具有产生在大约10至20ms的范围UCI交换延迟的非理想回程(例如,有线线路)。图3示出了HARQ-ACK传输300的这种示例。利用eNB间CA,如果PCell 304(即,宏小区)向SCell 306(即,小型小区)转发UCI,则可以使用与LTE Rel-10CA中PUCCH传输相同的PUCCH传输。如果PDSCH 310是从小型小区306调度的,则UE 102在PUCCH 320上向宏小区304发送HARQ-ACK。宏小区304随后通过X2接口110向小型小区306转发HARQ-ACK信息330。

为了转发HARQ-ACK信息,存在有待解决的针对PUCCH格式资源分配的问题。在LTE网络中,存在用于发送针对CA的HARQ-ACK的两种PUCCH格式。对于频分双工(FDD)CA来说,支持多达两个服务小区聚合的UE使用“具有信道选择的PUCCH格式1b”,并且支持多于两个服务小区聚合的UE可以由“具有信道选择的PUCCH格式1b”或“PUCCH格式3”来配置。对于时分双工(TDD)CA来说,UE可以由“具有信道选择的PUCCH格式1b”或“PUCCH格式3”来配置。在两种PUCCH格式中,实际使用的PUCCH资源由在PDCCH中提供的用于SCell调度的发射功率控制(TPC)命令比特((所谓的ARI:确认/否定确认(ACK/NACK)资源指示符))来指示。因此,为了保持使用TPC命令比特来结合用于转发HARQ-ARK信息的技术选择PUCCH格式资源,对宏小区304和小型小区306进行同步来在PDSCH由SCell 306来调度之前(联合地)确定实际PUCCH资源。在用于预先确定PUCCH资源的一个实施例中,宏小区304确定四个候选之中的一个PUCCH资源,并且向SCell 306指示该PUCCH资源信息。可以随后使用该PUCCH资源直到去除SCell 306或宏小区304利用新的PUCCH资源对其进行更新。

在另一个实施例中,当调度SCell 306时所使用的PUCCH资源由宏小区304来直接配置,而不是使用TPC命令比特。因此,UE 102在没有使用TPC命令比特的情况下使用明确地配置的PUCCH资源。TPC命令比特可以被保留并且被重新利用(repurpose)用于SCell 306。

在UE丢失SCell 306PDSCH 310的调度信息,并且PCell 304被配置为转发针对SCell 306的HARQ-ACK的情况下,PCell 304可能没有感知到UE 102已经丢失PDCCH。因此,UE 102将已经丢失PDCCH并且将随后发送仅针对PCell 306的HARQ-ACK,在这种情况下,PCell 304将不能够向SCell 306发送HARQ-ACK。因此,SCell 306可以无限期地等待其HARQ-ACK信息。在这种情况下,如果PCell 304仅仅发送其HARQ-ACK信息,则PCell 304与SCell 306之间的HARQ-ACK信息传送可能存在未对齐(misalignment)。因此,在一些实施例中,定时信息(即,指示何时接收到HARQ-ACK的信息)被提供用于HARQ-ACK信息或与HARQ-ACK信息一起被提供。例如,系统帧编号(SFN)和/或子帧编号可以包括在HARQ-ACK信息中或与HARQ-ACK信息包括在一起。

2.1-1.经配置的PUCCH小区

PUCCH小区意指被配置为发送PUCCH的小区。如在图3中所示出的,如果PCell 304是PUCCH小区,并且UE 102在PCell 304上发送PUCCH,则发射功率将是相对高的,因为大的路径损耗由在与对宏小区相比对小型小区更大的距离上发送信息导致的。在这种情况下,eNB可以将PUCCH小区配置为UE 102,使得UE 102可以在SCell 306上发送PUCCH。在该配置中,由于小型小区306与UE 102之间相对小的路径损耗,可以降低针对PUCCH的发射功率。

在一些实施例中,可以针对所有的PUCCH格式(PUCCH格式1/1a/1b、PUCCH格式2/2a/2b、PUCCH格式3以及具有信道选择的PUCCH格式1b)一起来配置单个PUCCH小区。在其它实施例中,可以由无线资源控制(RRC)信令针对不同的PUCCH格式来独立地配置不同PUCCH小区。例如,可以针对每一个PUCCH格式来配置不同PUCCH小区。当PUCCH小区由SCell 306来配置时,从小型小区306向宏小区304的HARQ-ACK转发技术可以遵循2.1节的前述描述。

