用于MTC共存的方法和增强型节点B(eNB)与流程

文档序号:12071928阅读:237来源:国知局
用于MTC共存的方法和增强型节点B(eNB)与流程

本专利申请要求于2015年3月24日提交的美国申请No.14/667,430的优先权权益,该美国申请要求2014年7月30日提交的美国临时专利申请No.62/031,054的优先权权益,这两个申请通过引用被全部合并于此。

技术领域

实施例涉及无线通信。一些实施例涉及蜂窝通信网络,包括3GPP(第三代合作伙伴计划)网络、3GPP LTE(长期演进)网络、以及3GPP LTE-A(升级版LTE),但是实施例的范围在该方面不进行限制。一些实施例涉及机器型通信(MTC)。



背景技术:

机器型通信(MTC)是一种前景广阔的新兴技术,能够实现无处不在的计算环境,所述计算环境包括“物联网(IoT)”的概念。潜在的基于MTC的应用包括智能计量、健康监测、远程安全监控、智能交通系统等等。目前,MTC设备未被设计为集成到当前和下一代移动宽带网络(例如,LTE和升级版LTE)中。

附图说明

在附图中(不一定按照比例绘制),不同视图中的相似标号可以描述类似的组件。具有不同字母后缀的相似标号可以表示类似元件的不同实例。附图通过示例的方式而非限制的方式一般地示出了本文件中所论述的各种实施例。

图1根据一些实施例一般地示出了具有各种网络组件的LTE网络的端到端网络架构的一部分。

图2根据一些实施例一般地示出了UE的功能框图。

图3A和3B根据一些实施例一般地示出了下行链路中的机器型通信(MTC)区域的频分和时分位置的图示。

图4A和4B根据一些实施例一般地示出了上行链路中的MTC区域的频分和时分位置的图示。

图5根据一些实施例一般地示出了时分情形中的MTC区域中的信令。

图6根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输的第一图示。

图7根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输的第二图示。

图8根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输的第三图示。

图9根据一些实施例一般地示出了MTC系统信息块(M-SIB)传输的图示。

图10A和10B根据一些实施例一般地示出了下行链路中的MTC区域的图示。

图11根据一些实施例一般地示出了上行链路中的MTC区域的图示。

图12根据一些实施例一般地示出了呈现在授权带宽上使用MTC用户设备(UE)的方法的流程图。

图13根据一些实施例一般地示出了可以在其上执行本文所论述的任意一种或多种技术(例如,方法)的机器的示例性框图。

具体实施方式

当今的无线通信包括大量设备、控制器、方法和系统。例如,授权频带上的无线通信可以涉及不同种类和不同设置的用户设备(UE)和演进型节点B(eNB)。在示例中,授权频带无线通信系统可以包括作为第3代合作伙伴计划(3GPP)长期演进(LTE)或升级版LTE网络或其他蜂窝电话网络操作的无线网络。在LTE或升级版LTE网络中,最小带宽为1.4MHz。在示例中,机器型通信(MTC)可以具有1.4MHz的传输带宽。在其他示例中,MTC可具有200kHz、300kHz、400kHz、或者低于或高于1.4MHz的其他值的传输带宽。在示例中,200kHz约为LTE或升级版LTE网络中的单个物理资源块(PRB)的大小。MTC可以包括设备到设备(也被称为机器到机器)通信、物联网型通信等等。

在示例中,控制信道通过全部系统带宽被发送。当系统带宽大于1.4MHz时,LTE或升级版LTE系统传输和MTC传输之间可能在控制信道方面发生冲突。在另一示例中,现有移动宽带网络可能未被设计或优化为满足MTC相关的要求。

在示例中,UE、eNB、或网络可被配置为支持MTC。例如,可以建立用于通信的MTC区域。MTC区域可以包括建立或修改时间和频率资源信息、信令、或冲突处理。MTC支持可以包括MTC信道状态信息(M-CRS)设计、MTC物理广播信道M-PBCH设计、MTC系统信息块M-SIB设计、MTC控制信道设计(包括MTC物理下行链路控制信道(M-PDCCH)设计)、MTC物理控制格式指示符信道(M-PCFICH)设计、或MTC物理混合自动重传请求(ARQ)指示符信道(M-PHICH)设计、或MTC上行链路设计。

图1根据一些实施例一般地示出了具有各种网络组件的LTE网络的端到端网络架构的一部分。网络100包括无线电接入网(RAN)(例如,如所描绘的,E-UTRAN或演进型通用陆地无线电接入网)100和核心网120(例如,被示为演进型分组核心(EPC)),它们通过S1接口115耦合在一起。为了方便和简洁,仅示出了核心网120和RAN 100的一部分。

核心网120包括移动性管理实体(MME)122、服务网关(服务GW)124、以及分组数据网络网关(PDN GW)126。RAN包括增强型节点B(eNB)104(它可以作为基站操作),用于与用户设备(UE)102进行通信。eNB 104可以包括宏eNB和低功率(LP)eNB。

MME在功能上类似于旧式服务GPRS支持节点(SGSN)的控制面。MME管理接入中的移动性方面,例如,网关选择和跟踪区域列表管理。服务GW 124终止去往RAN 100的接口,并且在RAN 100和核心网120之间路由数据分组。此外,服务GW 124可以是用于eNB间切换的本地移动性锚点,并且还可以提供用于3GPP间移动性的锚点。其他职责可以包括合法拦截、计费、以及一些策略实施。服务GW124和MME 122可以被实现于一个物理节点或不同的物理节点中。PDN GW 126终止去往分组数据网(PDN)的SGi接口。PDN GW 126在EPC 120和外部PDN之间路由数据分组,并且可以是用于策略实施和计费数据收集的关键节点。PDN GW 126还可以提供用于非LTE接入的移动性的锚点。外部PDN可以是任何类型的IP网络以及IP多媒体子系统(IMS)域。PDN GW 126和服务GW 124可以被实现于一个物理节点或不同的物理节点中。

eNB104(宏eNB和微eNB)终止空中接口协议,并且可以是针对UE 102的第一接触点。在一些实施例中,eNB 104可以实现RAN 100的各种逻辑功能,包括但不限于RNC(无线电网络控制器功能),例如无线电承载管理、上行链路和下行链路动态无线电资源管理和数据分组调度、以及移动性管理。根据实施例,UE 102可以被配置为根据OFDMA通信技术,通过多载波通信信道与eNB 104传输OFDM通信信号。OFDM信号可以包括多个正交子载波。

S1接口115是将RAN 100和EPC 120分离的接口。S1接口115被分成两部分:S1-U和S1-MME,其中,S1-U在eNB 104和服务GW 124之间运载流量数据,S1-MME是eNB 104和MME 122之间的信令接口。X2接口是eNB 104之间的接口。X2接口包括两部分:X2-C和X2-U。X2-C是eNB 104之间的控制面接口,而X2-U是eNB 104之间的用户面接口。

对于蜂窝网络来说,LP小区通常被用于将覆盖范围扩展至室外信号无法很好到达的室内区域、或用于增加电话使用非常密集(例如,火车站)的区域中的网络容量。如本文所使用的,术语低功率(LP)eNB是指用于实现诸如毫微微小区(femtocell)、微微小区(picocell)、或微小区之类的较窄的小区(比宏小区窄)的任何适当的相对低功率的eNB。毫微微小区eNB通常由移动网络运营商提供给它的住宅用户或企业用户。毫微微小区通常具有住宅网关的尺寸或更小的尺寸,并且通常连接到用户的宽带线。一旦通电,毫微微小区就连接到移动运营商的移动网络并且为住宅毫微微小区提供范围通常为30到50米的额外覆盖。因此,LP eNB可以是毫微微小区eNB,因为它通过PDN GW 126被耦合。类似地,微微小区是通常覆盖小区域(例如,建筑物内(办公室、购物中心、火车站等)、或近来在飞机上)的无线通信系统。微微小区eNB通常可以通过它的基站控制器(BSC)功能经由X2链路连接到另一eNB(例如,宏eNB)。因此,LP eNB可以用微微小区eNB来实现,这是由于它经由X2接口被耦合到宏eNB。微微小区eNB或其他LP eNB可以包含宏eNB的一些功能或全部功能。在一些情况中,其可以被称为接入点基站或企业毫微微小区。

在一些实施例中,下行链路资源网格可用于从eNB向UE进行下行链路传输。该网格可以是时间-频率网格(被称为资源网格),该网格是下行链路在每个时隙中的物理资源。这样的时间-频率面的表现方式是OFDM系统的常用作法,它使得无线电资源分配较为直观。资源网格的每列和每行分别与一个OFDM符号和一个OFDM子载波相对应。资源网格在时域的持续时间可以对应于无线电帧的一个时隙。资源网格中最小的时间-频率单元被表示为资源要素。每个资源网格包括多个资源块,资源块描述了特定物理信道到资源要素的映射。每个资源块包括资源要素的集合,并且在频域中,每个资源块表示当前可被分配的最小量的资源。存在使用这些资源块传递的若干不同物理下行链路信道。这些物理下行链路信道中尤其与本公开有关的两者是物理下行链路共享信道和物理下行链路控制信道。

物理下行链路共享信道(PDSCH)向UE 102(图1)运载用户数据和较高层信令。物理下行链路控制信道(PDCCH)运载与PDSCH信道有关的资源分配和传输格式方面的信息等。PDCCH还告知UE关于上行链路共享信道的传输格式、资源分配、以及H-ARQ信息。典型地,下行链路调度(向小区内的UE分配控制和共享信道资源块)在eNB处基于从UE反馈回eNB的信道质量信息来执行,然后下行链路资源分配信息在用于(分配给)UE的控制信道(PDCCH)上被发送至UE。

