部分信道保留信号的误检测的制作方法

文档序号:13426509
部分信道保留信号的误检测的制作方法
部分信道保留信号的误检测相关申请的交叉引用本申请要求享受2014年12月15日提交的、标题为“MISDETECTIONOFFRACTIONALCHANNELRESERVINGSIGNALS”的美国临时专利申请No.62/091,700和2015年12月14日提交的、标题为“MISDETECTIONOFFRACTIONALCHANNELRESERVINGSIGNALS”的美国实用新型专利申请No.14/968,462的权益,故以引用方式将它们的全部内容明确地并入本文。技术领域概括地说,本公开内容的方面涉及无线通信系统,并且更具体地说,本公开内容的方面涉及在具有基于竞争的频谱共享(其包括非许可频谱)的系统中,部分信道保留信号的误检测。

背景技术:
广泛地部署了无线通信网络,以便提供各种通信服务,例如语音、视频、分组数据、消息、广播等等。这些无线网络可以是能通过共享可用的网络资源,来支持多个用户的多址网络。这样的网络(它们通常是多址网络)通过共享可用的网络资源,来支持用于多个用户的通信。这样的网络的一个示例是通用陆地无线接入网络(UTRAN)。UTRAN是规定成由第三代合作伙伴计划(3GPP)所支持的通用移动电信系统(UMTS)、第三代(3G)移动电话技术的一部分的无线接入网络(RAN)。多址网络格式的示例包括码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络和单载波FDMA(SC-FDMA)网络。无线通信网络可以包括可以支持多个用户设备(UE)的通信的多个基站或者节点B。UE可以经由下行链路和上行链路与基站进行通信。下行链路(或前向链路)是指从基站到UE的通信链路,上行链路(或反向链路)是指从UE到基站的通信链路。基站可以在下行链路上向UE发送数据和控制信息,和/或可以在上行链路上从UE接收数据和控制信息。在下行链路上,来自基站的传输可能遭遇由于来自邻居基站的传输或者来自其它无线射频(RF)发射机的传输所造成的干扰。在上行链路上,来自UE的传输可能遭遇来自与邻居基站进行通信的其它UE的上行链路传输或者来自其它无线RF发射机的干扰。这种干扰可以使下行链路和上行链路两者上的性能降级。随着移动宽带接入需求的持续增加,访问远距离无线通信网络的UE越多,在社区中部署的短距离无线系统越多,干扰和拥塞的网络的可能性就会增加。继续研究和开发以推进UMTS技术,不仅为了满足移动宽带接入的增长需求,而且还为了提高和增强移动通信的用户体验。

技术实现要素:
在本公开内容的一个方面中,一种无线通信的方法包括:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的扩展空闲信道评估(ECCA)检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号,其中,该部分信道保留信号是使用第一序列来生成的;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号,其中,该信道保留信号是使用与第一序列不同的第二序列来生成的。在本公开内容的额外方面中,一种无线通信的方法包括:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号。在本公开内容的额外方面中,一种无线通信的方法包括:由UE针对信道保留信号,对第一子帧进行监控;由UE针对信道保留信号,对后续子帧进行监控;以及当UE在后续子帧中检测到后续的信道保留信号时,由UE确定在第一子帧中检测到的第一信道保留信号是部分信道保留子帧。在本公开内容的额外方面中,一种无线通信的方法包括:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的数据。在本公开内容的额外方面中,一种无线通信的方法包括:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号;由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号;以及除了在该后续子帧上发送信道保留信号之外,还由发射机发送帧格式指示符信号。在本公开内容的额外方面中,一种无线通信的方法包括:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号;以及由发射机丢弃该发射机在当前子帧之后的后续子帧中接收的一个或多个信道状态信息报告中的每一个信道状态信息报告。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的单元,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号的单元,其中,该部分信道保留信号是使用第一序列来生成的;以及用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的单元,其中,该信道保留信号是使用与第一序列不同的第二序列来生成的。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的单元,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;以及用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的单元。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由UE针对信道保留信号,对第一子帧进行监控的单元;用于由UE针对信道保留信号,对后续子帧进行监控的单元;以及用于当UE在后续子帧中检测到后续的信道保留信号时,由UE确定在第一子帧中检测到的第一信道保留信号是部分信道保留子帧的单元。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的单元,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号的单元;以及用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的数据的单元。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的单元,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号的单元;用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的单元;以及用于除了在该后续子帧上发送信道保留信号之外,由发射机还发送帧格式指示符信号的单元。