用于资源请求的方法和装置与流程

文档序号:14185706

本发明涉及无线通信网络中的资源请求。



背景技术:

波束成形、动态TDD和自回程是在讨论未来无线接入技术(有时称为“5G”)时常常会涉及到的组件的一些示例。

波束成形是设想来提供明显的链路预算增益,并且通过针对指定传输仅在关注的空间方向上进行发送/接收来抑制干扰。对于波束成形,可以设想出不同的架构。例如,在一些实施方式中,可以同时在许多空间方向上进行发送或接收,而在其他实施方式中,此时可以仅在一个或几个方向上进行发送或接收。

在动态TDD中,例如基于当前在相应方向上的资源需求,某些时隙(有时被称为“灵活子帧”)可以被动态地分配为上行链路资源或下行链路资源。因为上行链路与下行链路之间的业务负载变化,与对时隙实施半静态划分相比,动态TDD是设想来提供明显的频谱效率增益。然而,在一个方向(例如上行链路)上接收任何信号且同时在另一方向(例如下行链路)上发送不同的信号通常是无法实现的。

自回程指在第一链路上接收数据的节点在回程链路上使用相同或相似的无线接入技术在相同或相邻的频带中转发所接收的数据。在自回程的许多实施方式中,不可能在一个链路中活动地发送或接收,而同时在另一个链路上处于活动状态。这对于在两个链路上都将同一频带用于接收和发送的TDD系统而言是尤其相关的。

在所有上述示例中,可能出现是:第一链路的使用不能与第二链路的同时使用相结合,例如,上行链路和下行链路或者回程链路和接入链路。

在最新的系统中,诸如子帧之类的时隙通常在链路之间进行划分,这些链路在时隙中的同时发送将会相互干扰,例如上行链路和下行链路。链路之间的划分是以半静态的方式进行的。这样做避免了不确定性,并且使得所有节点能够知晓哪些子帧在给定时间可用于给定链路。

但是,与以动态方式将时隙分配给需要它的链路相比,这种现有技术的解决方案的缺点是不良的链路利用率。另一方面,应用时隙的动态利用产生了与不得不进行半静态分配的资源有关的问题。这种资源的示例是调度请求(SR)资源,其中无线设备可以通知基站其想要接入信道以发送数据。通信资源的更动态使用的引入与其期望解决的问题相关。



技术实现要素:

期望的是实现高链路利用率,并同时降低关于资源请求的延迟。在此提供了一种解决方案,这种解决方案实现了例如在所有负载水平处调度请求资源的鲁棒操作,同时在给定链路利用率水平的情况下,在至少低负载下还实现了关于资源请求的高链路利用率和相对较低的延迟。

根据第一方面,提供了一种由通信网络中的无线设备执行的方法。该方法包括获得与第一组和第二组资源有关的配置,无线设备能够使用所述第一组和第二组资源向网络请求通信资源。该方法进一步包括使用来自第一组和第二组中的每一组的至少一个资源来请求用于上行链路或下行链路通信的通信资源。该方法进一步包括:当满足与第一组和第二组中的至少一个组有关的针对进入回退方案的准则时,进入与所满足的准则相关联的回退方案。

根据第二方面,提供了一种由通信网络中的网络节点执行的方法。该方法包括向无线设备配置第一组和第二组资源,其中无线设备能够在所述第一组和第二组资源中向网络请求通信资源,其中在第二组中包括的资源中做出的请求比在第一组中包括的资源中做出的请求相比,与更低的被网络接收的概率相关联。

根据第三方面,提供了一种能够在通信网络中操作的无线设备。无线设备被配置为获得与第一组和第二组资源有关的配置,无线设备能够使用所述第一组和第二组资源来向网络请求通信资源。无线设备进一步被配置为使用来自第一组和第二组中的每一组的至少一个资源来请求用于上行链路或下行链路通信的通信资源。无线设备进一步被配置为:当满足与第一组和第二组中的至少一个组有关的针对进入回退方案的准则时,进入与所满足的准则相关联的回退方案。

根据第四方面,提供了一种能够在无线通信网络中操作的网络节点。网络节点被配置为向无线设备配置第一组和第二组资源,其中无线设备能够在所述第一组和第二组资源中向网络请求通信资源,其中在第二组中包括的资源中做出的请求与在第一组中包括的资源中做出的请求相比,与更低的被网络接收的概率相关联。