举与调度请求有关的另一个方面,基于PUCCH配置,可以在SCell 306上发送使用PUCCH格式1(在SR资源上)或PUCCH格式3(在ACK/NACK资源上)的调度请求。这是受到以下事实所驱动:小型小区306可能用作提升传送大量数据的小区。因此,由于从宏小区向小型小区转发SR时的回程延时,限制SCell(小型小区)306上的SR传输可以帮助降低延时。因此,对于小型小区来说,可以在没有回程延迟损失的情况下传输高吞吐量数据,但是对于宏小区,其可能具有来自回程延迟的一些损失。

在另一实施例中,为了降低针对宏小区(PCell)304和小型小区(SCell)306两者的延迟,可以在PCell 304和SCell 306两者上发送相同的SR。如果应用了UL切换,则可以以交替的方式来发送相同的SR(即,在子帧n处在PCell 304上以及在子帧n+1处在SCell 306上的SR PUCCH)。在SCell上配置PUCCH的这种概念还可以被扩展至其它PUCCH(例如包括使用了PUCCH格式1a/1b、具有信道选择的PUCCH格式1b、以及PUCCH格式3的ACK/NACK资源),以便传送HARQ-ACK信息。因此,对于SCell 306(其将典型地用于高吞吐量数据传输)来说,应当使UCI延时最小化。另一方面,考虑到PCell(宏小区)304可能用于维持与小区的连接,可以在PCell 304中产生低的数据传输速率,因此,即使通过将UCI从小型小区306传送到宏小区304,UCI的延时可以是可容忍的。

替代地,为了维持PCell 304和SCell 306两者上的吞吐量,可以同时在PCell 304和SCell 306两者上发送相同的HARQ-ACK(针对CA的可能聚合的ACK/NACK)。如果应用了UL切换,则可以以交替的方式来发送相同的聚合的HARQ-ACK(即,在子帧n处在PCell 304上的SR PUCCH和在子帧n+1处在SCell 306上的HARQ-ACK PUCCH)。

2.2在PCell与SCell之间基于时分复用的UL传输

为了避免PCell 304与SCell 306中的上行链路信道的并行传输,先前的提案建议UE可以仅仅在传输时间间隔(TTI)中在一个载波中发送上行链路信号。在NTT DOCOMO公司、Fujitsu、NEC以及Panasonic提出的标题为“Introduction of 1CC transmission in a TTI for UL CA;”提案No.R2-123997中描述了细节。在该提案中,UE使用一个射频(RF)载波需求并且因此避免了大的MPR。然而,如果UE应当在PCell或SCell中在某个时间发送相应的HARQ-ACK,则这种方法也将限制下行链路接收。例如,图4示出了UL子帧限制时序图400。粗体列出的“U”时隙410表示在发送UCI的服务小区上的UL传输。粗体列出的“D”时隙420表示在服务小区上的DL传输。在该方法中,DL和UL时序关系的使用是固定的。

为了调度下行链路传输而不管上行链路传输限制,当PUCCH传输被限制在上行链路载波聚合中时,预期了对HARQ-ACK传输的改变。更具体地说,对多个下行链路子帧的PDSCH的HARQ-ACK进行聚合并且在所允许的上行链路子帧中进行发送,如在图5中的子帧聚合时序图中所示出的。

在图4和图5的例子中,可以假定允许在子帧索引0和子帧索引5(等等)处的时隙410和510在PCell中发送上行链路信号。根据在图4中所示出的当前LTE操作,如果在子帧n中调度PDSCH,则针对FDD,UE在子帧n+4中发送HARQ-ACK。这意味着UE可以在UL传输410子帧0中发送对在下行链路子帧6中PDSCH的420HARQ-ACK。相比之下,图5示出了UE在UL传输510子帧0中发送对来自下行链路子帧2到6的PDSCH的520HARQ-ACK。为了支持图示500中的聚合,以下描述了另外的细化。