在本公开内容的额外方面中,一种配置用于无线通信的装置包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的单元,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号的单元;以及用于由发射机丢弃由该发射机在当前子帧之后的后续子帧中接收的一个或多个信道状态信息报告中的每一个信道状态信息报告的单元。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的代码,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号的代码,其中,该部分信道保留信号是使用第一序列来生成的;以及用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的代码,其中,该信道保留信号是使用与第一序列不同的第二序列来生成的。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的代码,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;以及用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的代码。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由UE针对信道保留信号,对第一子帧进行监控的代码;用于由UE针对信道保留信号,对后续子帧进行监控的代码;以及用于当UE在后续子帧中检测到后续的信道保留信号时,由UE确定在第一子帧中检测到的第一信道保留信号是部分信道保留子帧的代码。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的代码,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号的代码;用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的数据的代码。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的代码,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号的代码;用于由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号的代码;以及用于除了在该后续子帧上发送信道保留信号之外,由发射机还发送帧格式指示符信号的代码。在本公开内容的额外方面中,一种具有记录在其上的程序代码的计算机可读介质。该程序代码包括:用于由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查的代码,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;用于由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号的代码;用于由发射机丢弃该发射机在当前子帧之后的后续子帧中接收的一个或多个信道状态信息报告中的每一个信道状态信息报告的代码。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号,其中,该部分信道保留信号是使用第一序列来生成的;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号,其中,该信道保留信号是使用与第一序列不同的第二序列来生成的。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由UE针对信道保留信号,对第一子帧进行监控;由UE针对信道保留信号,对后续子帧进行监控;以及当UE在后续子帧中检测到后续的信道保留信号时,由UE确定在第一子帧中检测到的第一信道保留信号是部分信道保留子帧。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和该子帧边界之间,发送部分信道保留信号;以及由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的数据。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号;由发射机在所述至少一个载波上,发送在当前子帧之后的后续子帧处开始的信道保留信号;除了在该后续子帧上发送信道保留信号之外,由发射机还发送帧格式指示符信号。在本公开内容的额外方面中,一种装置包括至少一个处理器和耦合到所述处理器的存储器。所述处理器配置为:由发射机在利用基于竞争的射频频谱的至少一个载波上,检测成功的ECCA检查,其中,在当前子帧、时隙或符号的边界之前,发生该成功的ECCA检查;由发射机在所述至少一个载波上在该成功的ECCA检查和当前子帧的子帧边界之间,发送部分信道保留信号;由发射机丢弃该发射机在当前子帧之后的后续子帧中接收的一个或多个信道状态信息报告中的每一个信道状态信息报告。附图说明图1根据各个实施例,示出了用于示出一种无线通信系统的示例的图。图2A根据各个实施例,示出了用于说明在非许可频谱中使用LTE的部署场景的示例的图。图2B根据各个实施例,示出了用于示出在非许可频谱中使用LTE的部署场景的另一个示例的图。图3根据各个实施例,示出了用于示出当在经许可和非许可频谱中同时使用LTE时,载波聚合的示例的图。图4是概念性地示出根据本公开内容的一个方面所配置的基站/eNB和UE的设计方案的框图。图5是示出发送F-CUBS的发射机的框图。图6是示出包括F-CUBS传输的传输流的框图。图7-12是示出被执行以实现本公开内容的各个方面的示例性框的框图。具体实施方式下面结合附图描述的具体实施方式,仅仅旨在对各种配置进行描述,而不旨在限制本公开内容的保护范围。相反,出于提供对发明主题的透彻理解的目的,具体实施方式包括特定的细节。对于本领域普通技术人员来说将显而易见的是,并不是在每一种情况下都需要这些特定的细节,在一些实例中,为了清楚地呈现起见,公知的结构和部件以框图形式示出。迄今为止,运营商一直把WiFi看作是使用非许可频谱来缓解不断增长的蜂窝网络拥塞水平的主要机制。但是,包括非许可频谱的基于LTE/LTE-A的新载波类型(NCT)可以与电信级WiFi相兼容,使利用非许可频谱的LTE/LTE-A是WiFi的替代方案。