根据第五方面,提供了一种包括指令的计算机程序,所述指令当在至少一个处理器上执行时使至少一个处理器执行根据第一方面或第二方面的方法。

根据第六方面,提供了一种包含根据第五方面的计算机程序的载体,其中该载体为电信号、光信号、无线电信号或计算机可读存储介质中的一种。

附图说明

通过以下对附图中所示的实施例的更详细的描述,本文所公开技术的前述及其他目的、特征和优点将变得显而易见。附图不一定按比例绘制,而是将重点放在说明在此公开的技术的原理上。

图1至图4是示出了根据不同实施例的由无线设备执行的示例性方法的流程图。

图5是示出了根据示例性实施例的由网络节点或装置在无线通信网络中执行的方法的流程图。

图6a至图6c是示出了根据示例性实施例的无线设备的不同实施方式的示意性框图。

图7a至图7c是示出了根据示例性实施例的网络节点或装置的不同实施方式的示意性框图。

图8至图9是示出了无线通信网络的不同实施方式的示意性框图,其中实施例可以以分布式或非分布式的方式应用。

具体实施方式

如上所述,在未来的无线通信网络中,预见对资源的更加灵活的利用。这意味着带来了许多好处(例如改善的链路利用率),但也会导致例如关于需要以半静态方式提供给无线设备或者对于无线设备可访问的资源的问题,诸如无线设备要用于请求通信资源的资源。

必须以半静态方式给予这种资源的原因在于:网络事先并不知晓何时无线设备将会需要发送针对通信资源的请求,以便例如在上行链路中发送数据。由于事先并不知晓何时将需要资源,因此,网络不能以基于动态需求的方式分配用于发送请求的上行链路资源。

然而,为了实现高效的链路利用率,期望以半静态方式分配尽可能少的资源,即,将资源的使用限于例如上行链路资源请求(而不是允许将资源例如动态地用于上行链路和下行链路通信)。半静态资源可以通过配置诸如随机接入信道PRACH等公共的基于竞争的资源,或者通过为调度请求分配专用资源来进行分配或提供。因此,尽管使用了半静态分配的资源,但是一种实现高效链路利用率的可能方式是仅在非常少的时隙中提供这样的专用资源,同时以动态的方式使用剩余的资源。专用资源越少,链路利用率就越高。然而,专用资源越少,无线设备不得不等待直到其可以发送针对通信资源的请求的时间就越长。换句话说,在无线设备需要等待时机以请求通信资源的时间与需要为这些请求预留一部分资源之间进行折衷。

发明人已经意识到这个问题,并进一步认识到了有办法来改善折衷条件。换句话说,本文描述的解决方案涉及实现改善的链路利用率,同时将无线设备需要等待时机以请求通信资源的预期时间保持得尽可能低,或者至少保持在合理的水平。

在此公开的解决方案中的一个组成部分是无线设备可以向网络请求通信资源的两种类型的资源的配置。第一种类型的资源是专用资源,其中网络将监听请求。另外的第二种资源是这样的资源:在这种资源中,网络可能会监听请求,前提是没有被阻止其进行监听的任务占用。这两种类型的资源与利用针对通信资源的请求到达网络的不同概率相关联。

当没有从网络接收到针对资源请求(其在专用于这种请求的资源中发送)的回复时,这表明是出现了无线相关问题,例如,网络的无线链路出现了问题。当没有收到针对专用资源中的重复请求的回复时,应进入回退策略或方案,例如增大发送功率、发送随机接入请求、或者搜索、选择或附着到另一个无线接入节点。但是,当没有接收到针对在第二类型的资源中发送的请求的回复时,这不应以与第一种类型的资源相同的方式进行解释。因此,如发明人所认识到的,针对何时进入回退方案的规则或准则应考虑使用不同类型的资源。例如,对于不同类型的资源,可能存在针对何时进入回退方案的不同准则。此外,可能存在与不同准则相关联的不同回退方案,这将在下面进一步更详细地描述。

以下将参考附图描述示例性实施例。图1示出了在此描述的解决方案的一般实施例。该方法由通信网络中的无线设备执行。图1中示出的方法包括获得101与第一组和第二组资源有关的配置,无线设备可以使用第一组和第二组(资源)来向网络请求通信资源。该方法进一步包括使用来自第一组和第二组中的每一组的至少一个资源来请求102用于上行链路或下行链路通信的通信资源。该方法进一步包括:当满足或达到104与第一组和第二组中的至少一个组有关的针对进入回退方案的准则时:进入105与所满足的准则相关联的回退方案。

“资源”或“通信资源”是指时间、频率和码资源中的一种或多种。资源的说明性示例是时隙,诸如LTE中的资源元素或资源块。针对通信资源的请求的示例是调度请求和随机接入请求,或者预期从网络获得回复的任何其他类型的资源请求。调度请求或其他请求还可以包括数据。

