联合用户分组与预编码的方法以及使用所述方法的基站与流程

文档序号:11236508阅读:382来源:国知局
本公开涉及一种预编码的方法,尤其涉及一种联合用户分组与预编码的方法以及使用所述方法的基站。
背景技术
::在第四代移动通信系统中,为了达到良好的系统吞吐量,正交多重接取(orthogonalmultipleaccess,oma)系统因而被广泛地使用。但随着科技的发展,未来对无线通信的系统容量要求会越来越高,因此,在第五代移动通信系统中,非正交多重接取(non-orthogonalmultipleaccess,noma)系统正日渐受到重视。noma系统借由用户间合适的功率分配来进行多用户的信息叠加,可让多个用户使用相同的通道资源(例如相同时间和频段),同时进行信息传送;利用连续性干扰消除(successiveinterferencecancellation,sic)技术可在接收端将多用户的叠加信息分离开来。整体而言,noma技术可以提高系统的资源使用效率,达到比oma技术更高的系统容量。然而,noma系统的设计上有许多不足之处,有待不断地完善;例如,在非正交的情况下,如何有效解决多用户之间的干扰以达到最大化系统容量的目的,为一项非常重要且必须解决的问题,也就是如何优化整体noma系统的传输效能为本领域技术人员所关心的议题之一。技术实现要素:本公开提供一种联合用户分组与预编码的方法以及使用所述方法的基站;本公开的基站先将欲传送给多个用户设备的信息适当分组,再依据基站与各个用户设备之间的通道信息为各群组信号设计合适的预编码器;各群组用户设备在接收端可使用强制归零(zeroforcing,zf)矩阵来消除群组间干扰,并可使用sic技术来消除群组内干扰;另外,本公开更提出在最大化系统容量的基础上可消除多用户之间的干扰并同时可降低系统复杂度的方法。本公开实施例提供一种联合用户分组与预编码的方法,适用于非正交多重接取系统中传送信息给至少四个用户设备的一基站。此方法包括下列步骤:将至少四个用户设备两两区分为第一群组与第二群组;形成欲传送给第一群组的第一群组信号,以及欲传送给第二群组的第二群组信号;利用基站与至少四个用户设备之间的通道信息建立分别对应于第一群组与第二群组的第一预编码器集合和第二预编码器集合;从第一预编码器集合中选出第一预编码器,并从第二预编码器集合中选出第二预编码器,其中第二预编码器将基站与第一群组中的用户设备之间的第一通道和第二通道对齐至第一空间,而第一预编码器则将基站与第二群组中的用户设备之间的第三通道和第四通道对齐至第二空间;将第一群组信号乘上第一预编码器,以产生第一传输信号,且将第二群组信号乘上第二预编码器,以产生第二传输信号;以及叠加第一传输信号与第二传输信号,并将其传送至第一群组设备与第二群组设备。在本公开的一实施例中,上述第一群组信号包括欲分别传送给第一群组中的第一用户设备与第二用户设备的第一信号和第二信号,而形成欲传送的第一群组信号的步骤包括:比较第一用户设备的第一通道增益与第二用户设备的第二通道增益;为第一信号配置第一功率因子,并为第二信号配置第二功率因子,其中若第一通道增益大于第二通道增益,则所配置的第一功率因子小于第二功率因子;将第一信号乘上第一功率因子,以产生第一用户信号,且将第二信号乘上第二功率因子,以产生第二用户信号;以及叠加第一用户信号与第二用户信号为第一群组信号。在本公开的一实施例中,上述第二群组信号包括欲分别传送给第二群组中的第三用户设备与第四用户设备的第三信号和第四信号,而形成欲传送的第二群组信号的步骤包括:比较第三用户设备的第三通道增益与第四用户设备的第四通道增益;为第三信号配置第三功率因子,并为第四信号配置第四功率因子,其中若第三通道增益大于第四通道增益,则所配置的第三功率因子小于第四功率因子;将第三信号乘上第三功率因子,以产生第三用户信号,且将第四信号乘上第四功率因子,以产生第四用户信号;以及叠加第三用户信号与第四用户信号为第二群组信号。在本公开的一实施例中,上述从第一预编码器集合中选出第一预编码器和从第二预编码器集合中选出第二预编码器的步骤包括:对第三通道和第四通道所组成的第一通道矩阵实施特征分解,以产生第一预编码器集合的多个第一特征向量;对第一通道和第二通道所组成的第二通道矩阵实施特征分解,以产生第二预编码器集合的多个第二特征向量;以及从多个第一特征向量中选择第一部分作为第一预编码器,且从多个第二特征向量中选择第二部分作为第二预编码器。在本公开的一实施例中,上述第一部分的数量为多个第一特征向量的二分之一,且第二部分的数量为多个第二特征向量的二分之一。在本公开的一实施例中,上述第一通道、第二通道、第三通道与第四通道分别对应于第一用户设备、第二用户设备、第三用户设备与第四用户设备。