PDCCH使用CCE(控制信道要素)来传递控制信息。在被映射到资源要素之前,PDCCH复值符号首先被组成四联体(quadruplet),然后使用子块交织器来排列该四联体以供速率匹配。每个PDCCH使用这些控制信道要素(CCE)中的一个或多个进行传输,其中每个CCE对应于9组物理资源要素(被称为资源要素组(REG)),每组有4个物理资源要素。4个QPSK符号被映射到每个REG。取决于DCI的大小和信道条件,可以使用一个或多个CCE来传输PDCCH。在LTE中可能定义了四个或更多个不同的PDCCH格式,这些PDCCH格式具有不同数量的CCE(例如,聚合等级,L=1、2、4或8)。

图2根据一些实施例示出了UE的功能框图。UE200可以适合用作图1中所示的任意一个或多个UE 102。UE 200可以包括物理层电路202,该物理层电路202用于使用一个或多个天线201向eNB 104(图1)发送信号以及从eNB 104(图1)接收信号。UE 200还可以包括媒体接入控制层(MAC)电路204,该MAC电路204用于控制对无线介质的接入。UE 200还可以包括被安排来配置UE的各种元件以执行本文所描述的操作的处理电路206和存储器208。

图2根据一些实施例一般地示出了UE的功能框图。UE 200可以适合用作UE 102(图1)。UE 200可以包括物理层电路202,该物理层电路202用于使用一个或多个天线201向eNB 104(图1)发送信号以及从eNB 104(图1)接收信号。UE 200还可以包括媒体接入控制层(MAC)电路204,该MAC电路204用于控制对无线介质的接入。UE 200还可以包括被安排来执行本文所描述的操作的处理电路206和存储器208。

根据一些实施例,MAC电路204可以被安排为竞争无线介质以配置用于通过无线介质进行传输的帧或分组,并且PHY电路202可以被安排为发送和接收信号。PHY电路202可以包括用于调制/解调、上变频/下变频、滤波、放大等的电路。在一些实施例中,设备200的处理电路206可以包括一个或多个处理器。在一些实施例中,两个或更多个天线可以被耦合到被安排为发送和接收信号的物理层电路。物理层电路可以包括一个或多个无线电装置以用于根据蜂窝(例如,LTE)和WLAN(例如,IEEE 802.11)技术进行通信。存储器208可以存储用于配置处理电路206以执行配置和发送HEW帧的操作以及用于执行本文所述的各种操作的信息。

在一些实施例中,UE 200可以是便携式无线通信设备的一部分,例如,个人数字助理(PDA)、具有无线通信功能的膝上型或便携式计算机、web平板、无线电话、智能电话、无线耳机、寻呼机、即时通讯设备、数码相机、接入点、电视机、可穿戴设备、医疗设备(例如,心率监测器、血压检测器等)、或可以无线方式接收和/或发送信息的其他设备。在一些实施例中,UE 200可以包括键盘、显示器、非易失性存储器端口、多个天线、图形处理器、应用处理器、扬声器以及其他移动设备元件中的一个或多个。显示器可以是包括触屏在内的LCD屏幕。

由UE 200使用的一个或多个天线201可以包括一个或多个定向或全向天线,包括例如偶极天线、单极天线、贴片天线、环形天线、微带天线或适合于传输RF信号的其它类型的天线。在一些实施例中,代替两个或更多个天线,可以使用具有多个孔径的单个天线。在这些实施例中,每个孔可以被认为是单独的天线。在一些多输入多输出(MIMO)实施例中,可以有效地分离天线以利用可能在每个天线以及发射站的天线之间产生的不同信道特性和空间分集。在一些MIMO实施例中,天线可被隔离达波长的十分之一或者更大距离。

尽管UE 200被示出为具有几个分开的功能元件,但这些功能元件中的一个或多个可以被组合,并且可以由软件配置的元件(例如,包括数字信号处理器(DSP)的处理元件)和/或其他硬件元件的组合来实现。例如,一些元件可以包括一个或多个微处理器、DSP、专用集成电路(ASIC)、射频集成电路(RFIC)、和用于执行至少本文所描述的功能的各种硬件与逻辑电路的组合。在一些实施例中,功能元件可以指在一个或多个处理元件上运行的一个或多个处理。

实施例可以在硬件、固件和软件中的一个或其组合中来实现。实施例还可以被实现为存储在计算机可读存储介质上的指令,该指令可以由至少一个处理器读取和运行,以执行本文所描述的操作。计算机可读存储介质可以包括用于存储机器(例如,计算机)可读形式的信息的任意非暂态机制。例如,计算机可读存储介质可以包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪存设备、和其他存储设备和介质。在这些实施例中,一个或多个处理器可以被配置有指令以执行本文所述的操作。

在一些实施例中,UE 200可以被配置为根据OFDMA通信技术,通过多载波通信信道接收OFDM通信信号。OFDM信号可以包括多个正交子载波。在一些宽带多载波实施例中,eNB可以是宽带无线接入(BWA)网络通信网络的一部分,例如全球微波接入互操作性(WiMAX)通信网络或第三代合作伙伴计划(3GPP)通用陆地无线接入网络(UTRAN)长期演进(LTE)或长期演进(LTE)通信网络,但是本发明的范围在此方面不受限制。在这些宽带多载波实施例中,UE 200和eNB可以被配置为根据正交频分多址(OFDMA)技术进行通信。

图3A和图3B根据一些实施例一般地示出了下行链路中用于机器型通信(MTC)区域(例如,304A和304B)的频分和时分位置的图示(例如,300A和300B)。图示300A和300B包括LTE或升级版LTE网络的控制区域302。在示例中,图示300A包括与控制区域302进行时分复用的MTC区域304A。如图示300A所示,控制区域302沿子帧轴出现在MTC区域304A之前。在示例中,图示300A包括对MTC区域进行频分。在示例中,MTC区域304A可以位于系统带宽内的一组连续的PRB(例如,六个或七个PRB)内。例如,MTC区域可以位于在系统带宽边缘处的一组集中(centered)的PRB(例如,六个或七个PRB)中等等。在另一示例中,MTC区域可以包括一组频率位置,并且可以使用下行链路或上行链路的系统带宽中的子载波索引来描述。用于MTC区域的上行链路频率位置可以不包括物理上行链路控制信道(PUCCH)区域或物理随机接入信道(PRACH)区域。例如,PUCCH或PRACH区域可用于LTE或升级版LTE通信并且对MTC而言可能不是必要的,或者可能干扰MTC并且可以不用于MTC。

在另一示例中,图示300B包括具有时隙内跳跃(intra-slot hopping)的MTC区域304B,应用时隙内跳跃来进一步利用频率分集。在图示300B中,控制区域302和MTC区域304B可以被时分复用,并且MTC区域304B还可以包括时隙内跳跃(例如,第一组频率或频带用于时隙0,以及第二组频率或频带用于时隙1)。在另一示例中,MTC区域可以使用子帧内跳跃。

图3A和3B的时分可以包括下行链路中的MTC区域的正交频分复用(OFDM)符号。图示300A和300B可以包括在下行链路或上行链路中的帧内的一组子帧,该组子帧用于MTC区域。在示例中,可以预定义下行链路中的MTC区域的起始符号。在另一示例中,起始符号可以被配置为在PDDCH区域之后的帧内的一个子帧(或全部子帧)。例如,PDCCH区域可以包括控制区域302,并且MTC区域可以在控制区域302结束之后开始。在另一示例中,如果一组集中的PRB(例如,六个或七个PRB)被分配用于MTC,则未被分配用于PBCH以及主同步信号和辅同步信号(PSS/SSS)传输的子帧可以用于下行链路和上行链路两者中的MTC区域。例如,MTC区域可以包括未用于PSS/SSS的子帧。

图4A和4B根据一些实施例一般地示出了上行链路中的MTC区域(例如,404A和404B)的频分和时分位置的图示(例如,400A和400B)。在图4A中,图示400A示出了位于系统带宽内的一组连续频率范围(例如,一组PRB(比如,六个或七个PRB))中的MTC区域404A。MTC区域404A可以不包括PUCCH区域402或PRACH区域406。在图示400A中,示例MTC区域404A被示为没有时隙内跳跃的子帧。在图4B的图示400B中,MTC区域404B包括时隙内跳跃以进一步利用频率分集。MTC区域还可以应用子帧内跳跃。在示例中,时隙内跳跃可以使用PUCCH型跳跃来实现最大频率分集。

在另一示例中,MTC区域的时间或频率位置对于上行链路、下行链路中的一者或两者可以是不同的。可以使用固定跳跃模式。固定跳跃模式可以从物理小区标识获得。在另一示例中,可以定义子帧索引。在上述示例中,可以使小区间干扰实现随机化。

在示例中,可以在MTC区域中调度使用LTE或升级版LTE类型通信的传输。在此示例中,eNB可以决定对于使用LTE或升级版LTE类型通信的UE和使用MTC的UE的资源分配。

在示例中,可以预定义MTC区域的配置。在另一示例中,可由较高层来配置MTC区域的配置。配置信息可以被预定。例如,一组集中的PRB(例如,六个或七个PRB)可以被分配用于下行链路或上行链路的MTC区域。在下行链路的示例中,MTC区域从除了子帧#0和#5之外的子帧内的第4个符号开始。在其他示例中,可以在主信息块(MIB)中指示MTC区域的时间和频率资源信息。具体地,包含MTC区域的配置的字段可以占用旧式MIB中的10个备用比特中的Y0比特。这可以有助于向后兼容。

在示例中,M-PBCH可以被分配在与旧式PBCH相同的资源(例如,相同子帧、OFDM符号、或PRB)中。此外,用于旧式PBCH传输的现有信道编码、速率匹配、调制、层映射或预编码可以再次用于M-PBCH的传输。