第一组资源和第二组资源的不同之处在于:在第二组中包括的资源中做出的请求与在第一组中包括的资源中做出的请求相比,与更低的被网络接收的概率相关联。无线设备不一定需要知道这个事实。无线可以例如被配置为根据一组规则行动,这些规则是基于请求被网络接收的概率对于这两组而言是不同的这一事实。

第一组可以替代地被称为“专用的”、“固定的”或“硬的”组,并且包括在第一组中的资源也可以被称为专用的、固定的或硬的,或者被称为与专用的、固定的或硬的时隙或子帧相关联。第二组可以替代地被称为“非专用的”、“灵活的”或“软的”组,并且包括在第二组中的资源可以被称为非专用的、灵活的或者软的,或者被称为与非专用的、灵活的或软的时隙或子帧相关联。即使这里的描述关于具有两组的情形,但也可以使用两个以上的组。例如,每个组可以对应于间隔中的资源,该间隔与基站将能接收在资源中发送的SR的概率有关。所有可用于发送针对通信资源的请求的资源可以被分类为这样的间隔或片段,然后组的数量将取决于间隔的划分。

获得配置可以包括接收指示或定义两组资源的信息。这样的信息可以进一步包括针对何时和/或如何使用不同的组来请求资源的一个或多个规则或准则,并且可以进一步或替代地包括与这两个组有关的针对何时进入回退方案的一个或多个规则或准则。这样的准则的示例将在下面进一步给出。第一组资源可以包括其中网络(例如服务网络节点)被配置为监听来自无线设备的请求的资源。第二组资源可以是其中网络可以做除了监听请求之外的其他事情的资源,诸如在下行链路中发送、在除了朝向无线设备以外的其他方向上的波束中进行通信、或者自回程(即在回程链路上通信)。但是,当不被其他事情占用时,网络也可以监听第二组资源中的请求。与仅仅在来自例如一组专用资源的资源中发送请求时相比,这种可能性提高了无线设备获得通信资源的机会。此外,本文描述的解决方案使得能够降低请求通信资源的延迟,而不会触发不恰当的回退动作。

无线设备可以使用来自第一组和/或第二组资源的资源来向网络请求通信资源。可以假定的是,无线设备可互换地或者根据方案使用来自两个组的资源来发送请求。例如,无线设备可以被配置为使用来自任一组的第一可用资源来发送第一请求或重复请求。此外,作为示例,可以使用来自第二组的资源,直到来自第一组的资源变得可用为止,在此之后,仅使用来自第一组的资源,直到接收到回复或者触发了回退方案。这里的可用不是意在表明资源是“空闲的”,而是表明它出现了。图1中的方法被描述为包括无线设备使用来自第一组和第二组中的每个组的至少一个资源来请求用于上行链路或下行链路通信的通信资源。这是为了反映出无线设备使用来自两个组的资源,但不一定是针对每个请求都如此。例如,当第一请求成功时,将仅使用来自其中一个组的资源,例如首先可用的资源。当请求重复时,可以使用来自另一组的资源。关于此的示例将在下面进一步给出。

当针对通信资源的请求在某些方面“失败”时,应进入回退方案。这种情况下的“失败”可能意味着没有接收到针对任何可能已经重复多次的请求的回复或响应。换句话说,无线设备还没有获得网络已经接收到请求的任何确认,例如以资源授权的形式。在图1中,这被示出为动作103,其中确定是否已经接收到对请求的响应。无线设备可以配置有针对进入回退方案的多个不同准则,并且当满足(或达到)至少一个准则时,可以进入回退方案。换言之,在动作104中被确定为被满足或达到的针对进入回退方案的准则可以是与第一组和/或第二组资源有关的一组准则中的准则。

针对进入回退方案的准则可以以不同的方式进行配置。例如,这样的准则可以涉及所允许的使用包括在其中一个组中的资源来请求通信资源的不成功尝试的次数。第一组资源的所允许的不成功尝试的次数可以低于第二组资源的所允许的不成功尝试的次数。替代地,准则可以涉及所允许的使用第一组(中包括的资源)来请求通信资源的不成功尝试的次数与所允许的使用第二组(中包括的资源)来请求通信资源的不成功尝试的次数的组合。替代地,这样的准则可以构建为从使用其中一个组(中包括的资源)来请求通信资源的第一次不成功尝试起的最大允许时间段。

