突发干扰感知的干扰管理的制作方法

文档序号:11162011阅读:457来源:国知局
突发干扰感知的干扰管理的制造方法与工艺

概括地说,本公开内容的方面涉及电信,具体地说,本公开内容的方面涉及干扰管理等等。



背景技术:

已广泛地部署无线通信系统,以便提供各种类型的通信内容,例如语音、数据等等。典型的无线通信系统是能通过共享可用的系统资源(例如,带宽、发射功率等),来支持与多个用户进行通信的多址系统。一种类型的这种多址系统通常称为“Wi-Fi”,其包括电气与电子工程师学会(IEEE)802.11无线协议系列的不同成员。通常,Wi-Fi通信系统可以同时支持多个无线站(STA)的通信。每一个STA经由下行链路和上行链路上的传输,与一个或多个接入点(AP)进行通信。下行链路(DL)指代从AP到STA的通信链路,上行链路(UL)指代从STA到AP的通信链路。

Wi-Fi中的各种协议和过程(例如,载波侦听多路访问(CSMA)),允许不同的STA在相同的信道上操作以共享相同的无线介质。但是,由于隐藏终端,例如,在相同的信道上,在相邻的基本服务集(BSS)中操作的Wi-Fi STA仍然可能彼此之间相互干扰。由于增加的分组丢失,这种干扰使无线链路的性能下降。可以将密集Wi-Fi部署中的分组丢失广义地分类成三种类型:由于信道衰落造成的分组丢失;由于长的数据分组传输(其通常是来自于其它共信道AP和/或STA的DL传输)而造成的分组冲突;以及由于短的突发(时间选择性)分组传输(其通常为来自其它共信道AP和/或STA的确认、管理、以及上层分组)造成的分组冲突。传统的速率控制算法没有被设计为处理突发干扰。

因此,仍然存在着根据干扰源和信道状况,对观测的分组差错/干扰的类型进行分类,并针对确定存在的分组差错/干扰的类型来采取适当的补救措施的需求。



技术实现要素:

公开了用于无线通信系统中的无线设备的干扰管理的系统和方法。

公开了一种用于无线通信系统中的无线设备的干扰管理的方法。例如,该方法可以包括:监测与无线通信系统的通信信道上的传输相关联的分组差错度量;修改与在该无线设备处处理的媒体访问控制(MAC)协议数据单元(MPDU)相关联的分组大小属性;基于响应于修改的分组大小属性的分组差错度量的改变,识别所述通信信道上的突发干扰状况;基于对突发干扰状况的识别,生成突发干扰指示符。

此外,还公开了一种用于无线通信系统中的无线设备的干扰管理的装置。例如,该装置可以包括处理器和耦合到该处理器的用于存储数据的存储器。例如,所述处理器可以被配置为:监测与无线通信系统的通信信道上的传输相关联的分组差错度量;修改与在该无线设备处处理的MPDU相关联的分组大小属性;基于响应于修改的分组大小属性的分组差错度量的改变,识别所述通信信道上的突发干扰状况;基于对突发干扰状况的识别,生成突发干扰指示符。

此外,还公开了另一种用于无线通信系统中的无线设备的干扰管理的装置。例如,该装置可以包括:监测单元,用于监测与无线通信系统的通信信道上的传输相关联的分组差错度量;修改单元,用于修改与在该无线设备处处理的MPDU相关联的分组大小属性;识别单元,用于基于响应于修改的分组大小属性的分组差错度量的改变,识别所述通信信道上的突发干扰状况;生成单元,用于基于对突发干扰状况的识别,生成突发干扰指示符。

此外,还公开了一种包括代码的非临时性计算机可读介质,其中,当所述代码被处理器执行时,致使所述处理器执行用于无线通信系统中的无线设备的干扰管理的操作。例如,所述计算机可读介质可以包括:用于监测与无线通信系统的通信信道上的传输相关联的分组差错度量的代码;用于修改与在该无线设备处处理的MPDU相关联的分组大小属性的代码;用于基于响应于修改的分组大小属性的分组差错度量的改变,识别所述通信信道上的突发干扰状况的代码;用于基于对突发干扰状况的识别,生成突发干扰指示符的代码。

此外,还公开了另一种用于无线通信系统中的无线设备的干扰管理的方法。例如,该方法可以包括:接收用于标识该无线通信系统的通信信道上的突发干扰状况的突发干扰指示符;基于该突发干扰指示符,对于与在该无线设备处处理的MPDU相关联的分组大小属性进行调整;根据调整的分组大小属性,在所述通信信道上发送一个或多个MPDU。

此外,还公开了另一种用于无线通信系统中的无线设备的干扰管理的装置。例如,该装置可以包括处理器和耦合到该处理器的用于存储数据的存储器。例如,所述处理器可以被配置为:接收用于标识该无线通信系统的通信信道上的突发干扰状况的突发干扰指示符;基于该突发干扰指示符,对于与在该无线设备处处理的MPDU相关联的分组大小属性进行调整;根据调整的分组大小属性,在所述通信信道上发送一个或多个MPDU。