HARQ时序的修改:对HARQ时序关系进行改变,以便支持聚合。在FDD中,如果在子帧n中调度PDSCH,则UE在n+k子帧中发送HARQ-ACK,其中,k大于或等于4,并且允许上行链路子帧用于传输。在TDD中,针对在子帧n-k中所检测到的PDSCH,UE在子帧n中发送HARQ-ACK,其中,k∈K并且K(在表1中定义)是M个元素的集合{k0,k1,…kM-1},取决于子帧n和UL-DL配置。

表1:针对TDD的下行链路关联集合索引K:{k0,k1,…kM-1}

定义偏移值(例如,k偏移),以便在PDSCH接收与HARQ-ACK反馈之间容纳另外的子帧。例如,针对在子帧n-k-k偏移中所检测到的PDSCH,UE在子帧n中发送HARQ-ACK,其中,k是如先前所定义的并且k偏移是预先确定的整数值或由较高层信令(例如在数据链路层(层2)介质访问控制(MAC)信令中或在网络层(层3)RRC信令中)来配置。

多个HARQ-ACK的传输:在一些实施例中,存在用于发送多个子帧的HARQ-ACK的两种选项。要指出的是,对于FDD,可以将逐子帧更新的两比特下行链路分配索引(DAI)字段添加到下行链路控制信息(DCI)中以用于PDSCH。这将使得该字段能够在每个经配置的服务小区的绑定窗口内指示具有分配的PDSCH传输的PDCCH的累积数量,并且提供用于指示下行链路半持久调度(SPS)释放的PDCCH。在其它实施例中,DAI可以表示绑定窗口内所调度的PDSCH和SPS释放的数量。两比特UL DAI字段可以包括在DCI内以用于PUSCH。UL DAI表示绑定窗口内具有PDSCH传输和具有用于向相应的UE指示下行链路SPS释放的PDCCH的子帧的总数量。绑定窗口可以由RRC信令来配置。在一些实施例中,可以预先确定绑定窗口。

选项1:可以在多个下行链路PDSCH(所谓的绑定窗口)上使用时间绑定方法。如果对绑定窗口内所有接收到的PDSCH的解码是成功的,则UE发送肯定HARQ-ACK。否则,UE发送否定HARQ-ACK。如果配置了多输入多输出(MIMO),则将HARQ-ACK的数量维持为1比特或2比特。可以以每传输块为基础来执行绑定操作。也就是说,对于每一个传输块(TB),可以执行绑定操作。用于PUCCH格式1a/1b的PUCCH资源可以由绑定窗口内最后检测到的PDCCH控制信道单元(CCE)索引来确定。在图5的示例中,用于HARQ-ACK传输的UL子帧0的绑定窗口大小是五。替代地,HARQ-ACK复用可以用于HARQ-ACK传输。HARQ-ACK的信息可以由所选择的PUCCH资源和经调制的符号的组合来传送。可以在版本10.7.0的3GPP技术规范no.36.213的10.1.3.1节中找到HARQ-ACK绑定和HARQ-ACK复用的细节。

选项2:该选择是针对当使用了复用时。如果配置了PUCCH格式3,可以复用多达20比特的HARQ-ACK比特。因此,在FDD中,假定一个服务小区由宏小区或小型小区来服务,可以复用多达10个子帧的HARQ-ACK。如果PUCCH格式3可以传送多达22比特的HARQ-ACK比特,则假定一个服务小区由宏小区或小型小区来服务,可以复用多达10个子帧的HARQ-ACK。

下文中,呈现了用于为某个服务小区(宏小区或小型小区)配置DL子帧和UL子帧的两种方法。在第一实施例中,服务小区的UL子帧由RRC信令来配置。随后,对于UL子帧n,可以将在n-k1与n-k2之间的DL子帧定义为绑定窗口。对于图5中的示例,k1=8并且k2=4。在第二实施例中,绑定窗口大小由RRC信令来配置。随后,针对绑定窗口内的最后的DL子帧n,将n+k3确定为UL子帧。对于图5中的示例,k3=4。