在从第一预编码器集合中选出第一预编码器和从第二预编码器集合中选出第二预编码器的步骤之后,此方法还包括:将第一预编码器乘上第三或第四通道,并将其实行矩阵分解,以取得第一zf矩阵;将第二预编码器乘上第一或第二通道,并将其实行矩阵分解,以取得第二zf矩阵;以及分别将第一zf矩阵和第二zf矩阵通知第一群组与第二群组。在本公开的一实施例中,上述至少四个用户设备包括第一用户设备、第二用户设备、第三用户设备以及第四用户设备,而将至少四个用户设备两两区分为第一群组与第二群组包括三种组合方式。三种组合方式中的第一组合包括将第一用户设备与第二用户设备分配至第一群组,以及将第三用户设备与第四用户设备分配至第二群组。三种组合方式中的第二组合包括将第一用户设备与第三用户设备分配至第一群组,以及将第二用户设备与第四用户设备分配至第二群组。三种组合方式中的第三组合包括将第一用户设备与第四用户设备分配至第一群组,以及将第二用户设备与第三用户设备分配至第二群组。在本公开的一实施例中,上述利用基站与至少四个用户设备之间的所有通道建立分别对应于第一群组和第二群组的第一预编码器集合与第二预编码器集合的步骤包括:建立对应于第一组合的第一预编码器集合与第二预编码器集合;建立对应于第二组合的第一预编码器集合与第二预编码器集合;以及建立对应于第三组合的第一预编码器集合与第二预编码器集合。在本公开的一实施例中,上述从第一预编码器集合中选出第一预编码器和从第二预编码器集合中选出第二预编码器的步骤包括:从个别对应于三种组合方式的第一预编码器集合与第二预编码器集合中找出使系统容量最大化的第一预编码器和第二预编码器,其中系统容量为第一群组的第一容量与第二群组的第二容量的总和。在本公开的一实施例中,上述将第一群组信号乘上第一预编码器,以产生第一传输信号,且将第二群组信号乘上第二预编码器,以产生第二传输信号的步骤包括:从三种组合方式中找出对应于最大化系统容量的特定组合;找出对应于特定组合的第一群组信号与第二群组信号;以及将对应于特定组合的第一群组信号乘上使系统容量最大化的第一预编码器,以产生第一传输信号,且将对应于特定组合的第二群组信号乘上使系统容量最大化的第二预编码器,以产生第二传输信号。在本公开的一实施例中,将至少四个用户设备两两区分为第一群组与第二群组的步骤包括:分别计算至少四个用户设备的通道增益;依据至少四个用户设备个别的通道增益由大至小排序至少四个用户设备;以及将排序第一和第三的至少四个用户设备中的两个用户设备归类为第一群组,且将排序第二和第四的至少四个用户设备中的两个用户设备归类为第二群组。本公开实施例提供一种基站,适用于非正交多重接取系统;此基站包括收发电路、存储电路以及处理电路。收发电路用以传送信息给至少四个用户设备;存储电路存储多个模块;处理电路耦接存储电路和收发电路,经配置以存取并执行存储在存储电路中的模块;模块包括用户配置模块、信号产生模块、预编码器建立模块、预编码器选择模块、信号运算模块以及信号叠加模块。用户配置模块将至少四个用户设备两两区分为第一群组与第二群组;信号产生模块产生欲传送给第一群组的第一群组信号,以及产生欲传送给第二群组的第二群组信号;预编码器建立模块利用基站与至少四个用户设备之间的通道信息建立分别对应于第一群组与第二群组的第一预编码器集合和第二预编码器集合,其中第二预编码器集合将基站与第一群组中的用户设备之间的第一通道和第二通道对齐至第一空间,且第一预编码器集合将基站与第二群组中的用户设备之间的第三通道和第四通道对齐至第二空间;预编码器选择模块从第一预编码器集合中选出第一预编码器,且从第二预编码器集合中选出第二预编码器;信号运算模块将第一群组信号乘上第一预编码器,以产生第一传输信号,且将第二群组信号乘上第二预编码器,以产生第二传输信号;信号叠加模块叠加第一传输信号与第二传输信号,并通过收发电路将其传送至第一群组中的用户设备与第二群组中的用户设备。在本公开的一实施例中,上述第一群组信号包括欲分别传送给第一群组中的第一用户设备与第二用户设备的第一信号和第二信号。信号产生模块经配置以执行:比较第一用户设备的第一通道增益与第二用户设备的第二通道增益;为第一信号配置第一功率因子,并为第二信号配置第二功率因子,其中若第一通道增益大于第二通道增益,则所配置的第一功率因子小于第二功率因子;将第一信号乘上第一功率因子,以产生第一用户信号,且将第二信号乘上第二功率因子,以产生第二用户信号;以及叠加第一用户信号与第二用户信号为第一群组信号。