此外,还公开了另一种用于无线通信系统中的无线设备的干扰管理的装置。例如,该装置可以包括:接收单元,用于接收标识该无线通信系统的通信信道上的突发干扰状况的突发干扰指示符;调整单元,用于基于该突发干扰指示符,对于与在该无线设备处处理的MPDU相关联的分组大小属性进行调整;发送单元,用于根据调整的分组大小属性,在所述通信信道上发送一个或多个MPDU。

此外,还公开了另一种包括代码的非临时性计算机可读介质,其中,当所述代码被处理器执行时,致使所述处理器执行用于无线通信系统中的无线设备的干扰管理的操作。例如,所述计算机可读介质可以包括:用于接收标识该无线通信系统的通信信道上的突发干扰状况的突发干扰指示符的代码;用于基于该突发干扰指示符,对于与在该无线设备处处理的MPDU相关联的分组大小属性进行调整的代码;用于根据调整的分组大小属性,在所述通信信道上发送一个或多个MPDU的代码。

附图说明

给出附图以帮助描述本公开内容的各个方面,提供附图只是用于描绘这些方面,而不是对其进行限制。

图1示出了一种示例性无线网络。

图2示出了无线网络中的节点可能经历的干扰的示例性类型。

图3示出了在示例性传输机会期间的突发干扰的影响。

图4是示出用于无线通信系统中的无线设备的示例性突发干扰感知的干扰管理模块的框图。

图5是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰检测方面的示例性设计方案的框图。

图6是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰控制方面的示例性设计方案的框图。

图7是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰控制方面的另一种示例性设计方案的框图。

图8是示出用于无线通信系统中的无线设备的干扰管理的示例性方法的流程图。

图9是示出用于无线通信系统中的无线设备的干扰管理的另一种示例性方法的流程图。

图10是可以在通信节点中使用的组件的一些示例性方面的简化框图。

图11是通信组件的一些示例性方面的简化框图。

图12和图13是配置为如本文所揭示地支持通信的装置的一些示例性方面的简化框图。

具体实施方式

在一些方面,本公开内容涉及用于无线通信系统中的无线设备的干扰管理。通过对分组大小的影响进行监测(例如,关于给定的通信信道上的分组差错),可以识别该通信信道上的突发干扰状况。例如,突发干扰状况可以是基于响应于分组大小的减小的分组差错的减少来识别的。响应于分组大小的减少而造成差错率的下降,被认为是突发干扰存在的特征,其中,可以对突发干扰的短时间性隔离到一个或者较小数量的分组,而不论其大小。因此,可以根据本文所公开的方面来检测突发干扰,以及基于分组大小调整来缓解突发干扰,以促进突发干扰感知的干扰管理。通过提供突发干扰感知的干扰管理,本公开内容实现更复杂的速率控制,以增加用户吞吐量和提升整体网络容量。

在针对于特定公开方面的下面描述和相关附图中,提供了本公开内容的方面。在不脱离本公开内容的保护范围的基础上,可以设计替代的方面。此外,为了避免造成更多相关细节的模糊,没有详细描述或者省略了本公开内容的一些公知方面。此外,本文围绕由例如计算设备的单元执行的动作序列,来描述大部分方面。应当认识到,本文描述的各种动作可以由特定的电路(例如,专用集成电路(ASIC))、由一个或多个处理器执行的程序指令或者二者的组合来执行。另外,本文所描述的这些动作序列可以视作为完全体现在任何形式的计算机可读存储介质中,其中计算机可读存储介质中存储有相应的计算机指令集,当这些计算机指令集执行时,致使相关联的处理器执行本文所描述的功能。因此,本公开内容的各个方面可以以多种不同的形式来体现,所有这些形式都预期落入本发明的保护范围之内。此外,对于本文所描述的每一个方面来说,本文可以将任何这些方面的相应形式描述成:例如,配置为执行所描述的动作的“逻辑电路”。

图1示出了一种示例性无线网络100。如图所示,通过一些无线节点来形成无线网络100(本文还称为基本服务集(BSS)),其中这些无线节点包括接入点(AP)110和多个用户站(STA)120。每一个无线节点通常能够进行接收和/或发送。无线网络100可以支持遍及某个地理区域所分布的任意数量的AP 110,以便为STA 120提供覆盖。为了简单起见,在图1中示出了一个AP 110,该AP 110提供STA 120之间的协调和控制,以及经由回程连接130来访问其它AP或其它网络(例如,互联网)。