2.3.偷听向PCell发送的PUCCH

图6示出了用于当UE 102在PCell上的PUCCH中发送620HARQ-ACK/CSI时,其中UE操作不存在任何改变的网络600。网络600避免了经由X2接口110从宏小区604向小型小区606转发HARQ-ACK/CSI信息,因为小型小区606接收在PCell上的PUCCH发送的620,即,小型小区606偷听向宏小区604发送620的PUCCH。小型小区606具有以宏小区604的载波频率来接收上行链路信号的能力。因此,在一些实施例中,小型小区606具有多个RF链。一个RF链用于服务SCell 606的载波频率,而另一个RF链用于偷听PCell 604的载波频率。在其它实施例中,当小型小区606需要从已经将小型小区606配置成SCell的UE 102接收PUCCH时,小型小区606在作为PCell和SCell的操作之间切换。当宏小区604作为PCell来进行操作时,并且其在小型小区606被部署在该宏小区覆盖内时发送PUCCH,可以使用该偷听技术。在这种情况下,由于PUCCH的大发射功率适应宏小区与UE之间的路径损耗,小型小区606可以轻易地从宏小区604接收PUCCH。

为了支持偷听,宏小区604利用PUCCH配置向小型小区606提供以下的信息。

CSI:专用的PUCCH资源被配置用于UE 102发送定期CSI。当经由X2接口添加小型小区606作为SCell时,以信号形式向该小型小区发送专用的定期CSI信息。

HARQ-ACK:在LTE Rel-10中,取决于HARQ-ACK的数量或RRC配置,可以使用具有信道选择的PUCCH格式1b或PUCCH格式3。在上述两种情况下,利用RRC信令来配置候选的PUCCH格式资源的集合,并且用于HARQ-ACK的实际PUCCH资源由用于SCell的PDCCH中的TPC命令来指示。如在2.1节中所描述的,在SCell中调度PDSCH之前,可以针对所分配的PUCCH资源作出预先确定。在一些实施例中,SCell还知道当调度SCell中的PDSCH时使用了哪一个PUCCH资源。

因为小型小区606对向宏小区604发送的PUCCH(CSI和HARQ-ACK)进行接收和解码,所以应当基于UE 102与小型小区604之间的信道状况,而不是UE 102与宏小区604之间的信道状况,来控制以小型小区为目标的PUCCH的传输功率。这意味着以宏小区和小型小区为目标的PUCCH的功率控制将彼此独立。当UE 102正发送以宏小区606为目标的PUCCH时,UE 102遵循现有的过程来设置PUCCH传输功率。当UE 102正发送以小型小区606为目标的PUCCH时,UE 102根据UE 102与小型小区606之间的路径损耗来设置PUCCH传输功率,并且其设置接收到的TPC命令和其它经配置的参数。

可以从宏小区604或小型小区606发送针对以小型小区606为目标的PUCCH的TPC命令。如果从宏小区604发送TPC命令,则小型小区606可以经由X2信令来向宏小区604发送该TPC命令;另外,在携带TPC命令的PDCCH中,提供一个字段来区分该TPC命令是否用于控制以宏小区604或小型小区606为目标的PUCCH的传输功率。

2.4.缓冲区状态报告(BSR)传输

UE 102可以独立地向宏小区604和小型小区606发送短的BSR。为了解决这种独立的传输,如下描述了两种场景:

场景A:当UE 102向宏小区和小型小区发送单独的BSR时,小型小区可以经由X2信令向宏小区eNB发送BSR信息,使得宏小区eNB可以解释该信息,例如,宏小区eNB中的流控制或调度。

场景B:UE 102向宏小区而不是小型小区发送BSR,因为BSR包含要向小型小区发送的逻辑信道的信息,宏小区可以经由X2信令向小型小区发送BSR信息,使得小型小区可以相应地调度UL传输。

2.5.调度请求(SR)传输

调度请求用于请求用于新传输的上行链路共享信道(UL-SCH)资源。在本节中,UE(例如,UE 102)可以在宏小区和小型小区(例如,宏小区604和小型小区606)两者中进行发送。因为可以针对宏小区和小型小区独立地触发BSR,所以根据三种情况,本节描述了还可以针对宏小区和小型小区独立地触发SR。

情况1是当UE被分配了用于在小型小区中发送SR的有效的PUCCH资源时。在该情况下,当SR对于小型小区是待决(pending)的时,则UE可以在该小型小区中以所分配的PUCCH资源来发送SR。

情况2是当UE不具有用于在小型小区中发送SR的有效的PUCCH资源,但是UE具有宏小区中可用的UL资源。存在数个选项来解决该情况。

选项A:当SR是待决的时,UE在小型小区上发起随机接入过程,并且在Msg3中发送小区无线网络临时标识符(C-RNTI)MAC控制元素。Msg3是在随机接入响应(Msg2)之后在UL-SCH上第一被调度的UL传输。小型小区可以为UE分配UL资源,以便在随机接入响应(Msg2)中或在接收Msg3之后发送BSR。