图5根据一些实施例一般地示出了时域中的MTC区域500中的信令。MTC区域中的信令可以有效地适应各种eNB协同情形,并且因为配置的数量有限,可以减少信令开销。用于MTC的UE可以在MTC机会(例如,502A或502N)内接收下行链路信号或数据,或者发送上行链路信号或数据。在示例中,子帧(例如,504A或504N)中可能没有数据,并且该子帧(例如,504A或504N)可以是空的。MTC机会(例如,502A或502N)可以起到定义用于下行链路或上行链路调度的潜在区域的作用。

MTC区域500的时间或频率资源信息可以经由PBCH或M-PBCH传递,并且可以包括频率位置(例如,在RB索引区域中)或时间位置(例如,OFDM符号索引、时隙索引、子帧索引或无线电帧索引)。在通过信号发送时间相关信息的特定示例中,配置可以包括MTC区域500的周期或子帧偏移。用于MTC用途的子帧(例如,504A或504N)可以例如在用于频分双工(FDD)、时分双工(TDD)或半双工FDD(HD-FDD)的连续子帧或非连续子帧中被重复。在另一示例中,子帧可以被定义在每个MTC机会(例如,502A或502N)内用于TDD或HD-FDD的连续可用下行链路子帧中。

对于下行链路子帧512的第一子帧,MTC机会(例如,502A或502N)可以满足:

其中nf是无线电帧编号,以及ns是时隙编号。在示例中,在无线电帧514中距离子帧0的MTC子帧偏移516可以被预定(例如,ΔMTC=0)以减少信令开销。在此示例中,信令可以被定义为:

表1

在上面的示例中,MTC周期508可以被选择为40ms的倍数(例如,传递旧式PBCH的相同MIB内容的时段)。上面的示例可以假设固定的(例如,预定的)NMTC。在示例中,NMTC可以等于5(例如,与SS周期类似)。在另一示例中,NMTC可以等于4以避开无线电帧514中的子帧0或子帧5(例如,用于SS/PBCH/SIB1/寻呼的子帧)。在另一示例中,NMTC可以等于10(例如,无线电帧长度)。在又一示例中,NMTC可以等于40(例如,与传递旧式PBCH的相同MIB内容的时段一致)。也可以使用其他NMTC值。

在具有有限的候选者的情形下,还可以通过信号发送MTC子帧偏移516。例如,ΔMTC可以是0或5。

表2

在示例中,可以通过信号来发送NMTC(如果ΔMTC=0),例如,NMTC可以是5或10。

表3

在示例中,可以针对被分配用于MTC区域500的子帧索引来定义位图。具体地,位图可以被定义在MTC机会内(例如,502A或502N)。例如,对于NMTC=4,位图“0011”可用于指示子帧#3和#4被分配用于MTC区域500。在另一示例中,可以与MTC机会(例如,502A或502N))和周期508一起配置一组有限的位图来减少信令开销。

在另一示例中,可以在MTC系统信息块(M-SIB)中广播MTC区域500的时间和频率资源信息。在该示例中,可以预定义M-SIB传输的资源信息(例如,时间和资源位置)或调制和编码方案(MCS)。在另一示例中,可以在MTC主信息块(M-MIB)中配置M-SIB传输的资源信息或MCS。在使用M-MIB传输的示例中,为了配置M-SIB,包含信息的字段可以占用旧式MIB的10个备用比特中的Y1比特以保证向后兼容性。在成功解码M-SIB之后,MTC UE可以确定MTC区域的时间和频率信息。

在另一示例中,对于上行链路和下行链路MTC区域的不同配置,可以使用独立或联合配置信令。在独立配置信令的示例中,与上面描述的相似的信令机制可被用于下行链路和上行链路MTC区域二者。在联合配置信令的示例中,配置信息的一部分(例如,MTC机会)可以用于上行链路和下行链路MTC区域两者。例如,如上所述,MTC机会可以用信号发送对应于MTC上行链路子帧的配置的差异位图来指示MTC下行链路或上行链路子帧,其中MTC上行链路子帧与MTC下行链路子帧不同。如果差异位图是空的,则该示例可以包括针对MTC下行链路和上行链路配置完全相同的子帧的选项。

在示例中,传输可能在MTC区域中产生干扰或冲突。当在MTC区域内发送下行链路物理信道时,针对物理信道传输的资源要素(RE)映射可被速率匹配(rate-match)在CRS或解调制参考信号(DM-RS)周围。CRS或DM-RS可取决于传输模式。在另一示例中,MTC区域可以包括PSS/SSS传输和物理信道传输之间的冲突。在该示例中,针对物理信道传输的RE映射可以被速率匹配在PSS/SSS传输周围。

MTC区域可能与信道状态信息(CSI)参考信号(CSI-RS)冲突。在示例中,针对MTC区域内的下行链路物理信道传输的资源要素(RE)映射可以被速率匹配在CSI-RS配置中使用的RE周围或在CSI-RS配置中使用的RE周围打孔。在另一示例中,在CSI-RS配置中使用的RE周围进行速率匹配或打孔可以按照上面针对MTC区域与PSS/SSS传输冲突的示例所述的映射规则来执行。在又一示例中,eNB可以避免CSI-RS传输和MTC区域中的传输之间的冲突。eNB可以被配置为避免冲突,并且UE可以假设未在MTC区域中发送CSI-RS。

在LTE或升级版LTE中,可以基于伪随机序列来生成CRS。用于生成伪随机序列的伪随机序列种子可以被定义为物理小区标识、循环前缀的指示、符号索引、或子帧索引的函数。在示例中,在MTC区域中可以再次使用现有的CRS。例如,在UE处可以知道频域信息(例如,MTC区域内的PRB索引)。通过使用信息和系统带宽可以确定伪随机序列,并在MTC区域内发送该伪随机序列。UE可以从MIB传输获知系统带宽。

在另一示例中,如果在UE设备处不知道LTE或升级版LTE系统内的MTC区域的频率位置,则UE设备可能无法确定伪随机序列,并可能无法执行信道估计。针对进行MTC的UE可以定义和指定新的MTC CRS(M-CRS)。子帧可以被分配用于MTC区域。CRS(非M-CRS)仅可在未分配给MTC区域的资源中被发送。例如,MTC区域可以被分配在多媒体广播单频网络(MBSFN)子帧中,这是因为在该子帧中可以不发送CRS。在该示例中,M-CRS模式可以再用现有的CRS传输或使用具有不同MTC随机种子的CRS模式。

伪随机序列种子可以被定义为MTC区域的指示的函数。例如:

cinit=f(IMTC)

其中IMTC是MTC区域的指示,并且对于M-CRS传输而言,IMTC=1。对于c为常数的特定示例,可以包括:

在另一示例中,CRS的资源映射模式可以适用于M-CRS传输。

在示例中,可以在PBCH传输或MTC PBCH(M-PBCH)传输中运载M-MIB。下面将关于图4-6来描述用于在MTC PBCH传输中包括M-MIB的若干选项。

图6根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输608的第一图示600。图示600包括旧式(例如,LTE或升级版LTE)PBCH传输子帧602和M-PBCH传输子帧604。

在图6中,M-PBCH传输608可以间歇地被发送。M-PBCH传输子帧604可以以时分复用的方式与旧式PBCH传输子帧602进行复用。例如,M-PBCH传输子帧604可以使用具有窄带部署的MTC系统,该MTC系统与旧式系统共存。在示例中,M-PBCH传输608的周期614可以是Nx40ms。在周期614内,M-PBCH传输608可以被发送M次并且具有Mx40ms的持续时间612。M-PBCH传输子帧604或旧式PBCH传输子帧602中的时隙606可以具有10ms的持续时间610。

在示例中,M-PBCH传输608可以在旧式PBCH位置中被发送。在另一示例中,N可以大于M,这可以降低对旧式LTE系统的影响。在其他示例中,eNB可以考虑和配置M-PBCH传输子帧604的各种周期等级(N)和持续时间(M)。在示例中,eNB可以根据MTC流量来动态地调整M和N值。eNB可以在对旧式UE的影响和MTC设备的接入延迟之间找到平衡。

图7根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输716的第二图示700。在图7中,M-PBCH传输716可以间歇性地被发送并且位于除了旧式PBCH传输位置708之外的位置。图7示出了在具有窄带部署的MTC系统与LTE系统共存的情况下的M-PBCH传输716。与上面针对图6所述的周期614类似,M-PBCH传输子帧704的周期714和持续时间712分别可以是Nx40ms和Mx40ms。在示例中,旧式PBCH传输608可以在M-PBCH传输子帧704的持续时间712期间被发送,以使得对旧式系统的影响最小化。在另一示例中,M和N值可以由eNB动态调整,并且可以取决于MTC流量。

在示例中,可以在除了子帧#0之外的子帧中发送M-PBCH传输716。例如,可以在子帧#5中发送M-PBCH传输716。为了简化规范工作和实施成本,M-PBCH传输716可以被分配在与旧式PBCH传输708相同的资源(例如,相同的OFDM符号或PRB)中。在另一示例中,旧式PBCH传输708的现有信道编码、速率匹配、调制、层映射、或预编码可以被再次用于M-PBCH传输716。

在另一示例中,可以像发送旧式PBCH传输708那样,在子帧#0中发送M-PBCH传输716,并且M-PBCH传输716可以被分配在不同的OFDM符号中。在该示例中,现有信道编码、调制和层映射、或预编码可以被再次用于M-PBCH传输716。在截尾卷积编码之后,可以执行速率匹配操作来填充可用的资源要素,不包括控制区域、CRS、PSS/SSS或PBCH符号(例如,不包括单独为MTC区域定义的资源要素)。在又一示例中,第一频率映射可适用于M-PBCH传输716来与旧式PBCH传输708对齐。在该示例中,M-PBCH传输716的起始符号可以被预定。例如,M-PBCH传输716可以从OFDM符号#4开始被发送。