利用非许可频谱的LTE/LTE-A可以利用LTE概念,并可以引入对于网络或网络设备的物理层(PHY)和媒体访问控制(MAC)方面的一些修改,以提供非许可频谱中的高效操作,以及满足监管要求。例如,非许可频谱的范围可以是从600兆赫兹(MHz)到6吉赫兹(GHz)。在一些场景中,利用非许可频谱的LTE/LTE-A可以明显地比WiFi执行得好。例如,与全部WiFi部署相比,利用非许可频谱部署的全部LTE/LTE-A(对应于单一或者多个运营商),或者当存在密集的小型小区部署时,利用非许可频谱的LTE/LTE-A可以明显地比WiFi执行得好。在其它场景下(例如,当利用非许可频谱的LTE/LTE-A与WiFi混合时(对应于单一或者多个运营商)),利用非许可频谱的LTE/LTE-A可以明显地比WiFi执行得好。对于单一服务提供商(SP)而言,利用非许可频谱的LTE/LTE-A网络可以被配置为与经许可频谱上的LTE网络进行同步。但是,利用由多个SP在给定的信道上部署的非许可频谱的LTE/LTE-A网络可以被配置为跨所述多个SP进行同步。一种合并上面二者特征的一种方法可以涉及:针对给定的SP,在不利用非许可频谱的LTE/LTE-A网络和利用非许可频谱的LTE/LTE-A网络之间使用恒定的时间偏移。利用非许可频谱的LTE/LTE-A网络可以根据SP的需要来提供单播和/或多播服务。此外,利用非许可频谱的LTE/LTE-A网络可以操作在自举模式下,其中在该模式下,LTE小区充当为锚点,并且向利用非许可频谱的LTE/LTE-A小区提供有关的小区信息(例如,无线帧定时、公共信道配置、系统帧号或者SFN等等)。在该模式下,在不利用非许可频谱的LTE/LTE-A和利用非许可频谱的LTE/LTE-A之间,可能存在紧密的互通。例如,自举模式可以支持上面所描述的补充下行链路和载波聚合模式。利用非许可频谱的LTE/LTE-A网络的PHY-MAC层可以操作在独立模式下,其中在该模式下,利用非许可频谱的LTE/LTE-A网络独立于不利用非许可频谱的LTE网络进行操作。在该情况下,基于例如与并置的利用/不利用非许可频谱的LTE/LTE-A小区的RLC层级聚合,或者跨多个小区和/或基站的多流,在不利用非许可频谱的LTE和利用非许可频谱的LTE/LTE-A之间,可能存在松散的互通。本文描述的这些技术并不限于LTE,并且还可以用于各种无线通信系统,比如CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其它系统。术语“系统”和“网络”经常可以交换使用。CDMA系统可以实现诸如CDMA2000、通用陆地无线接入(UTRA)等等之类的无线技术。CDMA2000覆盖IS-2000、IS-95和IS-856标准。IS-2000版本0和A通常称为CDMA20001X、1X等等。IS-856(TIA-856)通常称为CDMA2000、1xEV-DO、高速分组数据(HRPD)等等。UTRA包括宽带CDMA(WCDMA)和CDMA的其它变型。TDMA系统可以实现诸如全球移动通信系统(GSM)之类的无线技术。OFDMA系统可以实现诸如超移动宽带(UMB)、演进的UTRA(E-UTRA)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、闪速OFDM等等之类的无线技术。UTRA和E-UTRA是通用移动通信系统(UMTS)的一部分。LTE和改进的LTE(LTE-A)是UMTS的采用E-UTRA的新版本。在来自名为“第三代合作伙伴计划”(3GPP)的组织的文档中,描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在来自名为“第三代合作伙伴计划2”(3GPP2)的组织的文档中描述了CDMA2000和UMB。本文所描述的技术可以用于上面所提及的系统和无线技术,以及其它系统和无线技术。但是,为了举例说明起见,下面的具体实施方式描述LTE系统,在下面的大多描述中使用LTE术语,尽管这些技术也可适用于LTE应用之外。因此,下文的描述提供了一些示例,但其并非限制权利要求书所阐述的保护范围、适用性或配置。在不脱离本公开内容的精神和保护范围的基础上,可以对所讨论的要素的功能和布置进行改变。各个实施例可以根据需要,省略、替代或者增加各种过程或部件。例如,可以按照与所描述的不同的顺序来执行描述的方法,并且可以对各个步骤进行增加、省略或者组合。此外,关于某些实施例所描述的特征可以组合到其它实施例中。首先参见图1,该图示出了一种无线通信系统或网络100的示例。系统100包括基站(或小区)105、通信设备115和核心网130。基站105可以在基站控制器(没有示出)的控制之下,与通信设备115进行通信,其中在各个实施例中,基站控制器可以是核心网130或者基站105的一部分。基站105可以通过回程链路132,与核心网130传输控制信息和/或用户数据。在实施例中,基站105可以彼此之间直接地或者间接地,通过回程链路134进行通信,其中回程链路134可以是有线通信链路,也可以是无线通信链路。系统100可以支持多个载波(不同频率的波形信号)上的操作。多载波发射机可以在所述多个载波上,同时地发送调制的信号。例如,每一个通信链路125可以是根据上面所描述的各种无线技术进行调制的多载波信号。每一个调制的信号可以在不同的载波上进行发送,并且可以携带控制信息(例如,参考信号、控制信道等等)、开销信息、数据等等。基站105可以经由一付或多付基站天线,与设备115进行无线地通信。基站105站点中的每一个基站105站点可以为各自的地理区域110提供通信覆盖。在一些实施例中,基站105可以称为基站收发机、无线基站、接入点、无线收发机、基本服务集(BSS)、扩展服务集(ESS)、节点B、演进节点B(eNB)、家庭节点B、家庭eNodeB或者某种其它适当的术语。可以将基站的覆盖区域110划分成只构成该覆盖区域的一部分的扇区(没有示出)。系统100可以包括不同类型的基站105(例如,宏基站、微基站和/或微微基站)。可以存在针对不同的技术重叠的覆盖区域110。在一些实施例中,系统100是支持一个或多个非许可频谱操作模式或者部署场景的LTE/LTE-A网络。在其它实施例中,系统100可以支持使用非许可频谱和与利用非许可频谱的LTE/LTE-A不同的接入技术,或者使用经许可频谱和与LTE/LTE-A不同的接入技术,来进行无线通信。通常可以使用术语演进节点B(eNB)和用户设备(UE)来分别描述基站105和设备115。系统100可以是利用或者不利用非许可频谱的异构的LTE/LTE-A网络,其中在该网络中,不同类型的eNB提供各种地理区域的覆盖。例如,每一个eNB105可以为宏小区、微微小区、毫微微小区和/或其它类型的小区提供通信覆盖。