选项B:当SR是待决的时,UE在宏小区中发送BSR MAC控制元素。UE可以使用短的BSR或长的BSR。因为BSR包含逻辑信道ID,所以宏小区可以经由X2信令向小型小区转发相关的BSR,使得小型小区可以相应地向UE分配UL资源。

选项C:当SR是待决的时,UE在RRC信令中向宏小区发送BSR。宏小区可以经由X2信令向小型小区转发相关的BSR,使得小型小区可以相应地向UE分配UL资源。

情况3是当UE不具有用于在小型小区中或在宏小区中发送SR的有效的PUCCH资源时。在该情况下,可以使用前述的选项A技术。在LTE Rel-11网络中,当SR是待决的时,UE可以在PCell上发起随机接入过程。在Msg3中,UE可以发送C-RNTI MAC控制元素。对于eNB间CA部署场景,存在两个选项用于UE操作:

选项D:当SR是待决的时,UE在宏小区上发起随机接入过程,并且在Msg3中发送C-RNTI MAC控制元素。当宏小区准许UL资源时,UE可以发送BSR,所述BSR包括向小型小区发送的针对UL逻辑信道的信息。当宏小区接收到BSR时,其可以经由X2信令向小型小区转发BSR,使得小型小区可以相应地向UE分配UL资源。

选择E:当SR是待决的时,UE在宏小区上发起随机接入过程,并且在Msg3中发送新的MAC控制元素。新的MAC控制元素可以包含C-RNTI和标志两者,所述标志指示SR是针对宏小区还是小型小区。如果标志指示SR是针对宏小区,则宏小区可以相应地分配UL资源;否则,宏小区可以经由X2信令来告知小型小区UE具有待决的SR。

根据一些实施例,UE可以在宏小区上或在小型小区上发起随机接入过程,取决于数据是在小型小区还是在宏小区上发送的。

2.6.时间对齐定时器(timeAlignmentTimer)到期处理

本节描述了不管UE是否仅仅向宏小区还是向宏小区和小型小区两者进行发送都适用的技术。

在LTE Rel-11网络中,当与主定时提前组(TAG)相关联的时间对齐定时器到期时,UE执行以下的步骤:(1)刷新针对所有服务小区的所有HARQ缓冲区;(2)通知RRC来释放用于所有服务小区的PUCCH/SRS;(3)清除任何经配置的下行链路分配和上行链路准许;以及(4)将所有运行的时间对齐定时器视为到期。

对于eNB间CA,在以上示例的情况下,因为小型小区和宏小区相当独立地操作,如果与主TAG相关联的时间对齐定时器到期,则UE可以应用上面列出的针对在主TAG内的服务小区(即,除了在辅TAG内的小型小区之外的小区)的操作。换句话说,对于小型小区,UE可以保持HARQ缓冲区、PUCCH/SRS、经配置的下行链路分配和上行链路准许,并且只要用于小型小区的时间对齐定时器到期在运行,UE就可以将辅助TAG的时间对齐定时器视为仍然运行。因此,在一些实施例中,仅有四个动作的一子集是适用于小型小区的。例如,UE可以向小型小区应用动作(1)和(2),即,刷新针对小型小区的HARQ缓冲区并且通知RRC来释放用于小型小区的PUCCH/SRS。

3.示例性用户设备(UE)

图7提供了移动设备(例如用户设备(UE)、移动站(MS)、移动无线设备、移动通信设备、平板电脑、手持装置、或其它类型的移动无线设备)的示例性说明。移动设备可以包括被配置为与传输站(例如基站(BS)、EUTRAN节点B(eNB)、基带单元(BBU)、远程无线电头端(RRH)、远程无线设备(RRE)、中继站(RS)、无线设备(RE)、或其它类型的无线广域网(WWAN)接入点)进行通信的一个或多个天线。移动设备可以被配置为使用至少一个无线通信标准(其包括3GPP LTE、WiMAX、高速分组接入(HSPA)、蓝牙以及WiFi)来进行通信。移动设备可以针对每一个无线通信标准使用独立的天线或针对多个无线通信标准使用共享的天线来进行通信。移动设备可以在无线局域网(WLAN)、无线个域网(WPAN)、和/或WWAN中进行通信。