当具有针对何时进入回退方案的多个准则时,来自该组或多个准则的至少两个准则可以与不同的回退方案相关联。例如,当满足与第一组资源有关的准则时,可以进入第一回退方案,并且当满足与第二组资源有关的准则时,可以进入第二回退方案。这样的第一回退方案(与第一组资源相关联)的示例可以是尝试附着到另一个无线接入节点。与第二组资源相关联的第二回退方案的示例可以是仅使用来自第一组的资源来重复请求,或者进入向当前服务于无线设备的无线接入节点的随机接入过程。然而,不同的准则也可以与同一个回退方案相关联,然后当达到(满足)其中一个准则时,将会进入该回退方案。

从专用调度请求回退到基于随机接入的调度请求

根据一个示例性实施例,无线设备配置有一组请求时机,其在下文将会被称为调度请求SR时机,并且请求将会被称为“SR”,尽管其他类型的请求也是可能的。该配置可以例如作为一个或多个周期性SR资源给出。无线设备将SR时机的子集标识为属于第一组,并且将剩余的其他SR资源(不同于第一组)标识为属于第二组。与第二组相比,第一组具有更高的基站接收或尝试接收在组中包括的资源中发送的SR的可能。到组的映射可以例如从服务基站发信号通知,或者可以从另一个源发信号通知,其可以在准则方面是固定的,或者例如由无线设备基于无线电测量导出。

示例性实施例中的无线设备还具有与SR的发送相关联的回退过程。在这个实施例中,回退过程可以是这样的:如果检测到SR的故障,则无线设备应当尝试使用随机接入过程来发送针对资源的请求(SR)。根据此处所述的解决方案,可以将独立规则应用于在什么SR时机以及如何执行回退。

在一些实施例中,无线没备将尝试使用与类型无关的下一个可用SR时机。在一些实施例中,无线设备将会使用下一个可用时机,直到第一次在“固定”时机发送SR,在此之后仅使用“固定”时机。这可以理解为固定时机是“好的时机”,但是在固定时机可用之前,无线设备将尝试仍然具有一定的成功概率的灵活时机。

针对何时回退(例如回退到基于随机接入的SR)的规则可以是基于例如在某组资源中所做出的发送SR的尝试的次数。例如,可以对在第一组和/或第二组时机(或资源)中发送的SR的数量进行计数,例如通过计数器,该计数器在做出每一次尝试时增加。图2中示出了这样的实施例。在图2中,针对相应组的资源,配置针对请求资源的尝试的计数器。也就是说,每当在来自其中一个组的资源中发送的请求不成功时(例如,当没有收到回答时),与所涉及的组相关联的计数器被更新204,例如,增加1。然后,基于针对回退的一组准则,评估205计数器的状态。当满足准则时,进入206回退方案。当请求成功时,可以将计数器重置207。在回退准则仅针对例如其中一个组的情况下,也可以只对在来自所涉及的组(例如第一组)的资源中所做出的尝试进行计数,如图4所示。

图4示出了示例性方法实施例,其中当请求被触发401时,没有接收到授权402,并且第一类型(即,在第一组资源中做出)的请求的数量(即,包括第一请求和可能的重复请求)没有超过阈值403,当这样的资源可用/出现404时,可以使用第一类型的资源来发送405重复请求(或者当#SR类型1为零时的第一个请求)。当已经使用第一类型的资源来发送405请求时,计数器递增。当收到授权时,计数器可以被重置407,例如设置为零。当使用第一组请求资源来请求资源的尝试次数超过403阈值时,可以进入408回退方案,诸如尝试另一个接入过程,例如随机接入。

替代地或另外地,针对何时进入或触发回退过程的规则可以基于计时器,例如,从第一组时机中的第一个SR被发送时开始。图3中示出了这样的实施例。在图3中,当做出302请求并且该请求是使用第一组资源的第一次尝试时,启动303计时器。也就是说,请求可以是重复请求,其中已经使用来自第二组的资源来做出之前的一次或多次尝试。然后,针对每次失败的请求资源的尝试,评估305计时器(准则)。当得出满足阈值(例如Tthrsh)的结论时,进入306回退方案。当请求资源的尝试成功时,可以停止和/或重置307计时器(当其已经被预先启动或设置时)。

替代地或另外地,也可以考虑其他规则,例如,在使用组1的N1次尝试或使用组2的N2次尝试之后或者如果N1*试之后2*试之后或者(其中X为阈值,并且α和β为缩放参数),则应当触发回退。