AP 110通常是向位于其地理覆盖区域之内的STA 120提供回程服务的固定实体。但是,在一些应用中,AP 110可以是移动的(例如,服务成用于其它设备的无线热点的移动设备)。STA 120可以是固定的,也可以是移动的。STA 120的例子包括电话(例如,蜂窝电话)、膝上型计算机、桌面型计算机、个人数字助理(PDA)、数字音频播放器(例如,MP3播放器)、照相机、游戏控制台、显示设备或者任何其它适当的无线节点。无线网络100可以称为无线局域网(WLAN),其可以使用各种各样的广泛使用的网络协议,对附近的设备进行互连。通常,这些网络协议可以称为“Wi-Fi”,后者包括电气与电子工程师学会(IEEE)802.11无线协议系列的不同成员。

由于各种原因,在无线网络100中可能存在干扰,其导致不同程度的分组丢失和性能下降。但是,该干扰可能来自不同的来源,不同类型的干扰可能以不同的方式来影响无线网络100。下面将描述干扰的一些示例性类型。

图2示出了无线网络中的节点可能经历的干扰的一些示例性类型。在这些例子中的每一个里,AP 110和图1的无线网络100的STA 120中的一个参与下行链路通信会话,其中AP 110向STA 120发送一个或多个分组。

在第一示出的干扰场景中,AP 110和STA 120之间的通信链路由于环境变化(例如,多径传播效应或者遮蔽)而经历随时间变化的信号状况。通常,这种干扰场景称为信道衰落。

在第二示出的干扰场景中,STA 120在包括相邻AP 210和相邻STA 220的另一个BSS的附近操作。由于STA 120位于相邻AP 210的范围之内,因此STA 120也将接收到从相邻AP 210到相邻STA 220的共信道传输,从而使信道状况失真,并干扰AP 110和STA 120之间的通信链路。通常,这种干扰场景称为(长)分组冲突。

在第三示出的干扰场景中,STA 120再次在包括相邻AP 210和相邻STA 220的另一个BSS的附近操作。这里,STA120位于相邻AP 210的范围之外,但位于相邻STA 220的范围之内。由于STA 120位于相邻AP 220的范围之内,因此从相邻AP 220到相邻STA 210的任何传输,可能潜在地干扰AP 110和STA120之间的通信链路。(这也适用于从STA 120到AP 110的传输,其中该传输可能潜在地干扰相邻AP 210和相邻STA 220之间的通信链路,如图所示)。潜在干扰的通信的例子,不仅包括上行链路数据业务,而且还包括确认(ACK)消息、管理消息和各种其它上层信令。通常,这种干扰场景称为(短)突发干扰,其源自于“隐藏节点”或者“隐藏终端”问题。

图3示出了在示例性传输机会(TxOP)期间的突发干扰的影响。在该例子中,传输300包括媒体访问控制(MAC)协议数据单元(MPDU)的聚合,其包括第一MPDU(MPDU-1)302、第二MPDU(MPDU-2)304、第三MPDU(MPDU-3)306、以及第四MPDU(MPDU-4)308。MPDU是在MAC实体(例如,图1中所示出的无线网络100的AP 110和STA 120中的一个)之间交换的消息子帧。当MPDU大于从协议栈中的更高层接收的MAC服务数据单元(MSDU)时,作为分组聚合的结果,该MPDU可以包括多个MSDU。当MPDU小于MSDU时,作为分组分割的结果,每一个MSDU可以生成多个MPDU。

如图所示,第二MPDU(MPDU-2)304受到短突发的干扰,例如,如上面结合图2所讨论的来自于相邻节点的ACK消息。这些干扰突发造成第二MPDU(MPDU-2)304的解码失败,并且对第二MPDU(MPDU-2)304进行丢弃。

如上面在背景技术中所讨论的,传统的速率控制算法被设计用于处理信道衰落和分组冲突干扰场景,而不是处理诸如图3中所示出的突发干扰场景。事实上,向突发干扰应用传统的速率控制算法,反而实际上加剧了干扰的影响。例如,响应于丢弃的MPDU而降低传输速率(例如,经由更低的调制和编码方案)(其适应于分组冲突干扰场景),减少了在给定的TxOP期间发送的MPDU的数量,并且因此增加了短干扰突发的相对影响。通过提供突发干扰感知的干扰管理,本公开内容实现更复杂的速率控制,来增加用户吞吐量和提升整体网络容量。

图4是示出用于无线通信系统中的无线设备的示例性突发干扰感知的干扰管理模块的框图。部署有干扰管理模块410的无线设备400可以是Wi-Fi接入点,例如,诸如图1中的AP 110,但更普遍的是执行速率控制的任何实体。

如图所示,可以结合无线设备400的本地收发机系统功能450和主机系统功能460来部署干扰管理模块410。收发机系统450根据给定的通信协议(例如,Wi-Fi)来提供必要的无线通信功能,收发机系统450可以包括一付或多付天线、调制器、解调器、缓冲区、TX/RX处理器等等。在该示例性配置中,收发机系统450执行分组(例如,MPDU)处理和相关联的功能等等。主机系统460向无线设备400提供面向应用的服务,主机系统460可以包括处理器、相关联的存储器、用于各种各样的应用的软件、特殊用途模块等等。