图7还提供对可以用于音频输入和来自移动设备的输出的麦克风和一个或多个扬声器的说明。显示屏可以是液晶显示(LCD)屏、或诸如有机发光二极管(OLED)显示之类的其它类型的显示屏。显示屏可以被配置成触摸屏。触摸屏可以使用电容性的、电阻性的、或另外类型的触摸屏技术。应用处理器和图形处理器可以耦合到内部存储器,以便提供处理和显示能力。非易失性存储器端口还可以用于向用户提供数据输入/输出选项。非易失性存储器端口还可以用于扩展移动设备的存储器能力。键盘可以与移动设备集成在一起或被无线地连接到移动设备,以便提供另外的用户输入。还可以使用触摸屏来提供虚拟键盘。

4.示例性实施例

在一个示例性实施例中,一种用于无线网络中的通信的UE,所述无线网络支持eNB间CA,所述UE包括:接收机,其与同所述无线网络中的PCell相对应的第一eNB以及同无线网络中的SCell相对应的第二eNB进行通信,所述接收机被配置为:通过所述SCell中的PDSCH来接收下行链路数据;处理器,其被配置为:响应于接收到下行链路数据,生成针对SCell的HARQ-ACK,并且还被配置为:在所述PCell与所述SCell之间进行选择以作为第一PUCCH资源;以及发射机,其被配置为通过所述第一PUCCH资源来发送包括针对所述SCell的所述HARQ-ACK的UCI。

根据某些这种实施例,所述UE接收机还被配置为:在SCell调度期间通过所述SCell中的PDCCH来接收TPC数据,所述TPC数据包括对所述第一PUCCH资源的指示。在一些实施例中,所述UE接收机还被配置为:在SCell调度期间从所述PCell中的第一eNB接收信号,以便指示用于所述发射机在所述PCell中发送所述UCI的所述第一PUCCH资源。根据进一步的实施例,所述UE处理器还被配置为:在所述PCell中选择与第一PUCCH格式相对应的所述第一PUCCH资源,并且在所述SCell中选择与第二PUCCH格式相对应的第二PUCCH资源。在进一步的实施例中,所述UE发射机被配置为:通过所述SCell中的所述第二PUCCH资源来发送对调度请求资源或对ACK/NACK资源的调度请求。根据一些实施例,UE发射机还被配置为:通过所述SCell中的第二PUCCH资源来发送包括所述HARQ-ACK的所述UCI,其中,所述HARQ-ACK包括用于载波聚合的聚合的ACK/NACK。在另外的实施例中,所述UE处理器还被配置为:针对上行链路切换来配置所述发射机,使得所述发射机在子帧n中通过所述PCell中的所述PUCCH资源以及在子帧n+1中通过所述SCell中的所述PUCCH资源来发送所述UCI。

在另一个示例性实施例中,一种用于无线网络中的通信的UE,所述无线网络支持eNB间CA,所述UE包括:接收机,其用于与同所述无线网络中的PCell相对应的第一eNB以及同所述无线网络中的SCell相对应的第二eNB进行通信,所述接收机被配置为:通过PDSCH来接收下行链路数据;处理器,其被配置为:在与所述PCell相关联的子帧的第一集合中,允许通过所述PCell中的第一PUCCH的UCI的传输;在与所述PCell相关联的子帧的第二集合中,限制通过所述第一PUCCH的所述UCI的传输;响应于接收到所述下行链路数据,生成HARQ-ACK;以及聚合与关联于所述PCell的各下行链路子帧相对应的所述PDSCH的多个HARQ-ACK(聚合的HARQ-ACK)。所述UE具有发射机,所述发射机被配置为:在子帧的所述第一集合中的子帧中的一个子帧中发送所述聚合的HARQ-ACK。

在某些这种实施例中,所述UE聚合的HARQ-ACK包括:如果UE成功地对在绑定窗口期间接收的多个接收的PDSCH进行解码,则包括肯定HARQ;以及如果UE没有成功地对在所述绑定窗口期间接收的所述多个接收的PDSCH进行解码,则包括否定HARQ。根据一些实施例,所述UE聚合的HARQ-ACK包括表示:表示对与关联于所述PCell的所述各下行链路子帧相对应的所述多个HARQ-ACK进行复用的多个比特。