在本公开的一实施例中,上述第二群组信号包括欲分别传送给第二群组中的第三用户设备与第四用户设备的第三信号和第四信号,且信号产生模块更经配置以执行:比较第三用户设备的第三通道增益与第四用户设备的第四通道增益;为第三信号配置第三功率因子,并为第四信号配置第四功率因子,其中若第三通道增益大于第四通道增益,则所配置的第三功率因子小于第四功率因子;将第三信号乘上第三功率因子,以产生第三用户信号,且将第四信号乘上第四功率因子,以产生第四用户信号;以及叠加第三用户信号与第四用户信号为第二群组信号。在本公开的一实施例中,上述预编码器选择模块更经配置以执行:对第三通道和第四通道所组成的第一通道矩阵实施特征分解,以产生第一预编码器集合的多个第一特征向量;对第一通道和第二通道所组成的第二通道矩阵实施特征分解,以产生第二预编码器集合的多个第二特征向量;以及从多个第一特征向量中选择第一部分作为第一预编码器,且从多个第二特征向量中选择第二部分作为第二预编码器。在本公开的一实施例中,上述第一部分的数量为多个第一特征向量的二分之一,且第二部分的数量为多个第二特征向量的二分之一。在本公开的一实施例中,上述第一通道、第二通道、第三通道与第四通道分别对应于第一用户设备、第二用户设备、第三用户设备与第四用户设备,且基站还包括干扰消除矩阵产生模块。干扰消除矩阵产生模块经配置以执行:将第一预编码器乘上第三或第四通道,并将其实行矩阵分解,以取得第一zf矩阵;将第二预编码器乘上第一或第二通道,并将其实行矩阵分解,以取得第二zf矩阵;以及分别将第一zf矩阵和第二zf矩阵通知第一群组与第二群组。在本公开的一实施例中,上述至少四个用户设备包括第一用户设备、第二用户设备、第三用户设备以及第四用户设备,而用户配置模块经配置以基于三种组合将至少四个用户设备两两区分为第一群组与第二群组。三种组合的第一组合包括将第一用户设备与第二用户设备分配至第一群组,以及将第三用户设备与第四用户设备分配至第二群组。三种组合的第二组合包括将第一用户设备与第三用户设备分配至第一群组,以及将第二用户设备与第四用户设备分配至第二群组。三种组合的第三组合包括将第一用户设备与第四用户设备分配至第一群组,以及将第二用户设备与第三用户设备分配至第二群组。在本公开的一实施例中,上述预编码器建立模块经配置以执行:建立对应于第一组合的第一预编码器集合与第二预编码器集合;建立对应于第二组合的第一预编码器集合与第二预编码器集合;以及建立对应于第三组合的第一预编码器集合与第二预编码器集合。在本公开的一实施例中,上述预编码器选择模块经配置以从个别对应于三种组合的第一预编码器集合与第二预编码器集合中找出使系统容量最大化的第一预编码器和第二预编码器,其中系统容量为第一群组的第一容量与第二群组的第二容量的总和。在本公开的一实施例中,上述信号运算模块经配置以执行:从三种组合中找出对应于最大化系统容量的特定组合;找出对应于特定组合的第一群组信号与第二群组信号;以及将对应于特定组合的第一群组信号乘上使系统容量最大化的第一预编码器,以产生第一传输信号,且将对应于特定组合的第二群组信号乘上使系统容量最大化的第二预编码器,以产生第二传输信号。在本公开的一实施例中,上述用户配置模块经配置以执行:分别计算至少四个用户设备的通道增益;依据至少四个用户设备个别的通道增益由大至小排序至少四个用户设备;以及将排序第一与第三的至少四个用户设备中的两个用户设备归类为第一群组,且将排序第二与第四的至少四个用户设备中的两个用户设备归类为第二群组。基于上述,本公开实施例提出一种联合用户分组与预编码的方法以及使用所述方法的基站;此方法的基站可将至少四个用户设备区分成两个群组,使得基站在各个群组中可依据用户设备与基站之间的通道信息为所欲传送的信号提供合适的预编码器;借此,用户设备在接收端可使用zf矩阵来消除群组间干扰,并可使用sic技术来消除群组内干扰。综合言之,本公开所提供的技术可有效降低noma下行系统的多用户信号干扰,进而提升传输效能与系统容量。为让本公开的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式进行详细说明。附图说明图1是用户在接收端使用sic技术的示意图;图2为本公开之一实施例所示出的无线通信系统示意图;图3为本公开之一实施例所示出的基站方块图;图4为本公开之一实施例所示出的联合用户分组与预编码方法流程图;图5为本公开之一实施例所示出的最大化系统容量的联合用户分组与预编码方法流程图;图6为本公开之一实施例所示出的另一无线通信系统示意图;图7为图6所示出的无线通信系统的传送端示意图;图8为图6所示出的无线通信系统的接收端示意图。