诸如微微小区、毫微微小区和/或其它类型的小区的小型小区,可以包括低功率节点或者LPN。宏小区通常覆盖相对较大的地理区域(例如,半径几个公里),并且可以允许由与网络提供商具有服务订阅的UE不受限制地接入。微微小区通常将覆盖相对较小的地理区域,并且可以允许与网络提供商具有服务订阅的UE不受限制地接入。此外,毫微微小区通常也可以覆盖相对小的地理区域(例如,家庭),并且,除了不受限制的接入之外,还可以提供由与该毫微微小区具有关联的UE(例如,封闭用户群(CSG)中的UE、用于家庭中的用户的UE等等)进行的受限制的接入。用于宏小区的eNB可以称为宏eNB。用于微微小区的eNB可以称为微微eNB。用于毫微微小区的eNB可以称为毫微微eNB或家庭eNB。eNB可以支持一个或多个(例如,两个、三个、四个等等)小区。核心网130可以经由回程链路132(例如,S1等等),与eNB105进行通信。此外,eNB105还可以经由回程链路134(例如,X2等等)和/或经由回程链路132(例如,通过核心网130),来彼此之间进行直接地或者间接地通信。系统100可以支持同步或异步操作。对于同步操作而言,eNB可以具有类似的帧和/或门控时序,并且来自不同eNB的传输可以在时间上近似地对齐。对于异步操作而言,eNB可以具有不同的帧和/或门控时序,并且来自不同eNB的传输可以在时间上不对齐。本文所描述的技术可以用于同步操作,也可以用于异步操作。UE115分散于系统100中,并且每一个UE可以是静止的,也可以是移动的。UE115还可以由本领域普通技术人员称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端、移动终端、无线终端、远程终端、手持装置、用户代理、移动客户端、客户端或者某种其它适当的术语。UE115可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、平板计算机、膝上型计算机、无绳电话、无线本地环路(WLL)站等等。UE可以能够与宏eNB、微微eNB、毫微微eNB、中继器等等进行通信。系统100中所示出的通信链路125可以包括:从移动设备115到基站105的上行链路(UL)传输,和/或从基站105到移动设备115的下行链路(DL)传输。下行链路传输还可以称为前向链路传输,而上行链路传输还可以称为反向链路传输。可以使用经许可频谱(例如,LTE)、非许可频谱(例如,利用非许可频谱的LTE/LTE-A)或者二者(利用/不利用非许可频谱的LTE/LTE-A)来进行下行链路传输。类似地,可以使用经许可频谱(例如,LTE)、非许可频谱(例如,利用非许可频谱的LTE/LTE-A)或者二者(利用/不利用非许可频谱的LTE/LTE-A)来进行上行链路传输。在系统100的一些实施例中,可以支持针对利用非许可频谱的LTE/LTE-A的各种部署场景,其包括:补充下行链路(SDL)模式,在该模式下,可以将经许可频谱中的LTE下行链路容量卸载到非许可频谱上;载波聚合模式,在该模式下,可以将LTE下行链路容量和上行链路容量两者从经许可频谱卸载到非许可频谱;以及独立模式,在该模式下,基站(例如,eNB)和UE之间的LTE下行链路和上行链路通信可以发生在非许可频谱中。基站105以及UE115可以支持这些或者类似的操作模式中的一种或多种。在用于非许可频谱中的LTE下行链路传输的通信链路125中,可以使用OFDMA通信信号,而在用于非许可频谱中的LTE上行链路传输的通信链路125中,可以使用SC-FDMA通信信号。关于在诸如系统100之类的系统中,利用非许可频谱的LTE/LTE-A部署场景或者操作模式的实现的额外细节,以及与利用非许可频谱的LTE/LTE-A的操作有关的其它特征和功能,在下文中参照图2A-12来提供。接着转到图2A,图200示出了支持利用非许可频谱的LTE/LTE-A的LTE网络的补充下行链路模式和载波聚合模式的示例。图200可以是图1的系统100的一部分的示例。此外,基站105-a可以是图1的基站105的示例,而UE115-a可以是图1的UE115的示例。在图200中的补充下行链路模式的示例中,基站105-a可以使用下行链路205向UE115-a发送OFDMA通信信号。下行链路205与非许可频谱中的频率F1相关联。基站105-a可以使用双向链路210向相同的UE115-a发送OFDMA通信信号,并且可以使用双向链路210从该UE115-a接收SC-FDMA通信信号。双向链路210与经许可频谱中的频率F4相关联。非许可频谱中的下行链路205和经许可频谱中的双向链路210可以同时地操作。下行链路205可以为基站105-a提供下行链路容量卸载。在一些实施例中,下行链路205可以用于单播服务(例如,寻址到一个UE)或者用于多播服务(例如,寻址到几个UE)。可能伴随使用经许可频谱并需要缓解业务和/或信令拥塞中的一些业务和/或信令拥塞的任何服务提供商(例如,传统的移动网络运营商或MNO)发生这种场景。在图200中的载波聚合模式的一个示例中,基站105-a可以使用双向链路215向UE115-a发送OFDMA通信信号,并且可以使用双向链路215从相同的UE115-a接收SC-FDMA通信信号。双向链路215与非许可频谱中的频率F1相关联。基站105-a还可以使用双向链路220向相同的UE115-a发送OFDMA通信信号,并且可以使用双向链路220从相同的UE115-a接收SC-FDMA通信信号。双向链路220与经许可频谱中的频率F2相关联。双向链路215可以为基站105-a提供下行链路和上行链路容量卸载。类似于上面所描述的补充下行链路,可能伴随使用经许可频谱并需要缓解业务和/或信令拥塞中的一些业务和/或信令拥塞的任何服务提供商(例如,MNO)发生这种场景。在图200中的载波聚合模式的另一个示例中,基站105-a可以使用双向链路225向UE115-a发送OFDMA通信信号,并且可以使用双向链路225从相同的UE115-a接收SC-FDMA通信信号。双向链路225与非许可频谱中的频率F3相关联。基站105-a还可以使用双向链路230向相同的UE115-a发送OFDMA通信信号,并且可以使用双向链路230从相同的UE115-a接收SC-FDMA通信信号。双向链路230与经许可频谱中的频率F2相关联。双向链路225可以为基站105-a提供下行链路和上行链路容量卸载。该示例和上面所提供的那些示例,只是出于说明目的给出的,并且可能存在其它类似的操作模式或部署场景,这些操作模式或部署场景对利用或不利用非许可频谱的LTE/LTE-A进行组合,以实现容量卸载。如上所述,从使用利用非许可频谱的LTE/LTE-A而提供的容量卸载获益的典型服务提供商,是利用LTE频谱的传统MNO。