资源的选择

如前所述,与使用来自“灵活”时隙的SR资源相比,可以应用不同的规则来使用来自“固定”时隙的SR资源。

在一个示例性实施例中,无线设备被配置为使用下一个可用资源,而不管该资源包括在哪个组中。在其他实施例中,仅在第一“固定”时机之前使用“灵活”时机。替代地,将一定数量的“灵活”时机用于第一批资源请求尝试,并且如果这些尝试不成功,那么无线设备可以改为使用多个“固定”时机。

例如,对于不同的业务类型,可以应用针对如何利用“固定”和“灵活”时机的不同规则。例如,可以允许无线设备使用固定时机和灵活时机来发送针对延迟敏感型数据的通信资源请求,而与时间要求不那么严格的数据有关的请求可以仅在灵活时机发送。

在当前的诸如LTE等无线通信系统中,为了不使用与之前的SR发送过于接近的SR资源,有可能对退避时间进行配置。这样做的目的是避免在等待服务网络节点对所发送的SR作出响应的同时发送大量请求而产生不必要的干扰。在本文描述的解决方案的一些实施例中,可以应用类似的时序,但是对于“固定的”和“灵活的”时机分别可能具有不同的退避配置。

此外,可以对这两种时机或资源类型应用单独的功率控制。例如,“灵活”时机中的SR发送可以与固定时机中的SR发送相比,与对同时发送造成干扰的更高风险相关联(例如,在回程链路上或者在动态TDD情况下的下行链路中)。因此,较低发送功率或接收功率目标可以用于灵活时机中的请求的发送,而不是固定时机中的发送。在其他场景或实施例中,即使使用不太合适的波束成形设置,请求的预期接收方仍可能在灵活时机中接收请求(如果其足够强)。在这样的实施例中,与固定时机中的发送相比,较高发送功率可以用于灵活时机中的发送。

从随机接入回退

本文描述的解决方案适用于请求的类型,在现有系统中,所述请求通常是在专用调度请求资源(诸如在LTE中作为物理上行链路控制信道PUCCH的控制信道中)中做出的。然而,本文描述的解决方案也适用于在现有系统中通常在表示为例如随机接入信道RACH的公共资源中请求的随机接入。该解决方案既适用于来自连接模式的基于随机接入的SR,也适用于来自空闲模式的随机接入连接建立请求。

在与随机接入有关的实施例中,资源组将包括随机接入时机,其中可以发送例如随机选择的前导码。关于针对何时从随机接入过程进入回退方案的规则,在此也可以对在无线设备需要回退之前可以做出的随机接入尝试的次数加以限制。回退可以包括在尝试再次执行随机接入之前等待某个时间段这一方面的“退避”,或者,回退可以包括找到新小区或网络节点来进行接入,例如在不同的频率上。

本文的实施例进一步涉及由通信网络(例如在网络中操作的网络节点)执行的方法。例如,这种网络节点可以是无线接入节点,诸如高功率基站、低功率基站、eNB或室内无线单元IRU或者核心网络节点(如管理或控制节点)。该方法可以替代地以分布式方式执行,即可以在网络中的不同位置执行不同的动作,例如,在所谓的云解决方案或者“集中式RAN”或者“分离式架构”中,其中例如无线接入节点(如eNB)被划分成2个或多个单独的节点。相应地,该方法可以例如部分地在无线接入节点中以及部分地在核心网络节点中执行。分布式情况可以被描述为:该方法由网络节点执行,但是,网络节点可以分布在网络中且不一定包括在例如靠近天线的一个物理单元中。

在图5中示出了根据本文呈现的解决方案的方法的一般性实施例。图5中所示的方法包括向无线设备配置502第一组和第二组资源,无线设备可以在第一组和第二组(资源)中向网络请求通信资源。在第二组中包括的资源中做出的请求与在第一组中包括的资源中做出的请求,相比与更低的被网络接收到的概率相关联。配置可以包括向无线设备发送信息、发起向无线设备发送信息或者触发向无线设备发送信息,该信息指示或定义两组资源。这样的信息可以进一步包括针对无线设备应何时和/或如何使用不同的组来请求资源的一个或多个规则或准则,并且可以进一步或替代地包括针对无线设备应何时进入回退方案的与两个组有关的一个或多个规则或准则,如上所述。对于与这些组的资源有关的其他细节,参考由以上无线设备执行的方法的描述。如前所述,网络(例如网络节点)被配置为监听第一组资源中的请求,而在第二组资源中,网络可以监听请求,但是可以替代地做其他事情,例如在下行链路中发送、在除了朝向发送请求的无线设备之外的其他方向上的波束中通信、或者自回程(即在回程链路上通信)。