此外,还可以结合操作在无线设备400处的速率控制算法470,来部署干扰管理模块410。无线设备使用速率控制算法,通过对系统性能进行优化来控制传输数据速率。例如,它们可以基于与不同速率相关联的吞吐量计算和丢弃概率来进行操作(例如,根据预定的仿真进行动态填充或者导出的表)。例如,如果当前吞吐量低于丢弃概率,则该速率控制算法可以增加传输数据速率。

更详细地转到干扰管理模块410,干扰管理模块410可以包括突发干扰检测器420和突发干扰控制器430。突发干扰检测器420被配置为识别通信信道上的突发干扰状况,如通过信道衰落干扰和分组冲突所区分的。响应于该识别,突发干扰控制器430被配置为采取补救措施来解决该突发干扰状况。可以根据不同的设计方案和应用,以不同的方式来实现突发干扰检测器420和突发干扰控制器430。下面提供一些示例。

应当理解的是,为了举例目的,单独地讨论了所公开的例子,可以根据需要,以不同的方式,对用于突发干扰检测器420和/或突发干扰控制器430的不同实现的不同方面,不仅与其它公开的方面进行组合,而且还可以与本公开内容的保护范围之外的其它方面进行组合。相反,应当理解的是,即使为了说明的目的而一致性地描述,也可以独立地使用突发干扰检测器420和/或突发干扰控制器430的不同实现的不同方面。

图5是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰检测方面的示例性设计方案的框图。在该例子中,突发干扰检测器420包括信道性能监测器522和分组大小调整器524。

信道性能监测器522被配置为监测与通信信道上的传输相关联的分组差错度量。该分组差错度量可以对应于分组差错率(PER)、分组丢失率(PLR)、或者与分组传输成功率有关的某种其它度量。可以根据期望,连续地、定期地、或者在事件驱动基础上,执行该监测操作。在一些设计方案中,信道性能监测器522可以经由关于信道业务的不同性能测量,直接执行该监测操作。但是,在其它设计方案中,信道性能监测器522可以针对分组差错信息,对速率控制算法470进行探测。作为其吞吐量计算的一部分,速率控制算法470处理各种分组传输统计(其包括PER或者类似的度量)。因此,为了获得当前的PER,例如,信道性能监测器522可以从速率控制算法470请求该PER。

分组大小调整器524被配置为修改该无线设备处(例如,由收发机系统450)处理的各个MPDU的大小。这可以经由与无线设备400处的MPDU相关联的分组大小属性(例如,针对每一个MPDU所规定的比特的数量、字节的数量或者某种其它长度值)来实现。可以根据期望,连续地、定期地、或者在事件驱动基础上,执行该修改操作。通过修改各个MPDU的大小,分组大小调整器524使速率控制算法470收集与不同的MPDU大小相关联的PER统计(或者有关的度量),信道性能监测器522随后可以获得这些统计。

基于观测的分组大小对于信道性能的影响,突发干扰检测器420可以识别通信信道上的突发干扰状况,并且将其与信道衰落干扰和分组冲突干扰区分开。例如,突发干扰检测器420可以响应于分组大小的减小,查看PER的下降,这种情形已经被认为是存在突发干扰的特征,其中在该情况下,可以对短干扰突发的相对影响隔离到更少的分组,并通过给定的TxOP中的分组的总数量的增加,使该影响成比例地更小。因此,当分组大小调整器524减小分组大小属性(例如,MPDU从1500字节减小到750字节),并且信道性能监测器522检测到PER的减小(例如,减小门限数量)时,突发干扰检测器420可以识别突发干扰状况。相反,当分组大小调整器524增加分组大小属性(例如,MPDU从750字节增加到1500字节),信道性能监测器522检测到PER的增加(例如,增加门限数量)时,突发干扰检测器420可以识别突发干扰状况。

响应于突发干扰检测器420在通信信道上识别出突发干扰状况,突发干扰控制器430可以生成突发干扰指示符,其中,在不同的设计方案和应用中,该突发干扰指示符可以采用不同的形式,例如,从用于标识突发干扰的存在性的标志,到更复杂控制信令的范围。

图6是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰控制方面的示例性设计方案的框图。在该例子中,突发干扰控制器430包括一个或多个突发干扰标志发生器,为了说明目的,示出了其中的两个,其包括速率标志发生器622和发射(TX)标志发生器624。

速率标志发生器622被配置为向速率控制算法470输出突发干扰指示符。这种类型的指示符允许速率控制算法470对信道衰落干扰和分组冲突干扰进行响应,而不会将它们与突发干扰进行混淆。例如,速率控制算法470可以维持当前选定的速率(例如,针对预定的持续时间),或者在一些情况下,响应于PER的突然增加(当该增加被识别成与突发干扰相对应时),增加当前选定的速率。即使当PER突然增加时,也维持当前所选定的速率,这样防止短干扰突发影响更大部分的分组(在处于更低的速率时就会影响更大部分的分组),并且防止吞吐量进一步下降。