对于这些服务提供商来说,一种操作配置可以包括自举模式(例如,补充下行链路、载波聚合),该自举模式在经许可频谱上使用LTE主分量载波(PCC),并且在非许可频谱上使用LTE辅助分量载波(SCC)。在补充下行链路模式中,针对于利用非许可频谱的LTE/LTE-A的控制可以在LTE上行链路(例如,双向链路210的上行链路部分)上进行传输。提供下行链路容量卸载的原因之一,是由于数据需求主要是下行链路消耗所驱动的。此外,在该模式下,由于UE不是在非许可频谱中发送信号,因此可能不存在监管影响。不需要在UE上实现先听后讲(LBT)或载波监听多路访问(CSMA)的要求。但是,可以例如通过使用定期的(例如,每10毫秒)空闲信道评估(CCA)和/或与无线帧边界对齐的抓取和释放机制,在基站(例如,eNB)上实现LBT。在载波聚合模式中,可以在LTE(例如,双向链路210、220和230)中传输数据和控制,而可以在利用非许可频谱的LTE/LTE-A(例如,双向链路215和225)中传输数据。在使用利用非许可频谱的LTE/LTE-A时所支持的载波聚合机制,可以落入跨分量载波的具有不同的对称性的混合频分双工-时分双工(FDD-TDD)载波聚合或者TDD-FDD载波聚合之中。图2B示出了图200-a,该图200-a描绘了用于利用非许可频谱的LTE/LTE-A的独立模式的示例。图200-a可以是图1的系统100的一部分的示例。此外,基站105-b可以是图1中的基站105和图2A中的基站105-a的示例,而UE115-b可以是图1中的UE115和图2A中的UE115-a的示例。在图200-a中的独立模式的该示例中,基站105-b可以使用双向链路240向UE115-b发送OFDMA通信信号,并且可以使用双向链路240从UE115-b接收SC-FDMA通信信号。双向链路240与上面参照图2A所描述的非许可频谱中的频率F3相关联。在诸如场馆内接入(例如,单播、多播)之类的非传统的无线接入场景中可以使用独立模式。用于这种操作模式的典型服务提供商,可以是体育场所有者、有线电视公司、活动主办方、旅馆、企业和不具有经许可频谱的大型公司。对于这些服务提供商而言,用于独立模式的操作配置可以在非许可频谱上使用PCC。此外,可以在基站和UE两者上实现LBT。接着转到图3,图300根据各种实施例,描绘了当在经许可频谱和非许可频谱中同时地使用LTE时载波聚合的示例。图300中的载波聚合方案可以对应于上面参照图2A所描述的混合FDD-TDD载波聚合。可以在图1的系统100的至少一部分中使用这种类型的载波聚合。此外,这种类型的载波聚合可以分别在图1和图2A的基站105和105-a中使用,和/或分别在图1和图2A的UE115和UE115-a中使用。在该示例中,可以在下行链路中,结合LTE来执行FDD(FDD-LTE),结合利用非许可频谱的LTE/LTE-A来执行第一TDD(TDD1),结合利用经许可频谱的LTE来执行第二TDD(TDD2),并且可以在利用经许可频谱的上行链路中结合LTE来执行另一个FDD(FDD-LTE)。TDD1导致6:4的DL:UL比率,而TDD2的比率是7:3。在时间尺度上,不同的有效DL:UL比率是3:1、1:3、2:2、3:1、2:2和3:1。给出该示例只是用于说明目的,并且可以存在用于对利用或不利用非许可频谱的LTE/LTE-A的操作进行组合的其它载波聚合方案。图4示出了基站/eNB105和UE115的设计方案的框图,其中基站/eNB105和UE115可以是图1中的基站/eNB中的一个基站/eNB和图1中的UE中的一个UE。eNB105可以装备有天线434a到434t,并且UE115可以装备有天线452a到452r。在eNB105处,发射处理器420可以从数据源412接收数据,并且从控制器/处理器440接收控制信息。该控制信息可以是用于物理广播信道(PBCH)、物理控制格式指示符信道(PCFICH)、物理混合自动重传请求指示符信道(PHICH)、物理下行链路控制信道(PDCCH)等等。数据可以是用于物理下行链路共享信道(PDSCH)等等。发射处理器420可以对数据和控制信息进行处理(例如,编码和符号映射),以分别获得数据符号和控制符号。此外,发射处理器420还可以生成参考符号,例如,用于主同步信号(PSS)、辅助同步信号(SSS)和特定于小区的参考信号。发射(TX)多输入多输出(MIMO)处理器430可以对数据符号、控制符号和/或参考符号(如果适用的话)执行空间处理(例如,预编码),并向调制器(MOD)432a到432t提供输出符号流。每一个调制器432可以处理各自的输出符号流(例如,用于OFDM等),以获得输出采样流。每一个调制器432可以进一步处理(例如,转换成模拟信号、放大、滤波和上变频)输出采样流,以获得下行链路信号。来自调制器432a到432t的下行链路信号可以分别经由天线434a到434t进行发射。在UE115处,天线452a到452r可以从eNB105接收下行链路信号,并分别将接收的信号提供给解调器(DEMOD)454a到454r。每一个解调器454可以调节(例如,滤波、放大、下变频和数字化)各自接收的信号,以获得输入采样。每一个解调器454还可以进一步处理这些输入采样(例如,用于OFDM等),以获得接收的符号。MIMO检测器456可以从所有解调器454a到454r获得接收的符号,对接收的符号执行MIMO检测(如果适用的话),并提供检测的符号。接收处理器458可以处理(例如,解调、解交织和解码)检测到的符号,向数据宿460提供针对UE115的解码后数据,并且向控制器/处理器480提供解码后的控制信息。在上行链路上,在UE115处,发射处理器464可以从数据源462接收(例如,用于物理上行链路共享信道(PUSCH)的)数据,从控制器/处理器480接收(例如,用于物理上行链路控制信道(PUCCH)的)控制信息,并对该数据和控制信息进行处理。此外,发射处理器464还可以生成用于参考信号的参考符号。来自发射处理器464的符号可以由TXMIMO处理器466进行预编码(如果适用的话),由解调器454a到454r进行进一步处理(例如,用于SC-FDM等等),并发送回eNB105。在eNB105处,来自UE115的上行链路信号可以由天线434进行接收,由调制器432进行处理,由MIMO检测器436进行检测(如果适用的话),并且由接收处理器438进行进一步处理,以获得UE115发送的解码后的数据和控制信息。处理器438可以向数据宿439提供解码后的数据,并且向控制器/处理器440提供解码后的控制信息。控制器/处理器440和480可以分别指导eNB105和UE115的操作。eNB105处的控制器/处理器440和/或其它处理器和模块,可以执行或指导用于实现本文所描述的技术的各种处理的执行。UE115处的控制器/处理器480和/或其它处理器和模块,也可以执行或指导图7-12中所示出的功能模块的执行、和/或用于实现本文所描述技术的其它处理。