图8根据一些实施例一般地示出了MTC物理广播信道(M-PBCH)传输816的第三图示800。在示例中,可以在所有子帧(例如,子帧804)中将M-PBCH传输816与旧式PBCH传输808一起发送。例如,M-PBCH传输816可以在不同于旧式PBCH传输808的位置中被发送。通过具有窄带部署的MTC系统进行的M-PBCH传输816可以与旧式系统共存。例如,上面针对图7所述的M-PBCH传输816方案可以适用于图8中所使用的配置。图示800可以以整体系统等级频谱效率为代价来减少MTC设备的接入延迟。

在示例中,对于图7和图8,M-PBCH传输(例如,716和816)可以在不同于旧式PBCH传输(例如,708和808)的子帧中被发送,并且针对其余符号的资源分配可以考虑若干选项。在示例中,PRB内的其余符号可以不被使用。在另一示例中,PRB内的其余符号可以被用于发送旧式物理下行链路共享信道(PDSCH)传输。如果旧式PDSCH是活跃的,则该示例可以包括对运载M-PBCH传输的四个相应的符号进行打孔。在又一示例中,PRB内的其余符号可以被用于发送特定于MTC的信道(例如,M-PDSCH)。

图9根据一些实施例一般地示出了MTC系统信息块(M-SIB)传输902的图示900。在诸如LTE或升级版LTE之类的旧式系统中,可以在PDSCH上发送系统信息块(SIB)。PDSCH可以由相应的包括系统信息无线电网络临时标识符(SI-RNTI)的PDCCH来指示。PDCCH可以指示用于系统信息传输的传输格式或PRB资源。在示例中,用于MTC的UE可以具有窄带限制,并且可能很难像旧式系统那样在MTC区域中调度SIB,不过在希望简单易用的环境中可能是可行的选择。在不使用SIB的相同格式和传输系统的情况下,M-SIB可以用于传达与SIB的信息类似的信息。在另一示例中,M-SIB可以包括来自现有SIB的信息,并具有额外的MTC信息。来自现有SIB的信息可以用来保障UE在使用MTC的同时能够接入网络。

在示例中,可以预定义M-SIB传输902的时域配置。在另一示例中,可以由较高层来配置M-SIB传输902。时域配置信息可以包括M-SIB传输902的子帧索引和周期908。

在上面的预定义M-SIB传输902的示例中,可以在MTC区域902内的帧906的子帧#n中发送M-SIB传输902。M-SIB传输902可以具有Xx10ms的周期908。在另一示例中,可以在MTC区域904内按照Xx10ms的周期908来发送多个M-SIB块(例如,B>1)。M-SIB可以使用自主的混合自动重传请求(ARQ)。对第一M-SIB传输902的重新传输可以用于改善解码性能(例如,与旧式系统的现有SIB-1传输类似)。在这种情形中,可以针对M-SIB传输902指定在Xx10ms内的多个M-SIB块之间的预定义的冗余版本(RV)模式。例如,如果B=4,则M-SIB传输902的RV模式可以被预定义为0、2、3、1。RV可以包括M-SIB传输902的增加的冗余增益。例如,在第一M-SIB传输中,RV可以被设置为0,在第二M-SIB传输中,RV可以被设置成2等等。

在另一示例中,时域配置可由较高层来配置,并可在M-MIB中被广播。为了有助于向后兼容性,包含时域配置的字段可以占用旧式MIB的10个备用比特中的Y2比特。

在示例中,可以在具有公共搜索空间(CSS)的EPDCCH或MTC PDCCH(M-PDCCH)中预定义或指示M-SIB传输902的频域信息。例如,M-SIB传输902的频域信息可以用分配给M-SIB传输902的MTC区域904(例如,1.4MHz带宽的6或7个PRB)内的子帧中的可用资源来预定义。尤其当考虑到MTC设备的窄带部署时,这可以显著地减少信令开销。

图10A和10B根据一些实施例一般地示出了下行链路中的MTC区域的图示(例如,1000A和1000B)。旧式PDCCH、PHICH和PCFICH可以通过整个系统带宽被发送。对于具有窄带宽的MTC设备来说,可能很难正确地接收和解码下行链路控制信道,因为MTC区域是整个系统带宽的频率的子集。为了解决这个问题,可以增加新的MTC下行链路控制信道。图10A示出了MTC区域中的MTC下行链路控制信道设计。在示例中,MTC下行链路控制信道或MTC控制区域1004A可以跨越MTC区域的前K个OFDM符号,而MTC数据信道1006A可以占据MTC区域中其余的OFDM符号。换句话说,MTC控制区域1004A可以与MTC数据信道1006A进行时分复用。MTC控制区域1004A和MTC数据信道1006A可以与旧式控制区域1002进行时分复用。在图示1000B中,MTC控制区域1004B和MTC数据信道1006B可以在MTC区域的频域中进行复用。MTC控制区域1004B和MTC数据信道1006B也可以与旧式控制区域1002进行时分复用。

在示例中,与旧式LTE或升级版LTE网络类似,可以在控制信道中考虑M-PCFICH。在简化示例中,LTE或升级版LTE网络中的现有PCFICH设计可以用于M-PCFICH设计(例如,信道编码、调制方案、层映射和预编码器、或资源映射)。具体地,16个M-PCFICH符号可以被分成4个符号四联体(quadruplet),并且每个符号四联体可以被分配到一个资源要素组中。

在另一示例中,被分配用于M-PDCCH的OFDM符号的数目或M-PDSCH传输的起始符号可以被预定义。在又一示例中,数目或起始符号可以由较高层配置。在第二示例中,控制信道设计可以不需要M-PCFICH。在示例中,发送M-PCFICH传输可以包括确定分配用于MTC物理下行链路控制信道(M-PDCCH)的OFDM符号的数目和MTC物理下行链路共享信道(M-PDSCH)传输的起始符号未被预定义。

在示例中,可以支持M-PHICH运载混合ARQ确认/否认(ACK/NACK),其中混合ARQ确认/否认可以指示eNB是否已经在PUSCH上正确地接收到传输。M-PHICH配置可以包括M-PHICH传输的持续时间。在另一示例中,可以预定义多个M-PHICH组。在又一示例中,可以由较高层来配置多个M-PHICH组。例如,配置信息可以在M-SIB中进行广播。M-PHICH配置可以遵循旧式LTE或升级版LTE网络中的现有PHICH配置。在使用旧式网络的示例中,MIB中的3比特PHICH配置可以被再次用于M-PHICH以节省开销。在另一示例中,M-PHICH配置可以在MIB中的10个备用比特中被指示,并且用于旧式LTE或升级版LTE系统中的PHICH和MTC系统中的M-PHICH的分开的配置可以通过信号来传送。

在另一示例中,旧式LTE或升级版LTE规范中现有的PHICH设计可以被再次用于M-PHICH设计(例如,信道编码、调制方案、层映射和预编码器、或资源映射)。在该示例中,一个M-PHICH组的12个符号可被分组成3个符号四联组,并且每个符号四联组可被分配给一个资源要素组。在另一示例中,MTC控制信道设计可以不包括(例如,不需要)M-PHICH。如果M-PHICH功能可以被M-PDCCH代替,则可以不包括M-PHICH。

在MTC控制区域设计的示例中,现有PDCCH设计可以被再次用于M-PDCCH设计。M-PDCCH设计可以包括旧式下行链路控制信息(DCI)格式、信道编码、调制、层映射和预编码、资源映射等等。在另一示例中,现有的用于公共搜索空间(CSS)和特定于UE的搜索空间(USS)的哈希表可以被再次用于M-PDCCH设计。在MTC控制区域设计的又一示例中,现有EPDCCH可以被再次用于M-PDCCH设计。

在MTC控制区域设计的示例中,MTC资源要素组(M-REG)可以被定义为类似于当前LTE或升级版LTE规范中的现有REG。MTC控制区域可能与PSS/SSS或CSI-RS传输冲突。在M-REG设计中,可以考虑更新的资源映射规则来处理冲突。例如,如果MTC控制区域与PSS/SSS冲突,则针对未被分配用于PSS/SSS传输的资源要素可以定义M-REG。如果MTC控制区域与CSI-RS传输冲突,则对用于CSI-RS配置的资源要素可以不定义M-REG。

图11根据一些实施例一般地示出了上行链路中的MTC区域的图示1100。在示例中,MTC PRACH(M-PRACH)1106、MTC PUSCH(M-PUSCH)1110、或MTC PUCCH(M-PUCCH)1108资源分配可以遵循现有LTE或升级版LTE类型的设计,例如,1.4MHz带宽。在示例中,为了最小化规范影响和实施成本,针对M-PRACH1106、M-PUCCH 1108或M-PUSCH 1110的物理层处理可以遵循LTE或升级版LTE系统的旧式PRACH1104、旧式PUCCH 1102或旧式PUSCH(未示出)的现有设计。

图12根据一些实施例一般地示出了呈现用于在授权频带上使用MTC用户设备(UE)的方法1200的流程图。在示例中,方法1200可以包括用于由演进型节点B(eNB)的电路执行来配置用户设备(UE)进行通信的方法1200。方法1200可以包括操作1202,在授权频带上从eNB广播物理下行链路控制信道(PDCCH)传输。方法1200可以包括操作1204,从eNB向UE发送与机器型通信(MTC)物理广播信道(PBCH)(M-PBCH)传输复用的PBCH传输,M-PBCH传输包括授权频带的MTC区域中的MTC主信息块(M-MIB),其中MTC区域包括授权频带的频率的子集。方法1200可以包括操作1206,在下行链路中的MTC区域上从eNB向UE发送第一数据传输。