图5中所示的方法可以进一步包括确定501多个可能资源(替代地表示为例如候选资源)中的哪些资源将被包括在相应的第一组和第二组资源中。

网络节点可以例如基于通过监视资源而获得的信息和/或从其他网络节点(诸如管理节点或用作到网络节点的回程接收机的基站)获得的信息来确定资源或时机属于哪个类型或组。这样的信息可以涉及哪些无线资源在动态TDD中是被配置为灵活的,即哪些资源可以被动态地分配给上行链路通信或下行链路通信。替代地或另外地,这样的信息可以指示出在回程链路上的任一方向上的发送何时可以发生。此外,确定501可以是基于与在一段时间内可能或将要被无线电波束覆盖可覆盖空间区域中的多少有关的知识或信息。

网络节点可以基于历史测量或事件来进一步确定时机或资源属于哪个组或类型。这样的事件可以是例如对其他被服务用户被调度的时隙,或者在回程链路中对自回程基站进行调度的时隙。在一些实施例中,此确定可以基于所经历的干扰。例如,与高度干扰(例如,超过阈值)相关联的资源可以被确定为属于第二组或灵活组,而与较低干扰相关联的资源可以被确定为属于第一组或固定组。在一些实施例中,干扰不是由网络节点进行测量,而是取而代之地依据在邻居节点中采用的配置,向网络节点告知某些资源中的高度干扰的风险。例如,如果邻居节点可以将一些(例如动态TDD)资源用于下行链路,则与专用于邻居的上行链路通信的资源相比,在这些资源中可能经历此干扰的风险增加。

示例性实施方式:

上述方法和技术可以在无线设备中和无线通信网络中实现,例如在一个或多个网络节点(诸如无线接入节点和/或核心网络节点)中。这些方法可以以分布式方式实现,例如,多个节点或实体可以例如在网络中的不同位置各自执行一部分动作。例如,一个或多个实施例可以在所谓的云解决方案或“集中式RAN”或“分离式架构”中实现,其中例如eNodeB被分成2个或多个单独的节点。相应地,网络可以配置为使得例如部分地在无线接入节点中以及部分地在核心网络节点中执行方法实施例的各动作。分布式情况可以被称为或描述为方法由可在通信网络中操作的装置或网络节点来执行,但是,该装置或网络节点可以分布在网络中且不一定包括在例如靠近天线的物理单位中。分布式和非分布式实施方式的示例将在下面参考图8和图9进一步给出。

无线设备,图6a至图6c

在图6a中以一般方式示出了无线设备的示例性实施例。可以假设无线设备可在无线通信网络中操作。无线设备600被配置为执行以上参考图1至图4中任何一幅图所描述的方法实施例中的至少一个方法实施例。无线设备600与和前述方法实施例相同的技术特征、目的和优点相关联。将会简要地描述无线设备,以避免出现不必要的重复。无线设备(其可以替代地表示为例如通信设备)可以是例如呈现为如下形式的用户设备(UE):移动电话、摄像机、录音机、平板电脑、膝上型电脑或能够进行无线通信的任何其他可能需要从无线通信网络请求资源的设备。无线设备还可以适于定位在(即嵌入在)诸如船只等船舶、飞行无人机、飞机和公路车辆(诸如汽车、公共汽车或货车)中。这种嵌入式设备通常属于车辆远程信息处理单元或车辆信息娱乐系统。

无线设备可以如下实施和/或描述:

无线设备600包括处理电路601和通信接口602。处理电路601被配置为使无线设备600获得与第一组和第二组资源有关的配置,无线设备可以使用第一组和第二组资源来向无线通信网络请求通信资源。处理电路601还被配置为使无线设备使用来自第一组和第二组中的每一组的至少一个资源来请求用于上行链路或下行链路通信的通信资源;并且进一步的,当满足针对进入回退方案的与所述第一组和第二组中的至少一个组有关的准则时,使无线设备进入与所满足的准则相关联的回退方案。通信接口602也可以表示为例如输入/输出(I/O)接口,并且包括用于将数据发送到例如无线接入节点并从无线接入节点接收数据的网络接口。

如图6b所示,处理电路601可以包括处理装置(诸如处理器603(例如CPU))以及用于存储或保存指令的存储器604。存储器然后将包括例如形式为计算机程序605的指令,所述指令当由处理装置603执行时使无线设备600执行上述动作。