存储器442和482可以分别存储用于eNB105和UE115的数据和程序代码。调度器444可以调度UE在下行链路和/或上行链路上进行数据传输。如先前所阐述的,随着使用经许可射频谱带的蜂窝网络中的数据业务的增加,将至少一些数据业务卸载到基于竞争的射频谱带(其包括非许可频带),可以向蜂窝运营商(例如,公众陆地移动网(PLMN)的运营商和/或规定诸如LTE/LTE-A网络之类的蜂窝网络的基站协作集)提供增强的数据传输容量的机会。在获得基于竞争的频谱频带的接入,并在其上进行通信之前,在一些示例中,发射装置可以执行LBT过程来获得基于竞争的射频谱带的接入。如上所述,这种LBT过程可以包括:执行CCA过程来确定非许可射频谱带的信道是否可用。在另外的示例中,可以执行包括多个CCA过程的扩展CCA(ECCA)过程。当确定信道是可用的时,发射装置可以通过包括该可用信道的载波进行通信。此外,发射装置还可以广播CUBS,以向其它UE和/或基站指示该可用信道的使用。ECCA过程并不一定要与底层通信时序同步。因此,发射机可能无法精确地在子帧、时隙或符号边界处,检测到成功的ECCA。当在特定子帧、时隙或者符号的中间,检测到成功的ECCA时,发射机可以立即地在该子帧、时隙或符号的中间,开始发送信道保留信号(例如,CUBS),以便保留该信道。这种部分的CUBS可以称为部分的CUBS(F-CUBS)。但是,当发送F-CUBS时,发射机使用与用于接着的子帧、时隙或符号中所发送的常规CUBS的信令序列相同的信令序列来用于F-CUBS。由于这种信号的重用,可能存在不可忽略的接收机检测F-CUBS并将其解码为常规CUBS的概率,这可能在接收机处造成非期望的行为。例如,接收机将F-CUBS不正确地识别成CUBS,将期望后续的子帧、时隙或者符号包含数据传输。此外,对于UE接收机而言,UE可以尝试对F-CUBS子帧、时隙或符号中的增强型帧格式指示符进行解码。该帧格式指示符可以在增强型帧格式指示符信道(EFFICH)中用信号发送,或者其可以在任何其它下行链路层1信道中用信号发送。该增强型帧格式指示符是帧配置指示符,其包括接着的帧中的上行链路和下行链路子帧配置的标识。因此,UE接收机可能不正确地确定整个传输帧的上行链路/下行链路配置。图5是示出发送F-CUBS503的发射机500的框图。发射机500参与传输流50上的通信。活动状态图51示出了发射机500何时打开和关闭。在ECCA过程期间,发射机500是关闭的。但是,在时间501处,将ECCA检测为成功的,并且发射机500开始发送F-CUBS503。时间501落在传输流50的子帧502之内,其在子帧502的中间。因此,子帧502包括静音或者置空(nulling)时段504(此时,发射机500关闭并执行ECCA)和活动时段(此时,发射机500开启并发送F-CUBS503)。例如,发射机500可以在子帧502的剩余67μs,发送F-CUBS503。因此,发射机500利用子帧503上的67μs来发送F-CUBS503,并且在子帧505上发送完整的14个符号CUBS。接收机在发射机500实际发送F-CUBS503的子帧502中,将具有非常高的检测到CUBS的概率。根据F-CUBS503的持续时间,UE接收机可以对增强型帧格式指示符进行正确地或者错误地解码。应当注意的是,发射机500可以是准备下行链路数据传输的基站或者接入点的类型,也可以是准备上行链路数据传输的UE。在这种基于竞争的系统中,发射实体将在保留任何特定的基于竞争的载波来用于其自己的传输之前,首先确定该载波是否空闲。图6是示出包括F-CUBS传输的传输流600的框图。基站60和UE61参与传输流600上的通信。在下行链路传输中,基站60执行ECCA过程,并且在子帧9的时间602处,检测到成功的ECCA。在ECCA置空时段601期间,基站60的发射机将关闭。随后,基站60将开始在时间602处发送F-CUBS来保留该信道,直到子帧9和子帧0之间的子帧边界603为止。在子帧0处,基站60将开始发送CUBS。在所示出的示例中,基站60在子帧0上发送常规CUBS。但是,UE61可能不正确地确定在时间602和子帧边界603之间发送的F-CUBS是常规CUBS,并且因此,期望增强型公共参考信号(eCRS)和数据将在子帧0上进行发送。关于eCRS的传输的虚警将影响从UE61到基站60的CQI报告。关于PDCCH传输的虚警还将影响UE61处的PDSCH检测和解码性能。此外,如先前所提及的,关于增强型帧格式指示符的解码错误将影响下行链路性能和上行链路性能两者。例如,如果UE61认为后续的子帧是上行链路子帧,但事实上其被调度成下行链路子帧,则该上行链路传输可能造成对于被调度的下行链路传输的干扰,或者妨碍基站60具有成功的CCA或者ECCA来用于该下行链路传输。此外,当UE61不正确地解码EFFICH时,下行链路传输还可能以类似的方式,对于上行链路传输造成干扰。表1表示在不同的置空时段上,F-CUBS信号的误检测的图。置空时段(例如,置空时段504(图5)和ECCA置空时段601(图6)是在其中发射机将关闭并执行ECCA过程的子帧的一部分。根据表1的图表,即使只有10%的CUBS能量(该子帧的90%处于置空时段),也可能发生从检测的F-CUBS中不正确地识别CUBS的非平凡虚警。由于CUBS或F-CUBS通常在CUBS或F-CUBS传输中,占用N个资源元素(RE)中的一个(例如,N=3、4、5),因此即使F-CUBS在时域上将被循环移位(例如,循环移位上至半数的样本(例如,1024+M,其中比如M=72),虚警率也不会明显改善。由于CUBS中的RE占用,具有CUBS和F-CUBS传输的时域同相/正交(I/Q)采样将具有重复。即使使用有限的搜索窗,这种重复也可能会在给定的时间窗口中引起不可忽略的峰值能量。因此,当使用经时移的CUBS来用于F-CUBS传输时,即使利用有限的窗搜索,也可能观察到虚警CUBS检测。本公开内容的各个方面针对于减少或者消除将F-CUBS传输误检测为CUBS传输的概率。图7是示出用于执行以实现本公开内容的一个方面的示例性块的框图。在方框700处,发射机在当前子帧、时隙或符号的子帧、时隙或符号边界之前,在基于竞争的载波上检测到成功的ECCA检查。如上面所示出的,在该子帧的中间,成功地检测到ECCA,其中在ECCA过程期间,发射机是关闭的。发射机可以识别该成功的ECCA的定时,并将该定时与当前子帧定时进行比较,以便在子帧边界之前检测成功的ECCA。在方框701处,发射机在当前子帧的剩余部分,发送部分信道保留信号(例如,F-CUBS),其中,该部分信道保留信号是使用第一序列来生成的。使用已知的CUBS序列来生成CUBS传输。该CUBS序列可以是小区ID、公众陆地移动号(PLMN)ID或二者的函数。