TX标志发生器624被配置为向收发机系统450输出突发干扰指示符。这种类型的指示符允许收发机系统450在任何感知的突发干扰周围调度传输。例如,收发机系统450可以识别与该突发干扰相关联的干扰实体的相应占空比,并在其它时间调度数据传输。

图7是示出用于突发干扰感知的干扰管理模块的一个或多个突发干扰控制方面的另一种示例性设计方案的框图。在该例子中,突发干扰控制器430包括分组大小调整器722。

分组大小调整器722被配置为调整收发机系统450所处理的各个MPDU的大小(例如,经由与这些MPDU相关联的分组大小属性)。例如,通过响应于对突发干扰状况的识别而减小各个MPDU的大小(例如,MPDU从1500字节减小到750字节),分组大小调整器722能够增加给定的TxOP中的分组的总数量,并且将短干扰突发的相对影响隔离到更少的分组,从而维持或者甚至增加吞吐量。

图8是示出用于无线通信系统中的无线设备的干扰管理的示例性方法的流程图。该方法可以由接入点(例如,图1中所示出的AP 110)来执行,或者更一般地由执行速率控制的任何实体来执行。在该例子中,方法800包括:(例如,定期地)监测与无线通信系统的通信信道上的传输相关联的分组差错度量(方框810);并且修改与在该无线设备处处理的MPDU相关联的分组大小属性(方框820)。基于响应于修改的分组大小属性的分组差错度量的改变,可以识别所述通信信道上的突发干扰状况(方框830),并且可以基于该识别来生成突发干扰指示符(方框840)。

如上面所更详细讨论的,所述分组大小属性可以例如对应于针对每一个MPDU所规定的比特或者字节的数量。突发干扰状况可以是基于响应于分组大小属性的减小的分组差错度量的减小来识别的,或者相反地,突发干扰状况可以是基于响应于分组大小属性的增加的分组差错度量的增加来识别的。

可以以不同的方式来执行所述监测操作(方框810)。例如,所述监测操作可以包括:从操作在无线设备处的速率控制算法请求分组差错信息。举一个特定的例子,该监测操作可以包括:确定与第一分组大小相关联的第一传输的第一分组差错度量;确定与第二分组大小相关联的第二传输的第二分组差错度量,其中,第二分组大小与第一分组大小不同。在该例子中,所述识别操作(方框830)可以包括:将第一分组差错度量和第二分组差错度量之间的改变与第一分组大小和第二分组大小之间的改变进行相关;基于这些改变之间的正相关来识别突发干扰状况。

此外,还可以以不同的方式来执行所述生成操作(方框840)。例如,该生成操作可以包括:生成针对操作在无线设备处的速率控制算法的标志。再举一个例子,该生成操作可以包括:生成针对分组大小属性的调整;向收发机发送调整后的分组大小属性。针对分组大小属性的调整,可以增加至少一个传输机会中的MPDU的数量,从而减少突发干扰所影响的MPDU的相对数量。

图9是示出用于无线通信系统中的无线设备的干扰管理的另一种示例性方法的流程图。该方法可以由接入点(例如,图1中所示出的AP 110)来执行,或者更一般地由执行速率控制的任何实体来执行。在该例子中,方法900包括:接收用于标识该无线通信系统的通信信道上的突发干扰状况的突发干扰指示符(方框910);基于该突发干扰指示符,对于与在该无线设备处处理的MPDU相关联的分组大小属性进行调整(方框920)。在该调整之后,可以根据调整后的分组大小属性,在所述通信信道上发送一个或多个MPDU(方框930)。

如上面所更详细讨论的,所述分组大小属性可以例如对应于针对每一个MPDU所规定的比特或者字节的数量。例如,所述调整操作可以包括:响应于突发干扰状况,减小分组大小属性。所述减小操作可以用于增加至少一个传输机会中的MPDU的数量,从而减少突发干扰所影响的MPDU的相对数量。

图10示出了可以并入到装置1002、装置1004和装置1006(例如,分别对应于接入终端、接入点和网络实体)中,以支持如本文所揭示的干扰管理操作的一些示例性组件(通过相应的方框来表示)。应当理解的是,在不同的实现中,这些组件可以利用不同类型的装置来实现(例如,实现在ASIC中、实现在SoC中等等)。此外,所描述的组件还可以并入到通信系统中的其它装置中。例如,系统中的其它装置可以包括类似于所描述的那些的组件,以提供类似的功能。此外,给定的装置可以包含所描述的组件中的一个或多个。例如,装置可以包括使该装置能够经由不同的技术,在多个载波和/或通信上进行操作的多个收发机组件。