在图6c中示出了处理电路601的替代实施方式。在此的处理电路包括获得单元606,其被配置为使无线设备获得与第一组和第二组资源有关的配置,无线设备可以使用第一组和第二组资源来向无线通信网络请求通信资源。处理电路进一步包括请求单元607,其被配置为使无线设备使用来自第一组和第二组中的每个组的至少一个资源来请求用于上行链路或下行链路通信的通信资源。处理电路进一步包括回退单元609,其被配置为当满足了针对进入回退方案的准则时使无线设备进入回退方案,其中所满足的准则与第一组和第二组中的至少一个组有关。处理电路可以包括更多单元,例如,用于确定例如是否满足准则的确定单元608。此任务也可以替代地被假设为由其他单元中的一个单元执行,例如回退单元609,因此,单元608以虚线轮廓示出。

上述无线设备可以被配置用于本文描述的不同方法实施例,例如关于准则和不同类型的业务。无线设备600可以被假设为包括用于执行常规无线设备功能的其他功能。

网络节点或装置,图7a至图7c

在图7a中以一般方式示出了可在无线通信网络中操作的网络节点或者装置的示例性实施例。如前所述,网络节点可以例如与一个或多个其他网络节点和/或资源或实体一起表示当与无线设备通信时的无线通信网络。网络节点或装置700被配置为执行上面参考图5所述的方法实施例中的至少一个方法实施例。网络节点或装置700与和前述方法实施例相同的技术特征、目的和优点相关联。将简要地描述网络节点或装置700,以避免出现不必要的重复。

网络节点或装置可以如下实施和/或描述:

网络节点或装置700包括处理电路701和一个或多个通信接口702。处理电路可以由通信网络中的一个或多个节点中可以包括的一个或多个部分组成,但处理电路在这里被示为一个实体。

处理电路701被配置为使网络节点或装置700利用第一组和第二组资源来配置无线设备,无线设备可以在第一组和第二组资源中向网络请求通信资源,其中在第二组中包括的资源中做出的请求与在第一组中包括的资源中做出的请求相比,与更低的被网络接收的概率相关联。处理电路701还可以被配置为使网络节点或装置确定多个候选资源中的哪些资源将被包括在相应的第一组和第二组资源中。一个或多个通信接口702也可以表示为例如输入/输出(I/O)接口,并且包括用于在通信网络中的节点或实体之间发送数据的网络接口。

如图7b所示,处理电路701可以包括一个或多个处理装置(诸如处理器703)以及用于存储或保存指令的存储器704。存储器然后将包括例如形式为计算机程序705的指令,所述指令当由一个或多个处理装置703执行时使网络节点或装置700执行上述动作。如前所述,处理电路701可以由一个或多个部分组成,并且包括在通信网络中的一个或多个节点中或者分布在其上(如图8和图9所示),但是在这里,处理电路被示为一个实体。

图7c中示出了处理电路701的替代实施方式。这里的处理电路包括配置单元706,其被配置为使网络节点或装置利用第一组和第二组资源来配置无线设备,无线设备可以在第一组和第二组资源中向网络请求通信资源,其中在第二组中包括的资源中做出的请求与在第一组中包括的资源中做出的请求相比,与更低的被网络接收的概率相关联。处理电路可以进一步包括确定单元707,其被配置为使网络节点或装置确定多个候选资源中的哪些资源将被包括在相应的第一组和第二组资源中;并且可以进一步包括获得单元706,用于获得信息,基于该信息可以确定不同组。处理电路可以包括更多单元,并且如前所述可以包括在通信网络中的一个或多个节点或实体中或者分布在其上,但是在这里,处理电路被示出为包括在一个实体中。

上述网络节点和装置可以被配置用于本文描述的不同的方法实施例,例如关于如何确定和/或向无线设备指示不同的组。

图8示出了示例性无线通信网络,在这种情况下是LTE网络,其中可以实现和应用本文建议的解决方案。无线通信网络通常根据无线接入网络RAN 805和核心网络806来描述。在LTE中,这些被表示为E-UTRAN和EPC。E-UTRAN 805包括表示为eNB的无线接入节点801。EPC 806包括诸如MME802、S-GW 803和P-GW 804的核心网络节点。本文描述的解决方案可以在网络中的一个或多个节点中实现。例如,在图8所示的示例性网络中,用于执行本文描述的解决方案的网络部分的功能性可以在无线接入节点801中实现,该无线接入节点801然后向无线设备配置第一组和第二组资源,无线设备可以在第一组和第二组资源中向网络请求通信资源。替代地,该功能性可以在核心网络节点(诸如MME 802或某个其他控制节点)中实现。在那种情况下,核心网络节点将对无线设备进行配置并且向RAN节点801告知第一组和第二组资源,并且例如使得RAN节点801提供信息,基于该信息可以确定第一组和第二组资源。该功能性可以替代地在一个以上的节点中实现,例如使得无线设备的配置由MME 802执行;并且对哪些资源应包括在第一组和第二组中的确定是由eNB 801执行。