在方框701的一个操作示例中,发射机将使用第一序列来生成F-CUBS。在方框702处,发射机发送在后续子帧处开始的信道保留信号,其中,该信道保留信号是使用与第一序列不同的第二序列来生成的。在这样的示例性操作中,发射机使用与F-CUBS传输不同的CUBS序列,来生成常规CUBS传输。因此,在该示例性方面,接收机实体可以能够区分F-CUBS与该CUBS,这是由于信号中的每个信号是使用不同的序列来生成的。在本公开内容的各个方面,第二序列可以是第一序列的导出版本。根据第一序列来导出第二序列减少了实现复杂度,这是由于发射机可以即时地根据第一序列来导出第二序列,而不是生成和存储另一个序列。例如,F-CUBS可以是导出成CUBS序列的反向顺序的序列。这种反向顺序序列可以关于标准CUBS传输,导致良好的互相关性。在另一个示例性方面,F-CUBS可以使用被导出成CUBS序列的反向同相/正交(IQ)的序列,使得F-CUBS将从CUBS中获取正交分量,并且使用它们作为F-CUBS的同相分量,同时从CUBS中获取同相分量,使用它们作为正交分量。在另一个示例性方面,F-CUBS可以使用被导出成原始CUBS序列与另一个序列相乘的乘积的序列,其中,该另一个序列可以容易地实现。例如,该另一个序列可以是具有随机相位的序列或者确定性序列(比如,“++--++--…”),其可以在有限的复杂性下运行时容易地生成。在另一个示例中,在具有确定性序列“++--++--…”的情况下,发射机将只每隔两个样本,对IQ样本的符号进行取反。另外,用于生成F-CUBS的序列,可以与用于生成标准CUBS的序列完全不同或者正交。本公开内容的方面并不限于不同的F-CUBS和CUBS序列之间的任何特定关系。此外,还应当注意的是,关于图7中所示出的方面,作为不同的序列的结果,可以增加复杂度。例如,发射机现在将从空闲状态切换到具有第一序列的F-CUBS,切换到具有不同的序列的CUBS传输,并且随后切换到数据的传输。图8是示出用于执行以实现本公开内容的另外方面的示例性块的框图。在方框800处,发射机在当前子帧、时隙或符号的边界之前,在基于竞争的载波上检测到成功的ECCA检查。如上面所示出的,在该子帧的中间,成功地检测到ECCA,其中在ECCA过程期间,发射机是关闭的。在方框801处,发射机在该载波上发送在后续子帧处开始的信道保留信号。在该示例性方面,发射机根本不发送F-CUBS。相反,从在前一子帧、时隙或符号的中间检测到成功的ECCA和下一个子帧的开始之间的时间开始,发射机保持空闲。在下一个子帧的开始处,发射机将发送常规的信道保留信号(例如,CUBS传输)。在图8的示例性方面的额外实现中,在下一个子帧处发送CUBS之前,发射机可以首先执行CCA检查。替代地,可以仅仅当空闲时段超过特定的预定的门限时,才执行CCA检查。在这些方面,发射机将把空闲时段与门限进行比较,并仅在超过门限空闲时间的情况下,才执行CCA检查。在图8所示出的示例性方面,发射机可能由于不会立即开始发送F-CUBS,而具有丢失信道的风险。但是,通过根本不发送F-CUBS,消除了接收机将接收的F-CUBS误检测成CUBS的风险。图9是示出用于执行以实现本公开内容的一个方面的示例性块的框图。在方框900处,UE接收机针对信道保留信号,对第一和后续子帧进行监控。例如,UE可以在帧的最后一个子帧(例如,子帧9)的最后一个符号(例如,符号13)和后续帧的第一个子帧(例如,子帧0)的第一个符号(符号0)中,监控CUBS传输。在方框901处,当UE也在后续子帧中检测到后续信道保留信号时,UE确定在第一子帧中检测的第一信道保留信号是部分信道保留子帧。因此,例如,如果UE在该子帧的最后一个符号和后续子帧中的第一个符号两者中都检测到CUBS传输,则其知道第一CUBS传输实际上是F-CUBS。如果UE没有在后续子帧中检测到CUBS传输,则UE将替代地确定在第一子帧中检测的第一CUBS传输是标准CUBS传输。一旦UE可以确定哪个CUBS传输是F-CUBS(如果有的话),以及哪个CUBS传输是标准CUBS,UE就可以适当地识别何时期望该数据或额外的信令(例如,EFFICH、eCRS、PDCCH等等)。在图9中所示出的方面的额外实现中,UE可以被配置为关于用于CUBS和常规数据传输两者的后续子帧,执行并行处理。因此,如果在第一子帧中检测到的CUBS传输原来是标准CUBS,则由UE在后续子帧中接收的信号将很可能包括常规数据传输。因此,UE应当并行地处理这些信号,或者将来自后续子帧的信号维持在缓冲区中进行处理。图10是示出用于执行以实现本公开内容的一个方面的示例性块的框图。在方框1000处,发射机在当前子帧、时隙或符号的边界之前,在基于竞争的载波上检测到成功的ECCA检查。如上面所示出的,在该子帧、时隙或者符号的中间,成功地检测到ECCA,其中在ECCA过程期间,发射机是关闭的。在方框1001处,发射机在当前子帧的剩余部分,发送部分信道保留信号(例如,F-CUBS)。例如,发射机可以在检测到成功的ECCA的时间和子帧边界之间,在当前子帧的剩余持续时间发送F-CUBS。在方框1002处,发射机在后续子帧处开始发送数据。在图10所示出的示例性方面,发射机通过跳过CUBS的传输,避免潜在地将F-CUBS传输误检测为CUBS传输。发射机通过F-CUBS来保留基于竞争的载波,并在下一个子帧中开始常规数据传输。在图10中所示出的示例性方面的额外实现中,发射机将发送在F-CUBS之后的后续子帧中开始的任何额外的信令。例如,除了数据传输之外,发射机还在后续子帧中发送EFFICH。因此,接收方UE将能够适当地解码EFFICH,以获得上行链路/下行链路子帧配置。与CUBS传输相比,UE可能具有更高的漏掉F-CUBS传输的概率,这是由于F-CUBS传输不会在整个子帧上进行。但是,该概率可能极大地影响UE性能。图11是示出用于执行以实现本公开内容的一个方面的示例性块的框图。在方框1100处,发射机在当前子帧、时隙或符号的边界之前,在基于竞争的载波上检测到成功的ECCA检查。如上面所示出的,在该子帧的中间,成功地检测到ECCA,其中在ECCA过程期间,发射机是关闭的。在方框1101处,发射机在当前子帧的剩余部分,发送部分信道保留信号(例如,F-CUBS)。例如,发射机可以在检测到成功的ECCA的时间和子帧边界之间,在当前子帧的剩余持续时间发送F-CUBS。在方框1102处,发射机发送在后续子帧处开始的信道保留信号。例如,发射机可以在下一个子帧的开始处,开始发送常规CUBS。在方框1103处,发射机还在后续子帧中发送帧格式指示符连同信道保留信号。例如,除了在下一个子帧中发送CUBS之外,发射机还将发送帧格式指示符(例如,EFFICH)。在另外的实现中,如果下一个子帧被调度用于eCRS传输,则发射机还可以在下一个子帧中发送eCRS。