装置1002和装置1004均包括至少一个无线通信设备(通过通信设备1008和1014(如果装置1004是中继站的话,以及通信设备1020)来表示),以经由至少一种指定的无线接入技术来与其它节点进行通信。每一个通信设备1008包括:用于对信号(例如,消息、指示、信息等等)进行发送和编码的至少一个发射机(通过发射机1010来表示),以及用于对信号(例如,消息、指示、信息、导频等等)进行接收和解码的至少一个接收机(通过接收机1012来表示)。类似地,每一个通信设备1014包括:用于发送信号(例如,消息、指示、信息、导频等等)的至少一个发射机(通过发射机1016来表示),以及用于接收信号(例如,消息、指示、信息等等)的至少一个接收机(通过接收机1018来表示)。如果装置1004是中继接入点,则每一个通信设备1020可以包括:用于发送信号(例如,消息、指示、信息、导频等等)的至少一个发射机(通过发射机1022来表示),以及用于接收信号(例如,消息、指示、信息等等)的至少一个接收机(通过接收机1024来表示)。

在一些实现中,发射机和接收机可以包括集成设备(例如,体现成单一通信设备的发射机电路和接收机电路),在一些实现中,其可以包括单独的发射机设备和单独的接收机设备,或者在其它实现中,可以用其它方式来体现。在一些方面,装置1004的无线通信设备(例如,多个无线通信设备中的一个)包括网络监听模块。

装置1006(以及装置1004,如果其不是中继接入点的话)可以包括用于与其它节点进行通信的至少一个通信设备(通过通信设备1026和可选的1020来表示)。例如,通信设备1026可以包括网络接口,后者被配置为经由基于有线的回程或者无线回程,与一个或多个网络实体进行通信。在一些方面,通信设备1026可以实现成收发机,其中该收发机被配置为支持基于有线的信号通信或者无线信号通信。例如,该通信可以涉及发送和接收下面的信息:消息、参数或者其它类型的信息。因此,在图10的例子中,通信设备1026示出为包括发射机1028和接收机1030。类似地,如果装置1004不是中继接入点,则通信设备1020可以包括网络接口,后者被配置为经由基于有线的回程或者无线回程,与一个或多个网络实体进行通信。如同通信设备1026,通信设备1020示出为包括发射机1022和接收机1024。

此外,装置1002、1004和1006还包括其它组件,这些组件可以结合如本文所揭示的干扰管理操作来使用。例如,装置1002包括处理系统1032,以提供与接入点进行通信来支持如本文所揭示的干扰管理有关的功能,以及提供其它处理功能。装置1004包括处理系统1034,以提供例如与如本文所揭示的干扰管理有关的功能,以及提供其它处理功能。装置1006包括处理系统1036,以提供例如与如本文所揭示的干扰管理有关的功能,以及提供其它处理功能。装置1002、1004和1006分别包括存储器设备1038、1040和1042(例如,每一个包括存储器设备),以维持信息(例如,用于指示预留的资源、门限、参数等等的信息)。此外,装置1002、1004和1006分别包括用户接口设备1044、1046和1048,以向用户提供指示(例如,音频和/或视觉指示)和/或接收用户输入(例如,在用户激励诸如键盘、触摸屏、麦克风等等之类的感测设备时)。

为了方便起见,在图10中,将装置1002示出为包括可以用于本文所描述的各个例子的组件。在实现时,在不同的方面,所示出的这些方框可以具有不同的功能。

可以以多种方式来实现图10的组件。在一些实现中,图10的组件可以实现在一个或多个电路(例如,一个或多个处理器和/或一个或多个ASIC(其可以包括一个或多个处理器))中。这里,每一个电路可以使用和/或并入至少一个存储器组件,以存储由该电路使用的信息或可执行代码以便提供该功能。例如,方框1008、1032、1038和1044所表示的功能中的一些或者全部,可以由装置1002的处理器和存储器组件来实现(例如,通过执行适当的代码和/或通过处理器组件的适当配置)。类似地,方框1014、1020、1034、1040和1046所表示的功能中的一些或者全部,可以由装置1004的处理器和存储器组件来实现(例如,通过执行适当的代码和/或通过处理器组件的适当配置)。此外,方框1026、1036、1042和1048所表示的功能中的一些或者全部,可以由装置1006的处理器和存储器组件来实现(例如,通过执行适当的代码和/或通过处理器组件的适当配置)。

本文的揭示内容可以用于无线多址通信系统,后者可以同时支持多个无线接入终端的通信。这里,每一个终端可以通过前向链路和反向链路上的传输,与一个或多个接入点进行通信。前向链路(或下行链路)是指从接入点到终端的通信链路,反向链路(或上行链路)是指从终端到接入点的通信链路。可以经由单输入单输出系统、多输入多输出(MIMO)系统或者某种其它类型系统来建立这种通信链路。