图9还示出了其中可以实现本文建议的解决方案的示例性无线通信网络。图9旨在示出所谓的云解决方案,其中在不同位置的资源(例如,形式为包括处理能力或处理电路803-806的云实体)可以用于实现某个功能性。资源并不一定位于靠近天线或接入节点901的位置,而是可以例如在另一个地区或国家。这样的资源可以由网络提供商或运营商拥有,或者可以由第三方提供或向其租用。在这种类型的解决方案中,与无线接入节点(例如,图8中的节点801)相关联的功能可以在位于不同地理位置的一个或多个服务器或实体中实现。关于本文描述的解决方案,用于确定第一组和第二组资源的功能可以在云实体903中实现。替代地,其可以实现为云实体904和905之间的协作,而其他特征可以在云实体906中实现。这就是分布式解决方案的一个示例。

本文描述的步骤、功能、过程、模块、单元和/或框可以使用任何常规技术(诸如离散电路或集成电路技术,包括通用电子电路和专用电路这两者)在硬件中实现。

具体示例包括一个或多个适当配置的数字信号处理器和其他已知的电子电路,例如,互连以执行专门功能的离散逻辑门,或者专用集成电路(ASIC)。

替代地,上述步骤、功能、过程、模块、单元和/或框中的至少一些可以在诸如计算机程序之类的软件中实现,以由包括一个或多个处理单元的合适处理电路来执行。在例如无线通信网络的一个或多个节点中使用计算机程序之前和/或期间,软件可以由诸如电信号、光学信号、无线电信号或计算机可读存储介质之类的载体来携带。上面描述的处理电路可以在所谓的云解决方案中实现,具体是指:实现可以是分布式的,并且可以被称为例如位于所谓的虚拟节点或虚拟机中。

当由一个或多个处理器执行时,本文呈现的单个或多个流程图可以被视为单个或多个计算机流程图。对应的装置或设备可以被定义为一组功能模块,其中由处理器执行的每个步骤对应于功能模块。在这种情况下,功能模块是实现为在一个或多个处理器上运行的一个或多个计算机程序。

处理电路的示例包括但不限于一个或多个微处理器、一个或多个数字信号处理器DSP、一个或多个中央处理单元CPU和/或任何合适的可编程逻辑电路(诸如一个或多个现场可编程门阵列FPGA或一个或多个可编程逻辑控制器PLC)。也就是说,上述通信网络中的装置中的单元或模块可以通过在一个或多个位置的模拟和数字电路的组合来实现,和/或通过配置有软件和/或固件(例如存储在存储器中)的一个或多个处理器来实现。这些处理器中的一个或多个以及其他数字硬件可以包括在单个专用集成电路ASIC或几个处理器中,并且各种数字硬件可以分布在几个单独的组件中,无论它们是单独封装成还是组装成片上系统(SoC)。

还应该理解的是,可以重新使用其中实现了所提出技术的任何常规设备或单元的一般处理能力。还可以例如通过对现有软件进行重新编程或添加新的软件组件来重新使用现有的软件。

上面描述的实施例仅作为示例给出,并且应该理解,所提出的技术并不限于此。本领域技术人员将会理解,在不脱离本发明的范围的情况下,可以对实施例作出各种修改、组合和改变。具体而言,在技术上可行的情况下,不同实施例中的不同部分解决方案可以以其他配置进行组合。

当使用词语“包括(comprise)”或“包括(comprising)”时,其应被解释为非限制性的,即意思是“至少由.....组成”。

还应该注意的是,在一些替代实施方式中,框中记录的功能/动作可以不按照流程图中示出的顺序发生。例如,根据所涉及的功能性/动作,连续示出的两个框实际上可以基本上同时地执行,或者各个框有时可以以相反的顺序执行。此外,流程图和/或框图的指定框的功能性可以被分成多个框,和/或可以至少部分地对流程图和/或框图的两个或多个框的功能性进行集成。最后,可以在所示出的框之间添加/插入其他框,和/或可以在不偏离本发明构思的范围的情况下省略框/操作。

应当理解的是,交互单元的选择以及本公开内单元的命名仅用于示例性目的,并且适合于执行上述任何方法的节点可以以多种替代方式进行配置,以便能够执行所建议的流程动作。

还应该注意的是,本公开中描述的单元被视作是逻辑实体,而没有作为单独物理实体的必要性。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1