在另一个示例性实施例中,一种用于无线网络中的通信的UE,所述无线网络支持eNB间CA,所述eNB包括:接收机,其用于与同所述无线网络中的PCell相对应的第一eNB以及同所述无线网络中的SCell相对应的第二eNB进行通信;以及处理器,其被配置为:确定与PCell的TAG相关联的第一时间对准定时器的期满,以及通过执行以下操作中的一个来对确定所述第一时间对齐定时器的到期进行响应:(A)刷新与所述PCell相对应的HARQ缓冲区,并且保持与所述SCell相对应的HARQ缓冲区;(B)通知RRC来释放所述PCell中的第一PUCCH;(C)清除与所述PCell相对应的经配置的下行链路分配和上行链路准许,并且维持与所述SCell相对应的所述下行链路分配和上行链路准许;以及(D)将所述PCell的运行的第二时间对齐定时器视为到期的,并且将所述SCell的运行的第三时间对齐定时器视为仍然运行。在一些实施例中,所述UE处理器还被配置为:通过执行(A)—(D)中的每一个操作来对确定第一时间对齐定时器的到期进行响应。在另一个示例性实施例中,一种具有指令的计算机可读介质,当所述指令由处理器执行时,使无线通信网络中的微微小区的eNB执行以下操作:从所述无线通信系统网络中的宏小区接收用于与UE进行通信的配置信息;处理所述配置信息,以便识别由UE使用来向宏小区发送上行链路信号的资源,所识别的资源包括与所述上行链路信号相对应的第一载波频率;截获由所述UE以所述第一载波频率向所述宏小区发送的所述上行链路信号;以及处理所截获的上行链路信号,以便确定与所述微微小区相对应的UCI。

在某些这种实施例中,当所述计算机可读介质指令由所述处理器执行时,还使所述eNB执行以下操作:对所述eNB的第一RF链进行配置,以便使用用于辅助小区服务的第二载波频率来与所述微微小区中的所述UE进行通信;以及对所述eNB的第二RF链进行配置,以便截获以所述第一载波频率发送的所述上行链路信号。根据一些实施例,当所述计算机可读介质指令由所述处理器执行时,还使所述eNB执行以下操作:对所述eNB的RF链进行配置,以便使用用于辅助小区服务的第二载波频率来与所述微微小区中的所述UE进行通信;以及对所述RF链进行重新配置,以便截获以所述第一载波频率发送的所述上行链路信号。在另外的实施例中,所述计算机可读介质指令使所述eNB UCI包括CSI,并且其中,所述配置信息包括对被配置用于所述UE向所述宏小区发送定期CSI的专用PUCCH资源的指示。在其它实施例中,所述UCI包括HARQ-ACK,其中,所述配置信息包括对用于所述HARQ-ACK的通信的PUCCH格式的指示,并且其中,当所述指令由所述处理器执行时,还使所述eNB执行以下操作:辅助小区在将用于辅助小区服务PDSCH调度给所述UE之前,确定所述PUCCH格式。根据一些进一步的实施例,当所述计算机可读介质指令由所述处理器执行时,还使所述eNB执行以下操作:向所述宏小区传输用于向所述UE中继的TPC数据,所述TPC数据指示所述UE与所述微微小区的所述eNB之间的PUCCH的传输功率。在进一步的实施例中,当所述计算机可读介质指令由所述处理器执行时,还使所述eNB执行以下操作:从所述宏小区接收缓冲区状态报告信息,所述缓冲区状态报告信息包括从UE接收到的用于建立逻辑信道的数据。在另一个示例性实施例中,一种与3GPP网络中的第一小区相对应的eNB包括用于执行以下操作的处理电路:与所述3GPP网络中的第二小区以及UE建立通信;从所述UE接收BSR传输,所述BSR传输包括用于所述第一小区通过X2通信信道向所述第二小区转发的数据;以及使用所述X2通信信道向所述第二小区转发BSR数据。在一些实施例中,所述第一小区是小型小区,并且所述第二小区是宏小区。在其它实施例中,所述第一小区是宏小区,所述第二小区是小型小区,并且所述BSR数据包括由所述小型小区使用用于建立上行链路逻辑信道的信息。在其它实施例中,所述BSR传输包括用于所述第一小区通过所述X2通信信道向所述第二小区转发的BSR MAC控制元素数据。在进一步的实施例中,所述eNB处理电路还被配置为:在RRC信令中接收所述BSR传输。