MIMO系统使用多付(NT付)发射天线和多付(NR付)接收天线,来进行数据传输。由NT付发射天线和NR付接收天线形成的MIMO信道可以分解成NS个独立信道,其也可以称为空间信道,其中NS≤min{NT,NR}。NS个独立信道中的每一个信道对应一个维度。如果使用由多付发射天线和接收天线所生成的其它维度,则MIMO系统能够提供改善的性能(例如,更高的吞吐量和/或更高的可靠性)。

MIMO系统支持时分双工(TDD)和频分双工(FDD)。在TDD系统中,前向链路传输和反向链路传输使用相同的频域,使得互易性(reciprocity)原则能够从反向链路信道中估计前向链路信道。这使得当在接入点有多付天线可用时,该接入点能够在前向链路上获取发射波束成形增益。

图11更详细地示出了可以如本文所描述地进行适用的示例性通信系统1100的无线设备1110(例如,AP)和无线设备1150(例如,STA)的部件。在设备1110处,从数据源1112向发射(TX)数据处理器1114提供用于多个数据流的业务数据。随后,可以在相应的发射天线上发送各个数据流。

TX数据处理器1114基于为每一个数据流所选定的具体编码方案,对该数据流的业务数据进行格式化、编码和交织,以便提供编码的数据。可以使用OFDM技术将每一个数据流的编码后数据与导频数据进行复用。一般情况下,导频数据是以已知方式处理的已知数据模式,接收机系统可以使用导频数据来估计信道响应。随后,基于为每一个数据流所选定的特定调制方案(例如,BPSK、QPSK、M-PSK或M-QAM),对该数据流的复用后的导频和编码数据进行调制(即,符号映射),以便提供调制符号。可以通过处理器1130执行指令来确定每一个数据流的数据速率、编码和调制。数据存储器1132可以存储用于设备1110的处理器1130或其它部件使用的程序代码、数据和其它信息。

随后,可以向TX MIMO处理器1120提供所有数据流的调制符号,其中TX MIMO处理器1120可以进一步处理这些调制符号(例如,用于OFDM)。随后,TX MIMO处理器1120向NT个收发机(XCVR)1122A到1122T提供NT个调制符号流。在一些方面,TX MIMO处理器1120对于数据流的符号和用于发射该符号的天线应用波束成形权重。

每一个收发机1122接收和处理相应的符号流,以便提供一个或多个模拟信号,并进一步调节(例如,放大、滤波和上变频)这些模拟信号以便提供适合于在MIMO信道上传输的调制信号。随后,分别从NT付天线1124A到1124T发射来自收发机1122A到1122T的NT个调制的信号。

在设备1150处,由NR付天线1152A到1152R接收发射的调制信号,并将来自每一付天线1152的所接收信号提供给相应的收发机(XCVR)1154A到1154R。每一个收发机1154调节(例如,滤波、放大和下变频)各自接收的信号,数字化调节后的信号以便提供采样,并进一步处理这些采样以便提供相应的“接收的”符号流。

随后,接收(RX)数据处理器1160基于特定的接收机处理技术,从NR个收发机1154接收和处理NR个接收的符号流,以便提供NT个“检测的”符号流。随后,RX数据处理器1160解调、解交织和解码每一个检测的符号流,以便恢复出该数据流的业务数据。RX数据处理器1160所执行的处理过程与设备1110处的TX MIMO处理器1120和TX数据处理器1114所执行的处理过程是互补的。

处理器1170定期地确定要使用哪个预编码矩阵(下面讨论)。处理器1170形成包括矩阵索引部分和秩值部分的反向链路消息。数据存储器1172可以存储用于设备1150的处理器1170或其它部件所使用的程序代码、数据和其它信息。

反向链路消息可以包括关于通信链路和/或所接收的数据流的各种类型的信息。随后,反射链路消息由TX数据处理器1138进行处理,由调制器1180进行调制、由收发机1154A到1154R进行调节,并发送回设备1110,其中TX数据处理器1138还从数据源1136接收用于多个数据流的业务数据。

在设备1110处,来自设备1150的调制信号由天线1124进行接收,由收发机1122进行调节,由解调器(DEMOD)1140进行解调,并由RX数据处理器1142进行处理,以便提取由设备1150发送的反向链路消息。随后,处理器1130确定使用哪个预编码矩阵来确定波束成形权重,并随后处理所提取的消息。

应当理解的是,对于每一个设备1110和1150而言,所描述的部件中的两个或更多部件的功能可以由单一部件来提供。此外,还应当理解的是,图11中所示出以及上面所描述的各种通信部件还可以根据需要,被配置为执行如本文所揭示的干扰管理。例如,处理器1130/1170可以与存储器1132/1172和/或相应设备1110/1150的其它部件进行协作,以执行如本文所揭示的干扰管理。