图13根据一些实施例一般地示出了机器1300的框图的示例,在机器1300上可以执行本文所讨论的任意一种或多种技术(例如,方法)。在可替代的实施例中,机器1300可以作为独立设备操作或可以被连接(例如,联网)至其他机器进行操作。在联网部署中,机器1300可以在服务器客户端网络环境中作为服务器机器、客户端机器、或它们二者来运作。在示例中,机器1300可以在对等(P2P)(或其他分布式)网络环境中作为对等机器。机器1300可以是个人计算机(PC)、平板PC、机顶盒(STB)、个人数字助理(PDA)、移动电话、web设备、网络路由器、交换机或网桥、或能够(顺序地或以其他方式)执行指定将要由机器采取的行动的指令的任何机器。此外,虽然仅示出了单个机器,但术语“机器”也应当被理解为包括单独地或联合地执行一组(或多组)指令以执行本文所讨论的任意一种或多种方法的机器的任意集合,例如,云计算、软件即服务(SaaS)、或其他计算机集群配置。

本文所描述的示例可以包括逻辑、或多个组件、模块、或机构,或者可以在逻辑、或多个组件、模块、或机构上运作。模块是当操作时能够执行指定的操作的有形实体(例如,硬件)。模块包括硬件。在示例中,硬件可以以指定的方式被配置为执行具体操作(例如,硬连线的)。在示例中,硬件可以包括可配置的执行单元(例如,晶体管、电路等)以及包含指令的计算机可读介质,其中指令对执行单元进行配置以在运行时执行特定操作。配置可以在执行单元或加载机构的指导下发生。据此,当设备操作时,执行单元通信地耦合到计算机可读介质。在本示例中,执行单元可以是不止一个模块中的一员。例如,在操作中,执行单元可以由第一组指令配置来在一时间点实现第一模块,并且可以由第二组指令重配置来在第二时间点实现第二模块。

机器(例如,计算机系统)1300可以包括硬件处理器1302(例如,中央处理单元(CPU)、图形处理单元(GPU)、硬件处理器核心、或其任意组合)、主存储器1304和静态存储器1306,其中的一些或全部可以通过互连链路(例如,总线)1308互相通信。机器1300还可以包括显示单元1310、字母数字输入设备1312(例如,键盘)和用户界面(UI)导航设备1314(例如,鼠标)。在示例中,显示单元1310、字母数字输入设备1312和UI导航设备1314可以是触摸屏显示器。机器1300还可以包括存储设备(即,驱动单元)1316、信号生成设备1318(例如,扬声器)、网络接口设备1320、以及一个或多个传感器1321(例如,全球定位系统(GPS)传感器、罗盘、加速度计、或其他传感器)。机器1300可以包括输出控制器1328(例如,串行(例如,通用串行总线(USB))、并行、或其他有线或无线(例如,红外(IR)、近场通信(NFC)等)连接),以控制一个或多个外围设备(例如,打印机、读卡器等)或与之通信。

存储设备1316可以包括机器可读介质1322,在机器可读介质1322上存储了实施本文所描述的技术或功能中的任何一个或多个的(或由本文所描述的技术或功能中的任何一个或多个利用的)一组或多组数据结构或指令1324(例如,软件)。指令1324在由机器1300执行期间还可以完全地或至少部分地驻留在主存储器1304内、在静态存储器1306内、或者在硬件处理器1302内。在示例中,硬件处理器1302、主存储器1304、静态存储器1306、或存储设备1316中的一个或任意组合可以构成机器可读介质。

尽管机器可读介质1322被示出为单一介质,但术语“机器可读介质”可以包括被配置为存储一个或多个指令1324的单一介质或多个介质(例如,集中式数据库或分布式数据库、和/或相关联的缓存器和服务器)。

术语“机器可读介质”可以包括能够进行以下活动的任何介质:存储、编码或携带供机器1300执行的指令1324,并且这些指令使得机器1300执行本公开的任意一种或多种技术;或存储、编码或携带由这样的指令1324所使用的或与这样的指令1324相关联的数据结构。非限制性的机器可读介质示例可以包括固态存储器、以及光介质和磁介质。在示例中,大容量机器可读介质包括具有大量粒子的机器可读介质,这些粒子具有不变的(例如,静止的)质量。因此,大容量机器可读介质并非是暂时传播的信号。大容量机器可读介质的具体示例可以包括:诸如半导体存储器设备(例如,电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))和闪存设备之类的非易失性存储器;诸如内部硬盘和可移动盘之类的磁盘;磁光盘;以及CD-ROM盘和DVD-ROM盘。

指令1324还可以通过通信网络1326、使用传输介质、经由网络接口设备1320、利用多个传输协议(例如,帧中继、互联网协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)、超文本传输协议(HTTP)等)中的任一个被发送或接收。示例通信网络可以包括局域网(LAN)、广域网(WAN)、分组数据网络(例如,互联网)、移动电话网络(例如,蜂窝网络)、普通老式电话(POTS)网络、无线数据网络(例如,电气与电子工程师协会(IEEE)802.11标准族(称为)、IEEE 802.16标准族(称为))、IEEE 802.15.4标准族、和对等(P2P)网络及其他。在示例中,网络接口设备1320可以包括一个或多个物理插口(例如,以太网、同轴或电话插口)或一个或多个天线以连接到通信网络1326。在示例中,网络接口设备1320可以包括多个天线以使用单输入多输出(SIMO)、多输入多输出(MIMO)或多输入单输出(MISO)技术中的至少一个来进行无线通信。术语“传输介质”应当被认为包括能够存储、编码或携带供机器1300执行的指令的任何无形介质,并且包括数字通信信号或模拟通信信号或其他无形介质以促进这样的软件的通信。

各种注释和示例

以下非限制性示例中的每一个可单独存在,也可以以各种与一个或多个其他示例置换或组合的方式进行结合。

示例1包括由被配置为在授权频带上与用户设备(UE)进行通信的演进型节点B(eNB)体现的主题,eNB包括电路,该电路被配置为:在授权频带上发送物理下行链路控制信道(PDCCH)传输;向UE发送机器型通信(MTC)系统信息块(M-SIB),M-SIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及在下行链路中的MTC区域上向UE发送第一数据传输;以及在上行链路中的MTC区域上接收来自UE的第二数据传输。

在示例2中,示例1的主题可选择地包括,其中为了发送第一数据传输,电路被配置为发送与第三数据传输复用的第一数据传输。

在示例3中,示例1-2中的一者或任意组合的主题可选择地包括,其中第一数据传输和第三数据传输以时分方式进行复用。

在示例4中,示例1-3中的一者或任意组合的主题可选择地包括,其中第一数据传输和第三数据传输以频分方式进行复用。

在示例5中,示例1-4中的一者或任意组合的主题可选择地包括,其中为了接收第二数据传输,电路被配置为接收与第四数据传输复用的第二数据传输。

在示例6中,示例1-5中的一者或任意组合的主题可选择地包括,其中为了发送第一传输,电路被配置为使用时隙内跳跃来发送第一数据传输。

在示例7中,示例1-6中的一者或任意组合的主题可选择地包括,其中为了接收第二数据传输,电路被配置为接收以频分方式与物理上行链路控制信道(PUCCH)或物理随机接入信道(PRACH)上的传输复用的第二数据传输。

在示例8中,示例1-7中的一者或任意组合的主题可选择地包括,其中为了接收第二数据传输,电路还被配置为在时隙内跳频传输中接收第二数据传输。

在示例9中,示例1-8中的一者或任意组合的主题可选择地包括,其中时隙内跳频传输包括固定跳跃模式。

在示例10中,示例1-9中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于物理小区标识的信息。

在示例11中,示例1-10中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于子帧索引的信息。

在示例12中,示例1-11中的一者或任意组合的主题可选择地包括,其中MTC区域被预定义。

在示例13中,示例1-12中的一者或任意组合的主题可选择地包括,其中M-SIB包括用于UE的MTC区域的时间和频率资源信息。

在示例14中,示例1-13中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送针对上行链路MTC区域和下行链路MTC区域的独立信令配置。

在示例15中,示例1-14中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送针对上行链路MTC区域和下行链路MTC区域的联合信令配置。

在示例16中,示例1-15中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送主同步信号和辅同步信号(PSS/SSS)。

在示例17中,示例1-16中的一者或任意组合的主题可选择地包括,其中电路还被配置为将资源要素映射速率匹配至MTC区域内的PSS/SSS周围。

在示例18中,示例1-17中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送信道状态信息参考信号(CSI-RS)。

在示例19中,示例1-18中的一者或任意组合的主题可选择地包括,其中电路还被配置为将资源要素映射速率匹配至MTC区域内的CSI-RS周围。

在示例20中,示例1-19中的一者或任意组合的主题可选择地包括,其中电路还被配置为避免CSI-RS和MTC区域中的传输之间的冲突。

在示例21中,示例1-20中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送特定于小区的参考信号。

在示例22中,示例1-21中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号在MTC区域内的多媒体广播单频网络子帧中被发送。

在示例23中,示例1-22中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号包括使用MTC随机种子的资源映射模式。

在示例24中,示例1-23中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送MTC主信息块(M-MIB)。

在示例25中,示例1-24中的一者或任意组合的主题可选择地包括,其中为了发送M-MIB,电路还被配置为在MTC区域内的帧中的子帧中发送M-MIB。

在示例26中,示例1-25中的一者或任意组合的主题可选择地包括,其中M-MIB包括UE的时间和频率资源信息。

在示例27中,示例1-26中的一者或任意组合的主题可选择地包括,其中为了发送M-MIB,电路还被配置为使用MTC物理广播信道(M-PBCH)发送M-MIB。

在示例28中,示例1-27中的一者或任意组合的主题可选择地包括,其中电路还被配置为在子帧中发送MTC物理广播信道(M-PBCH)传输。

在示例29中,示例1-28中的一者或任意组合的主题可选择地包括,其中所述子帧包括未被用于主同步信号和辅同步信号(PSS/SSS)的子帧。

在示例30中,示例1-29中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送第二子帧,第二子帧包括不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例31中,示例1-30中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧和第二子帧之间进行时分复用,并且其中PBCH传输和M-PBCH传输被分配在同一资源中。