图12是示出用于执行以实现本公开内容的一个方面的示例性块的框图。在方框1200处,发射机在当前子帧、时隙或符号的边界之前,在基于竞争的载波上检测到成功的ECCA检查。如上面所示出的,在该子帧的中间,成功地检测到ECCA,其中在ECCA过程期间,发射机是关闭的。在方框1201处,发射机在当前子帧的剩余部分,发送部分信道保留信号(例如,F-CUBS)。例如,发射机可以在检测到成功的ECCA的时间和子帧边界之间,在当前子帧的剩余持续时间发送F-CUBS。在方框1202处,发射机丢弃该发射机在后续子帧中从UE接收的任何CSI报告。为了解决在将F-CUBS传输误检测成CUBS情况下,不可靠的CSI反馈的问题,图12的示例性方面提供了发射机简单地丢弃可能不可靠的CSI反馈。在另外的实现中,发射机可以忽视在F-CUBS传输之后的整个传输帧中,从UE接收的所有CSI反馈。在一些实例中,当所忽视的CSI报告是针对于秩指示(RI)时(其中,后续的CSI报告针对于PMI和CQI,它们可以是基于该忽视的RI),发射机可以忽视该RI和后续的CQI/PMI,直到报告下一个有效的RI为止。应当注意的是,在图7、8和图10中所引用的发射机可以指代:作为准备下行链路数据传输的基站或者其它接入点的一部分的发射机,或者作为准备上行链路数据传输的UE的一部分的发射机。在基于竞争的频率频谱上发送数据的网络实体,将执行包括CCA、ECCA等等的LBT过程,这些过程可以从本公开内容的方面中受益,以减少或者消除将F-CUBS传输误检测为CUBS传输。此外,还应当注意的是,形成图7-12中所示出的方面的任何实现的发射机和接收机,可以根据需要是基站和/或UE(例如,图1、2、4的基站105和UE115和图6的基站60和UE61)的一部分。所描述的方框、功能和特征中的每一个,可以使用针对这样的基站和UE所描述的结构来实现。本领域普通技术人员应当理解,信息和信号可以使用多种不同的技术和工艺中的任意一种来表示。例如,在贯穿上面的描述中提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。图7-12中的功能框和模块可以包括处理器、电子设备、硬件设备、电子组件、逻辑电路、存储器、软件代码、固件代码等等或者其任意组合。本领域普通技术人员还应当明白,结合本文所公开内容描述的各种示例性的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或二者的组合。为了清楚地说明硬件和软件之间的这种可交换性,上面已经对各种示例性的部件、框、模块、电路和步骤均围绕其功能进行了总体描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开内容的保护范围。熟练的技术人员还应当容易认识到,本文所描述的部件、方法或相互作用的顺序或组合仅仅只是示例性的,并且可以以不同于本文所示出和描述的那些的方式,对本公开内容的各个方面的部件、方法或相互作用进行组合或执行。可以利用被设计为执行本文所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件部件或者其任意组合来实现或执行结合本文所公开内容描述的各种说明性的逻辑框、模块和电路。通用处理器可以是微处理器,或者,该处理器也可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以实现为计算设备的组合,例如,DSP和微处理器的组合、若干微处理器、一个或多个微处理器与DSP内核的结合,或者任何其它此种结构。结合本文所公开内容描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或两者的组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域已知的任何其它形式的存储介质中。可以将一种示例性的存储介质连接至处理器,从而使该处理器能够从该存储介质读取信息,并且可向该存储介质写入信息。或者,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该ASIC可以位于用户终端中。当然,处理器和存储介质也可以作为分立组件存在于用户终端中。在一个或多个示例性设计方案中,本文所描述功能可以用硬件、软件、固件或它们任意组合的方式来实现。当在软件中实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括有助于将计算机程序从一个地方传输到另一个地方的任何介质。计算机可读存储介质可以是通用或专用计算机能够存取的任何可用介质。举例而言,但非做出限制,这种计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码单元并能够由通用或特定用途计算机、或者通用或特定用途处理器进行存取的任何其它介质。此外,可以将连接适当地称为计算机可读介质。举例而言,如果软件是使用同轴电缆、光纤电缆、双绞线或者数字用户线路(DSL)从网站、服务器或其它远程源传输的,那么同轴电缆、光纤光缆、双绞线或者DSL包括在所述介质的定义中。如本文所使用的,磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字通用光盘(DVD)、软盘和蓝光光盘,其中磁盘通常磁性地复制数据,而光盘则用激光来光学地复制数据。上述的组合也应当包括在计算机可读介质的保护范围之内。如本文(其包括权利要求书)所使用的,当在两个或更多项的列表中使用术语“和/或”时,其意味着使用所列出的项中的任何一个,或者使用所列出的项中的两个或更多的任意组合。例如,如果将一个复合体描述成包含组件A、B和/或C,则该复合体可以只包含A;只包含B;只包含C;A和B的组合;A和C的组合;B和C的组合;或者A、B和C的组合。此外,如本文(其包括权利要求书)所使用的,如一个列表项中所使用的“或”(例如,以诸如“中的至少一个”或者“中的一个或多个”为结束的列表项中所使用的“或”)指示分离的列表,使得例如列表“A、B或C中的至少一个”意味着:A或B或C或AB或AC或BC或ABC(即,A和B和C),或者其任意组合。为使本领域任何普通技术人员能够实现或者使用本公开内容,上面围绕本公开内容进行了描述。对于本领域普通技术人员来说,对所公开内容的各种修改是显而易见的,并且,本文定义的总体原理也可以在不脱离本公开内容的精神或保护范围的基础上适用于其它变型。因此,本公开内容并不限于本申请所描述的示例和设计方案,而是将符合与本文公开的原理和新颖性特征一致的最宽范围。
...
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1