图12示出了表示成一系列相互有关的功能模块的示例性(例如,接入点)装置1200。例如,至少在一些方面,监测模块1202可以对应于如本文所讨论的通信设备。例如,至少在一些方面,修改模块1204可以对应于如本文所讨论的处理系统。例如,至少在一些方面,识别模块1206可以对应于如本文所讨论的处理系统。例如,至少在一些方面,生成模块1208可以对应于如本文所讨论的处理系统。

图13示出了表示成一系列相互有关的功能模块的示例性(例如,接入点)装置1300。例如,至少在一些方面,接收模块1302可以对应于如本文所讨论的通信设备。例如,至少在一些方面,调整模块1304可以对应于如本文所讨论的处理系统。例如,至少在一些方面,发送模块1306可以对应于如本文所讨论的处理系统。

图12到图13的模块的功能可以使用与本文内容相一致的各种方式来实现。在一些方面,可以将这些模块的功能实现成一个或多个电组件。在一些方面,可以将这些方框的功能实现成包括一个或多个处理器组件的处理系统。在一些方面,可以使用例如一个或多个集成电路(例如,ASIC)的至少一部分来实现这些模块的功能。如本文所讨论的,集成电路可以包括处理器、软件、其它有关的部件或者其某种组合。因此,可以将不同的模块的功能实现成例如集成电路的不同子集,一组软件模块的不同子集,或者其组合。此外,应当理解的是,(例如,集成电路和/或一组软件模块的)给定子集可以提供用于一个以上模块的功能的至少一部分。

此外,还可以使用任何其它适当的单元,来实现图12到图13所表示的部件和功能,以及本文所描述的其它部件和功能。此外,还可以至少部分地使用如本文所揭示的相应结构来实现这些单元。例如,上面结合图12到图13的“功能性模块”组件所描述的部件,还可以对应于类似指定的功能性“单元”。因此,在一些方面,可以使用处理器组件、集成电路或者如本文所揭示的其它适当结构,来实现这些单元中的一个或多个。

在一些方面,装置或者装置的任何部件可以被配置为(或者可用于或适于)提供如本文所揭示的功能。例如,这可以通过下面方式来实现:对该装置或部件进行制造(例如,制作),使得其提供该功能;对该装置或部件进行编程,使得其提供该功能;或者通过使用某种其它适当的实现技术。举一个例子,可以对集成电路进行制造以提供所必需的功能。再举一个例子,可以对集成电路进行制造以支持所必需的功能,随后进行配置(例如,经由编程)以提供所必需的功能。再举一个例子,处理器电路可以执行代码以提供所必需的功能。

应当理解的是,对本文元素的任何引用使用诸如“第一”、“第二”等等之类的指定,其通常并不限制这些元素的数量或顺序。相反,在本文中将这些指定使用成区分两个或更多元素或者一个元素的实例的便利方法。因此,对于第一元素和第二元素的引用并不意味在此处仅使用两个元素,或者第一元素必须以某种方式排在第二元素之前。此外,除非另外说明,否则一组元素可以包括一个或多个元素。此外,在说明书或权利要求书中所使用的“A、B或C中的至少一个”或“A、B或C中的一个或多个”或“由A、B和C构成的组中的至少一个”形式的术语,意味着“A或B或C或者这些元素的任意组合”。例如,该术语可以包括A或B或C、或者A和B、或者A和C、或者A和B和C、或者2A、或者2B、或者2C等等。

本领域普通技术人员应当理解,信息和信号可以使用多种不同的技术和方法中的任意一种来表示。例如,在贯穿上面的描述中提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。

此外,本领域普通技术人员应当理解,结合本文所公开的方面描述的各种示例性的逻辑框、模块、电路和算法步骤可以实现成电子硬件、计算机软件或二者的组合。为了清楚地表示硬件和软件之间的这种可交换性,上面对各种示例性的部件、框、模块、电路和步骤均围绕其功能进行了总体描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开内容的保护范围。

结合本文所公开方面描述的方法、序列和/或算法,可直接体现为硬件、由处理器执行的软件模块或二者的组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域已知的任何其它形式的存储介质中。可以将一种示例性的存储介质连接至处理器,从而使该处理器能够从该存储介质读取信息,并且可向该存储介质写入信息。或者,存储介质也可以是处理器的组成部分。

因此,本公开内容的方面可以包括计算机可读介质,后者包含有用于无线通信系统中的无线设备的干扰管理的方法。因此,本公开内容并不限于所示出的例子。

虽然上述公开内容示出了示例性的方面,但应当注意的是,在不脱离如所附权利要求书规定的本公开内容的保护范围的基础上,可以对本文做出各种改变和修改。根据本文所描述的本公开内容的方面的方法权利要求的功能、步骤和/或动作,并不需要以任何特定的顺序来执行。此外,虽然用单数形式描述或主张了本发明的某些方面,但除非明确说明限于单数,否则复数形式是可以预期的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1