在示例32中,示例1-31中的一者或任意组合的主题可选择地包括,其中电路还被配置为在子帧中发送不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例33中,示例1-32中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧内进行时分复用。

在示例34中,示例1-33中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送MTC物理控制格式指示符信道(PCFICH)传输。

在示例35中,示例1-34中的一者或任意组合的主题可选择地包括,其中为了发送MTC PCFICH传输,电路还被配置为确定分配用于MTC物理下行链路控制信道(M-PDCCH)的正交频分复用(OFDM)符号的数目和MTC物理下行链路共享信道(M-PDSCH)传输的起始符号未被预定义。

在示例36中,示例1-35中的一者或任意组合的主题可选择地包括,其中电路还被配置为向UE发送物理混合自动重传请求(ARQ)指示符信道M-PHICH传输。

在示例37中,示例1-36中的一者或任意组合的主题可选择地包括,其中为了发送M-PHICH,电路还被配置为在系统信息块(SIB)或主信息块(MIB)中向UE发送配置信息。

在示例38中,示例1-37中的一者或任意组合的主题可选择地包括,其中为了发送M-PHICH,电路还被配置为确定MTC物理下行链路控制信道(M-PDCCH)并未代替M-PHICH功能。

在示例39中,示例1-38中的一者或任意组合的主题可选择地包括,其中电路还被配置为在MTC区域中向UE发送MTC物理下行链路控制信道(M-PDCCH)传输。

在示例40中,示例1-39中的一者或任意组合的主题可选择地包括,其中M-PDCCH包括现有的增强型物理下行链路控制信道(EPDCCH)。

在示例41中,示例1-40中的一者或任意组合的主题可选择地包括,其中电路还被配置为从UE接收MTC物理随机接入信道(M-PRACH)传输。

在示例42中,示例1-41中的一者或任意组合的主题可选择地包括,其中M-PRACH传输与MTC物理上行链路控制信道(M-PUCCH)传输和MTC物理上行链路共享信道(M-PUSCH)传输在MTC区域中进行时分复用。

在示例43中,示例1-42中的一者或任意组合的主题可选择地包括,其中M-PUCCH传输和M-PUSCH传输在MTC区域中进行频分复用。

示例44包括由被配置为在授权频带上与用户设备(UE)进行通信的演进型节点B(eNB)体现的主题,eNB包括电路,该电路被配置为:在授权频带上发送物理下行链路控制信道(PDCCH)传输;向UE发送机器型通信(MTC)主信息块(M-MIB),M-MIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及在下行链路中的MTC区域上向UE发送第一数据传输;以及在上行链路中的MTC区域上接收来自UE的第二数据传输。

在示例45中,示例44的主题可选择地包括,其中电路还被配置为向UE发送MTC系统信息块(M-SIB)。

在示例46中,示44-45中的一者或任意组合的主题可选择地包括,其中为了发送M-SIB,电路还被配置为在MTC区域内的帧中的子帧中发送M-SIB。

在示例47中,示44-46中的一者或任意组合的主题可选择地包括,其中M-SIB包括用于UE的时间和频率资源信息。

示例48包括由被配置为在无线频谱的机器型通信(MTC)MTC区域上操作的用户设备(UE)体现的主题,包括:收发器,被配置为:在授权频带上接收来自演进型节点B(eNB)的物理下行链路控制信道(PDCCH)传输;接收来自eNB的MTC系统信息块(M-SIB),M-SIB包括用于配置MTC区域的配置信息;以及在下行链路中的MTC区域上接收第一数据传输,其中MTC区域包括授权频带的频率的子集;以及在上行链路中的MTC区域上发送第二数据传输。

在示例49中,示例48的主题可选择地包括,其中为了接收第一数据传输,收发器被配置为接收与第三数据传输复用的第一数据传输。

在示例50中,示例48-49中的一者或任意组合的主题可选择地包括,其中第一数据传输和第三数据传输以时分方式进行复用。

在示例51中,示例48-50中的一者或任意组合的主题可选择地包括,其中第一数据传输和第三数据传输以频分方式进行复用。

在示例52中,示例48-51中的一者或任意组合的主题可选择地包括,其中为了发送第二数据传输,收发器被配置为发送与第四数据传输复用的第二数据传输。

在示例53中,示例48-52中的一者或任意组合的主题可选择地包括,其中为了接收第一数据传输,收发器被配置为使用时隙内跳跃来接收第一数据传输。

在示例54中,示例48-53中的一者或任意组合的主题可选择地包括,其中为了发送第二数据传输,收发器被配置为发送以频分方式与物理上行链路控制信道(PUCCH)或物理随机接入信道(PRACH)上的传输复用的第二数据传输。

在示例55中,示例48-54中的一者或任意组合的主题可选择地包括,其中为了发送第二数据传输,收发器还被配置为在时隙内跳频传输中发送第二数据传输。

在示例56中,示例48-55中的一者或任意组合的主题可选择地包括,其中时隙内跳频传输包括固定跳跃模式。

在示例57中,示例48-56中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于物理小区标识的信息。

在示例58中,示例48-57中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于子帧索引的信息。

在示例59中,示例48-58中的一者或任意组合的主题可选择地包括,其中MTC区域被预定义。

在示例60中,示例48-59中的一者或任意组合的主题可选择地包括,其中SIB包括用于UE的MTC区域的时间和频率资源信息。

在示例61中,示例48-60中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收针对上行链路MTC区域和下行链路MTC区域的独立信令配置。

在示例62中,示例48-61中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收针对上行链路MTC区域和下行链路MTC区域的联合信令配置。

在示例63中,示例48-62中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收主同步信号和辅同步信号(PSS/SSS)。

在示例64中,示例48-63中的一者或任意组合的主题可选择地包括,其中收发器还被配置为将资源要素映射速率匹配至MTC区域内的PSS/SSS周围。

在示例65中,示例48-64中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收信道状态信息参考信号(CSI-RS)。

在示例66中,示例48-65中的一者或任意组合的主题可选择地包括,其中收发器还被配置为将资源要素映射速率匹配至MTC区域的CSI-RS周围。

在示例67中,示例48-66中的一者或任意组合的主题可选择地包括,其中收发器还被配置为避免CSI-RS和MTC区域中的传输之间的冲突。

在示例68中,示例48-67中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收特定于小区的参考信号。

在示例69中,示例48-68中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号在MTC区域内的多媒体广播单频网络子帧中被接收。

在示例70中,示例48-69中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号包括使用MTC随机种子的资源映射模式。

在示例71中,示例48-70中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收MTC主信息块(M-MIB)。

在示例72中,示例48-71中的一者或任意组合的主题可选择地包括,其中为了接收M-MIB,收发器还被配置为在MTC区域内的帧中的子帧中接收M-MIB。

在示例73中,示例48-72中的一者或任意组合的主题可选择地包括,其中M-MIB包括UE的时间和频率资源信息。

在示例74中,示例48-73中的一者或任意组合的主题可选择地包括,其中为了接收M-MIB,收发器还被配置在MTC物理广播信道(M-PBCH)上接收M-MIB。

在示例75中,示例48-74中的一者或任意组合的主题可选择地包括,其中收发器还被配置为在子帧中接收MTC物理广播信道(M-PBCH)传输。

在示例76中,示例48-75中的一者或任意组合的主题可选择地包括,其中子帧包括未被用于主同步信号和辅同步信号(PSS/SSS)的子帧。

在示例77中,示例48-76中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从UE接收第二子帧,第二子帧包括不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例78中,示例48-77中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧和第二子帧之间进行时分复用,并且其中PBCH传输和M-PBCH传输被分配在同一资源中。

在示例79中,示例48-78中的一者或任意组合的主题可选择地包括,其中收发器还被配置为在子帧中接收不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例80中,示例48-79中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧内进行时分复用。

在示例81中,示例48-80中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收MTC物理控制格式指示符信道(PCFICH)传输。

在示例82中,示例48-81中的一者或任意组合的主题可选择地包括,其中为了接收MTC PCFICH传输,收发器还被配置为确定分配用于MTC物理下行链路控制信道(M-PDCCH)的正交频分复用(OFDM)符号的数目和MTC物理下行链路共享信道(M-PDSCH)传输的起始符号未被预定义。

在示例83中,示例48-82中的一者或任意组合的主题可选择地包括,其中收发器还被配置为从eNB接收物理混合自动重传请求(ARQ)指示符信道M-PHICH传输。

在示例84中,示例48-83中的一者或任意组合的主题可选择地包括,其中为了接收M-PHICH,收发器还被配置为在系统信息块(SIB)或主信息块(MIB)中接收来自eNB的配置信息。

在示例85中,示例48-84中的一者或任意组合的主题可选择地包括,其中为了接收M-PHICH,收发器还被配置为确定MTC物理下行链路控制信道(M-PDCCH)并未代替M-PHICH功能。

在示例86中,示例48-85中的一者或任意组合的主题可选择地包括,其中收发器还被配置为在MTC区域中接收来自eNB的MTC物理下行链路控制信道(M-PDCCH)传输。

在示例87中,示例48-86中的一者或任意组合的主题可选择地包括,其中M-PDCCH包括现有的增强型物理下行链路控制信道(EPDCCH)。

在示例88中,示例48-87中的一者或任意组合的主题可选择地包括,其中收发器还被配置为发送MTC物理随机接入信道(M-PRACH)传输。

在示例89中,示例48-88中的一者或任意组合的主题可选择地包括,其中M-PRACH传输与MTC物理上行链路控制信道(M-PUCCH)传输和MTC物理上行链路共享信道(M-PUSCH)传输在MTC区域中进行时分复用。