在另一个示例性实施例中,一种3GPP网络中的UE包括用于执行以下操作的电路:与所述3GPP网络中的第一小区以及第二小区建立通信;以及选择性地触发对所述第一小区和所述第二小区中的至少一个小区的独立的SR传输,所述SR传输用于请求用于新传输的UL-SCH资源。

在某些这种实施例中,所述UE处理电路还被配置为:确定所述UE被分配了有效的PUCCH资源以便在所述第二小区中发送SR传输;以及当所述SR传输在所述第二小区中是待决的时,在所述第二小区中以所述PUCCH资源来发送所述SR传输。在其它实施例中,所述UE处理电路还被配置为:确定所述UE不具有被分配用于在所述第二小区中发送所述SR传输的有效的PUCCH资源;确定上行链路资源在所述第二小区中是不可用的;以及当对于所述第二小区来说所述SR传输是待决的时,发起所述第二小区的随机接入过程,以便向所述UE分配上行链路资源。在进一步的实施例中,所述UE处理电路还被配置为:确定所述UE不具有被分配用于在所述第二小区中发送所述SR传输的有效的PUCCH资源;确定上行链路资源在所述第一小区中是可用的;以及向所述第一小区发送BSR MAC控制元素,所述BSR MAC控制元素包括用于所述第一小区向所述第二小区转发的数据,使得所述第二小区可以向所述UE分配上行链路资源。在其它实施例中,所述UE处理电路还被配置为:确定所述UE不具有被分配用于在所述第一小区或所述第二小区中发送所述SR的有效的PUCCH资源;发起所述第一小区的随机接入过程,以便向所述UE分配所述第一小区中的上行链路资源;以及(使用所分配的上行链路资源)向所述第一小区发送所述BSR传输,所述BSR传输包括用于所述第一小区向所述第二小区转发的数据,使得所述第二小区可以向所述UE分配上行链路资源。根据其它实施例,所述UE处理电路还被配置为:确定所述UE不具有被分配用于在所述第一小区或所述第二小区中发送所述SR传输的有效的物理上行链路控制信道(PUCCH)资源;以及发起随机接入过程以便向所述第一小区发送MAC控制元素,所述MAC控制元素包括C-RNTI和标志两者,所述标志指示所述SR传输是针对所述第一小区还是针对所述第二小区。

上文所介绍的技术可以由通过软件和/或固件编程或配置的可编程电路来实现,或者其可以由专用硬连线电路来整体地实现,或者以这些形式的组合来实现。这种专用电路(如果有的话)可以具有例如一个或多个专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)等的形式。用于实现本文所介绍的技术的软件或固件实施例可以存储在机器可读存储介质上,并且可以由一个或多个通用或专用可编程微处理器来执行。如本文所使用的术语机器可读或计算机可读介质包括可以以可由机器(机器可以是例如计算机、网络设备、蜂窝电话、PDA、制造工具、具有一个或多个处理器的任何设备等)访问的形式来存储信息的任何装置。例如,机器可访问介质包括可记录/非可记录介质(例如,只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光存储介质;闪存设备;或其它介质)。

尽管本公开内容包括对具体示例性实施例的参考,但是将认识到的是,权利要求不受限于所描述的实施例,而是可以利用落在所附权利要求的精神和范围内的修改和更改来实施。因此,说明书和附图应当以说明性意义而非限制性意义来考虑。

实施例可以通过硬件、固件以及软件中的一个或组合来实现。实施例还可以实现为在计算机可读存储设备上存储的指令,所述指令可以由至少一个处理器来读取和执行,以便执行本文所描述的操作。计算机可读存储介质可以包括用于以可由机器(例如,计算机)读取的形式来存储信息的任何非暂时性装置。在一些实施例中,可以利用在计算机可读存储设备介质上存储的指令来配置一个或多个处理器。

本领域技术人员将理解的是,在不脱离本发明的基本原理的情况下可以对上文所描述的实施例的细节作出许多改变。因此,本发明的范围应当仅仅由下面的权利要求来确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1