在示例90中,示例48-89中的一者或任意组合的主题可选择地包括,其中M-PUCCH传输和M-PUSCH传输在MTC区域中进行频分复用。

示例91包括由被配置为在无线频谱的机器型通信(MTC)MTC区域上操作的用户设备(UE)体现的主题,包括收发器,收发器被配置为:在授权频带上接收来自演进型节点B(eNB)的物理下行链路控制信道(PDCCH)传输;接收来自eNB的MTC主信息块(M-MIB),M-MIB包括用于配置MTC区域的配置信息;以及在下行链路中的MTC区域上接收第一数据传输,其中MTC区域包括授权频带的频率的子集;以及在上行链路中的MTC区域上发送第二数据传输。

在示例92中,示例91的主题可选择地包括,其中收发器还被配置为接收来自eNB的MTC系统信息块(M-SIB)。

在示例93中,示例91-92中的一者或任意组合的主题可选择地包括,其中为了接收M-SIB,收发器还被配置为在MTC区域内的帧中的子帧中接收M-SIB。

在示例94中,示例91-93中的一者或任意组合的主题可选择地包括,其中M-SIB包括UE的时间和频率资源信息。

示例95包括由演进型节点B(eNB)的电路执行的用于配置用户设备(UE)进行通信的方法所体现的主题,方法包括:在授权频带上从eNB广播物理下行链路控制信道(PDCCH)传输;从eNB向UE发送与机器型通信(MTC)物理广播信道(M-PBCH)传输复用的PBCH传输,M-PBCH传输包括MTC系统信息块(M-SIB),M-SIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及在下行链路中的MTC区域上从eNB向UE发送第一数据传输。

在示例96中,示例95的主题可选择地包括,其中方法还包括在上行链路的MTC区域上接收来自UE的第二数据传输。

在示例97中,示例95-96中的一者或任意组合的主题可选择地包括,其中接收第二数据传输包括接收以频分方式与物理上行链路控制信道(PUCCH)或物理随机接入信道(PRACH)进行复用的第二数据传输。

在示例98中,示例95-97中的一者或任意组合的主题可选择地包括,其中接收第二数据传输包括在时隙内跳频传输中接收第二数据传输。

在示例99中,示例95-98中的一者或任意组合的主题可选择地包括,其中还包括以时分方式复用第一数据传输和第三数据传输。

在示例100中,示例95-99中的一者或任意组合的主题可选择地包括,其中还包括以频分方式复用第一数据传输和第三数据传输。

在示例101中,示例95-100中的一者或任意组合的主题可选择地包括,其中发送第一数据传输包括使用时隙内跳跃发送第一数据传输。

在示例102中,示例95-101中的一者或任意组合的主题可选择地包括,其中时隙内跳频传输包括固定跳跃模式。

在示例103中,示例95-102中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于物理小区标识的信息。

在示例104中,示例95-103中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于子帧索引的信息。

在示例105中,示例95-104中的一者或任意组合的主题可选择地包括,其中MTC区域被预定义。

在示例106中,示例95-105中的一者或任意组合的主题可选择地包括,其中SIB包括用于UE的时间和频率资源信息。

在示例107中,示例95-106中的一者或任意组合的主题可选择地包括,其中还包括向UE发送针对上行链路MTC区域和下行链路MTC区域的独立信令配置。

在示例108中,示例95-107中的一者或任意组合的主题可选择地包括,其中还包括向UE发送针对上行链路MTC区域和下行链路MTC区域的联合信令配置。

在示例109中,示例95-108中的一者或任意组合的主题可选择地包括,其中还包括向UE发送主同步信号和辅同步信号(PSS/SSS)。

在示例110中,示例95-109中的一者或任意组合的主题可选择地包括,其中还包括将资源要素映射速率匹配至MTC区域内的PSS/SSS周围。

在示例111中,示例95-110中的一者或任意组合的主题可选择地包括,其中还包括向UE发送信道状态信息参考信号(CSI-RS)。

在示例112中,示例95-111中的一者或任意组合的主题可选择地包括,其中还包括将资源要素映射速率匹配至MTC区域的CSI-RS周围。

在示例113中,示例95-112中的一者或任意组合的主题可选择地包括,其中还包括避免CSI-RS和MTC区域中的传输之间的冲突。

在示例114中,示例95-113中的一者或任意组合的主题可选择地包括,其中还包括向UE发送特定于小区的参考信号。

在示例115中,示例95-114中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号在MTC区域内的多媒体广播单频网络子帧中被发送。

在示例116中,示例95-115中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号包括使用MTC随机种子的资源映射模式。

在示例117中,示例95-116中的一者或任意组合的主题可选择地包括,其中还包括向UE发送MTC主信息块(M-MIB)。

在示例118中,示例95-117中的一者或任意组合的主题可选择地包括,其中发送M-MIB包括在MTC区域内的帧中的子帧中发送M-MIB。

在示例119中,示例95-118中的一者或任意组合的主题可选择地包括,其中M-MIB包括UE的时间和频率资源信息。

在示例120中,示例95-119中的一者或任意组合的主题可选择地包括,其中发送M-MIB包括在MTC物理广播信道(M-PBCH)上发送M-MIB。

在示例121中,示例95-120中的一者或任意组合的主题可选择地包括,其中发送M-PBCH包括在子帧中发送M-PBCH。

在示例122中,示例95-121中的一者或任意组合的主题可选择地包括,其中子帧包括未被用于主同步信号和辅同步信号(PSS/SSS)的子帧。

在示例123中,示例95-122中的一者或任意组合的主题可选择地包括,其中还包括向UE发送第二子帧,第二子帧包括不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例124中,示例95-123中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧和第二子帧之间进行时分复用,并且其中PBCH传输和M-PBCH传输被分配在同一资源中。

在示例125中,示例95-124中的一者或任意组合的主题可选择地包括,其中还包括在子帧中发送不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例126中,示例95-125中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧内进行时分复用。

在示例127中,示例95-126中的一者或任意组合的主题可选择地包括,其中还包括向UE发送MTC物理控制格式指示符信道(PCFICH)传输。

在示例128中,示例95-127中的一者或任意组合的主题可选择地包括,其中发送MTC PCFICH传输包括确定分配用于MTC物理下行链路控制信道(M-PDCCH)的正交频分复用(OFDM)符号的数目和MTC物理下行链路共享信道(M-PDSCH)传输的起始符号未被预定义。

在示例129中,示例95-128中的一者或任意组合的主题可选择地包括,其中还包括向UE发送物理混合自动重传请求(ARQ)指示符信道M-PHICH传输。

在示例130中,示例95-129中的一者或任意组合的主题可选择地包括,其中发送M-PHICH包括在系统信息块(SIB)或主信息块(MIB)中向UE发送配置信息。

在示例131中,示例95-130中的一者或任意组合的主题可选择地包括,其中发送M-PHICH包括确定MTC物理下行链路控制信道(M-PDCCH)并未代替M-PHICH功能。

在示例132中,示例95-131中的一者或任意组合的主题可选择地包括,其中还包括在MTC区域中向UE发送MTC物理下行链路控制信道(M-PDCCH)传输。

在示例133中,示例95-132中的一者或任意组合的主题可选择地包括,其中M-PDCCH包括现有的增强型物理下行链路控制信道(EPDCCH)。

在示例134中,示例95-133中的一者或任意组合的主题可选择地包括,其中还包括从UE接收MTC物理随机接入信道(M-PRACH)传输。

在示例135中,示例95-134中的一者或任意组合的主题可选择地包括,其中M-PRACH传输与MTC物理上行链路控制信道(M-PUCCH)传输和MTC物理上行链路共享信道(M-PUSCH)传输在MTC区域中进行时分复用。

在示例136中,示例95-135中的一者或任意组合的主题可选择地包括,其中M-PUCCH传输和M-PUSCH传输在MTC区域中进行频分复用。

示例137包括一种设备,该设备包括用于执行权利要求95-136中任一项的方法的装置。

示例138包括至少一种包括用于操作计算机系统的指令的机器可读介质,指令在被机器执行时,使得机器执行权利要求95-136中任一项的方法。

示例139包括由用于配置用户设备(UE)进行通信的设备所体现的主题,该设备包括:用于在授权频带上从演进型节点B(eNB)广播物理下行链路控制信道(PDCCH)传输的装置;用于从eNB向UE发送与机器型通信(MTC)物理广播信道(M-PBCH)传输复用的PBCH传输的装置,M-PBCH传输包括MTC系统信息块(M-SIB),M-SIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及用于在下行链路中的MTC区域上从eNB向UE发送第一数据传输的装置。

示例140包括由至少一种包括用于操作计算系统的指令的机器可读介质体现的主题,指令在被机器执行时,使得机器进行以下操作:在授权频带上从演进型节点B(eNB)广播物理下行链路控制信道(PDCCH)传输;从eNB向UE发送与机器型通信(MTC)物理广播信道(M-PBCH)传输复用的PBCH传输,M-PBCH传输包括MTC系统信息块(M-SIB),M-SIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及在下行链路中的MTC区域上从eNB向UE发送第一数据传输。

示例141包括由用于将用户设备(UE)配置为在无线频谱的MTC区域上进行操作的方法所体现的主题,方法包括:于UE处在授权频带上接收来自演进型节点B(eNB)的物理下行链路控制信道(PDCCH)传输;于UE处在MTC区域上接收来自eNB的机器型通信(MTC)物理广播信道(M-PBCH)传输,包括MTC系统信息块(M-SIB);以及在上行链路中的MTC区域上从UE发送数据传输,其中MTC区域包括授权频带的频率的子集。

在示例142中,示例140的主题可选择地包括,其中发送数据传输包括发送与第二数据传输复用的数据传输。

在示例143中,示例141-142中的一者或任意组合的主题可选择地包括,其中数据传输和第二数据传输以时分方式进行复用。

在示例144中,示例141-143中的一者或任意组合的主题可选择地包括,其中数据传输和第二数据传输以频分方式进行复用。

在示例145中,示例141-144中的一者或任意组合的主题可选择地包括,其中发送数据传输包括使用时隙内跳跃来发送数据传输。

在示例146中,示例141-145中的一者或任意组合的主题可选择地包括,其中还包括在下行链路中的MTC区域上接收来自eNB的第三数据传输。

在示例147中,示例141-146中的一者或任意组合的主题可选择地包括,其中接收第三数据传输包括在时隙内跳频传输中接收第三数据传输。

在示例148中,示例141-147中的一者或任意组合的主题可选择地包括,其中时隙内跳频传输包括固定跳跃模式。

在示例149中,示例141-148中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于物理小区标识的信息。

在示例150中,示例141-149中的一者或任意组合的主题可选择地包括,其中固定跳跃模式包括关于子帧索引的信息。

在示例151中,示例141-150中的一者或任意组合的主题可选择地包括,其中MTC区域被预定义。

在示例152中,示例141-151中的一者或任意组合的主题可选择地包括,其中SIB包括用于UE的时间和频率资源信息。

在示例153中,示例141-152中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收针对上行链路MTC区域和下行链路MTC区域的独立信令配置。

在示例154中,示例141-153中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收针对上行链路MTC区域和下行链路MTC区域的联合信令配置。

在示例155中,示例141-154中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收主同步信号和辅同步信号(PSS/SSS)。

在示例156中,示例141-155中的一者或任意组合的主题可选择地包括,其中还包括将资源要素映射速率匹配至MTC区域内的PSS/SSS周围。

在示例157中,示例141-156中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收信道状态信息参考信号(CSI-RS)。

在示例158中,示例141-157中的一者或任意组合的主题可选择地包括,其中还包括将资源要素映射速率匹配至MTC区域的CSI-RS周围。

在示例159中,示例141-158中的一者或任意组合的主题可选择地包括,其中还包括避免CSI-RS和MTC区域中的传输之间的冲突。

在示例160中,示例141-159中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收特定于小区的参考信号。

在示例161中,示例141-160中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号在MTC区域内的多媒体广播单频网络子帧中被接收。

在示例162中,示例141-161中的一者或任意组合的主题可选择地包括,其中特定于小区的参考信号包括使用MTC随机种子的资源映射模式。

在示例163中,示例141-162中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收MTC主信息块(M-MIB)。

在示例164中,示例141-163中的一者或任意组合的主题可选择地包括,其中接收M-MIB包括在MTC区域内的帧中的子帧中接收M-MIB。

在示例165中,示例141-164中的一者或任意组合的主题可选择地包括,其中M-MIB包括UE的时间和频率资源信息。

在示例166中,示例141-165中的一者或任意组合的主题可选择地包括,其中接收M-MIB包括在MTC物理广播信道(M-PBCH)上接收M-MIB。

在示例167中,示例141-166中的一者或任意组合的主题可选择地包括,其中接收M-PBCH包括在子帧中接收M-PBCH。

在示例168中,示例141-167中的一者或任意组合的主题可选择地包括,其中子帧包括未被用于主同步信号和辅同步信号(PSS/SSS)的子帧。

在示例169中,示例141-168中的一者或任意组合的主题可选择地包括,其中还包括从UE接收第二子帧,第二子帧包括不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例170中,示例141-169中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧和第二子帧之间进行时分复用,并且其中PBCH传输和M-PBCH传输被分配在同一资源中。

在示例171中,示例141-170中的一者或任意组合的主题可选择地包括,其中还包括在子帧中接收不同于M-PBCH传输的物理广播信道(PBCH)传输。

在示例172中,示例141-171中的一者或任意组合的主题可选择地包括,其中PBCH传输和M-PBCH传输在子帧内进行时分复用。

在示例173中,示例141-172中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收MTC物理控制格式指示符信道(PCFICH)传输。

在示例174中,示例141-173中的一者或任意组合的主题可选择地包括,其中接收MTC PCFICH传输包括确定分配用于MTC物理下行链路控制信道(M-PDCCH)的正交频分复用(OFDM)符号的数目和MTC物理下行链路共享信道(M-PDSCH)传输的起始符号未被预定义。

在示例175中,示例141-174中的一者或任意组合的主题可选择地包括,其中还包括从eNB接收物理混合自动重传请求(ARQ)指示符信道M-PHICH传输。

在示例176中,示例141-175中的一者或任意组合的主题可选择地包括,其中接收M-PHICH包括在系统信息块(SIB)或主信息块(MIB)中接收来自eNB的配置信息。

在示例177中,示例141-176中的一者或任意组合的主题可选择地包括,其中接收M-PHICH包括确定MTC物理下行链路控制信道(M-PDCCH)并未代替M-PHICH功能。

在示例178中,示例141-177中的一者或任意组合的主题可选择地包括,其中还包括在MTC区域中接收来自eNB的MTC物理下行链路控制信道(M-PDCCH)传输。

在示例179中,示例141-178中的一者或任意组合的主题可选择地包括,其中M-PDCCH包括现有的增强型物理下行链路控制信道(EPDCCH)。

在示例180中,示例141-179中的一者或任意组合的主题可选择地包括,其中还包括发送MTC物理随机接入信道(M-PRACH)传输。

在示例181中,示例141-180中的一者或任意组合的主题可选择地包括,其中M-PRACH传输与MTC物理上行链路控制信道(M-PUCCH)传输和MTC物理上行链路共享信道(M-PUSCH)传输在MTC区域中进行时分复用。

在示例182中,示例141-181中的一者或任意组合的主题可选择地包括,其中M-PUCCH传输和M-PUSCH传输在MTC区域中进行频分复用。

示例183包括一种设备,该设备包括用于执行权利要求141-182中任一项的方法的装置。

示例184包括至少一种包括用于操作计算机系统的指令的机器可读介质,指令在被机器执行时,使得机器执行权利要求141-182中任一项的方法。

示例185包括由至少一种机器可读介质体现的主题,该至少一种机器可读介质包括用于操作计算系统的指令,指令在被机器执行时,使得机器执行以下操作:于UE处在授权频带上接收来自演进型节点B(eNB)的物理下行链路控制信道(PDCCH)传输;在UE处接收来自eNB的机器型通信(MTC)物理广播信道(M-PBCH)传输,包括MTC系统信息块(M-SIB),SIB包括用于配置授权频带的MTC区域的配置信息,其中MTC区域包括授权频带的频率的子集;以及在上行链路中的MTC区域上从UE发送数据传输。

在示例186中,示例185的主题可选择地包括,其中接收数据传输的操作包括使用时隙内跳跃来接收数据传输的操作。

以上详细描述包括对形成具体实施方式的一部分的附图的参考。附图通过说明示出了具体的实施例。这些实施例在本文中也被称为“示例”。这样的示例可以包括除了所示出或所描述的元素以外的元素。然而,本发明的发明人还考虑到了在其中仅提供了那些示出或描述的元素的示例。此外,无论是针对本文所示出或描述的特定示例(或它们的一个或多个方面)还是针对其他示例(或它们的一个或多个方面),本发明的发明人还考虑到了使用那些所示出或描述的元素(或者它们的一个或者多个方面)的任何组合或排列的示例。

如果本文件与通过引用并入本文的那些文件之间的使用不一致,则以本文件中的使用为准。

在本文件中,如在专利文件中常见的,词语“一”或“一个”被用来包括一个或不止一个,而独立于“至少一个”或“一个或多个”的任何其他实例或用法。在本文件中,除非另有说明,否则词语“或”用于指非排他性的或,从而使得“A或B”包括“A非B”、“B非A”以及“A与B”。在本文件中,词语“包括”和“其中”分别被用作词语“包含”和“在其中”的字面英语的等同用法。另外,在下面的权利要求中,词语“包括”和“包含”是开放式的,即,除了权利要求中在这类词语后面所列出的那些元素之外还包括其他元素的系统、设备、物品、合成物、构成或处理也被认为落入权利要求的范围之内。此外,在下面的权利要求中,词语“第一”、“第二”和“第三”等仅仅被用作标记,并非意图对它们的对象强加数值要求。

本文描述的方法示例可以是至少部分地机器或计算机实现的。一些示例可以包括被编码有指令的计算机可读存储介质或机器可读存储介质,指令可操作以将电子设备配置为执行如上述示例中所描述的方法。这样的方法的实现方式可以包括代码,诸如微代码、汇编语言代码、更高级语言代码等。这样的代码可以包括用于执行各种方法的计算机可读指令。代码可以形成计算机程序产品的部分。另外,在示例中,代码可以例如在执行期间或在其他时间有形地存储在一个或多个易失性、非暂时性或非易失性有形计算机可读介质上。这些有形计算机可读存储介质的示例可以包括但不限于硬盘、可移动磁盘、可移动光盘(例如,光盘和数字视频盘)、磁带盒、存储卡或棒、随机存取存储器(RAM)、只读存储器(ROM)等。

上面的描述意在是说明性的,而非限制性的。例如,上述示例(或者它们的一个或者多个方面)可以彼此组合来使用。例如,本领域的普通技术人员在查阅了上面的描述之后可以使用其他实施例。摘要被提供以符合37 C.F.R.中的1.72(b)节的规定,以允许读者快速地确定本技术公开的本质。它的递交将被理解为不被用来解释或限制权利要求的范围或含义。另外,在上面的具体实施方式中,各种特征可以被归并在一起以精简本公开。这不应该被解释为意味着所公开但未包含在权利要求中的特征对任何权利要求来说是必要的。相反,发明主题可包括比特定公开的实施例的所有特征少的特征。因此,所附权利要求被并入具体实施方式中作为示例或实施例,其中每项权利要求独立作为单独的实施例存在,并且可以想到的是,这样的实施例可以彼此进行组合成为各种组合或排列。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1