附图标记说明:1-1、1-2、r-1、r-2:群组;100:下行链路系统;110、210、610:基站;121、122、221、222、223、224、621_1、621_2、621_3、621_4、622_1、622_2、622_3、622_4:用户设备;130:涵盖范围;141、142、143:区块;200、600:无线通信系统;310:收发电路;320:存储电路;320_1:用户配置模块;320_2:信号产生模块;320_3:预编码器建立模块;320_4:预编码器选择模块;320_5:信号运算模块;320_6:信号叠加模块;330:处理电路;700:传送端;710:数据源产生区块;720:noma编码区块;730:ofdm调变区块;800:接收端;810:ofdm解调变区块;820:noma解码区块;830:数据区块;s410、s420、s430、s440、s450、s460、s510、s520、s530、s540、s550、s560:步骤。具体实施方式在noma系统当中,基站在功率域(power-domain)上将同一通信资源(例如,时域或频域等等)分享给多个用户共同使用,以有效地提升频谱使用效能。基站通过将欲传送给多个用户的信号利用重叠编码(superpositioncoding)叠加并传送。多个用户可在接收端使用sic技术将用户的信号分离。关于在非正交多重接取系统中使用的sic技术将参照图1来做说明。图1示出用户在接收端使用sic技术的示意图。请参照图1,假设图1的下行链路系统100具有基站110和两个用户设备121、122,用户设备121、122位于基站110的涵盖范围130内,其中用户设备121具有较大的通道增益,而用户设备122具有较小的通道增益。在sic技术中,为了能够在接收端(即,用户设备121、122)正确地解调出基站110传送的信号,基站110可对传送给用户设备121、122的信号进行功率配置。在本实施例中,定义具有较大通道增益的用户设备121为强用户,且定义具有较小通道增益的用户设备122为弱用户。基站110将会对弱用户的信号配置较多的传输功率,而对强用户的信号配置较少的传输功率。具体而言,基站110向用户设备121、122传送的信号例如可表示为以下等式(1)。等式(1)其中s1表示为基站110欲传送给用户设备121的信号,s2表示为基站110欲传送给用户设备122的信号,而和则分别表示基站110对信号s1和s2的功率配置。值得注意的是,由于用户设备121相较于用户设备122具有较大的通道增益,故配置功率小于但本公开并不限于此在用户设备121、122接收的信号y1和y2则可分别表示为以下等式(2)。等式(2)其中h1表示为基站110和用户设备121之间的传输通道,h2表示为基站110和用户设备122之间的传输通道,n1和n2则分别表示用户设备121和122接收到的噪声,其中n1和n2例如为附加白高斯噪声(additivewhitegaussiannoise,awgn),但本公开不限于此。在sic技术中,由于基站110将信号s2配置较多的功率故在用户设备121端可先侦测出信号s2并将其移除(例如,图1的区块141),使得用户设备121可以在无其他用户的干扰信号的情况下,解调出基站110欲传送给用户设备121的信号s1(例如,图1的区块142)。另一方面,由于基站110将信号s1配置较少的功率使得用户设备122在将信号s1视为噪声的情况下可直接解调出基站110欲传送给用户设备122的信号s2(例如,图1的区块143)。如此一来,可有效地提升频谱使用效能以及整体系统容量。图2为本公开之一实施例示出的无线通信系统的示意图。在本公开的实施例中,无线通信系统200为noma系统,包含基站210与至少四个用户设备(例如,用户设备221、222、223、224)。需注意的是,虽然图2仅示出四个用户设备221、222、223、224为例做说明,但本公开可以扩展到更多的用户设备。除此之外,基站210和用户设备221、222、223、224可分别配置有m根天线,以形成多输入多输出-非正交多重接取(multiple-inputmultiple-outputnon-orthogonalmultipleaccess,mimo-noma)的无线通信系统200,其中m可为任意大于1的正整数,但本公开并不限于此。在本实施例中,为了更进一步地提升noma系统的系统容量,本实施例不仅将sic的技术应用至mimo-noma系统当中,更结合预编码器的设计来消除用户之间的干扰以及最大化系统容量,以实现本公开提出的联合用户分组与预编码的方法。在本实施例中,用户设备221、222、223、224例如可实现为(但不限于)移动站、先进移动站(advancedmobilestation,ams)、服务器、用户端、台式电脑、笔记本电脑、网络电脑、工作站、个人数字助理(personaldigitalassistant,pda)、平板电脑(tabletpersonalcomputer,tabletpc)、扫描器、电话装置、寻呼机、相机、电视、便携式视频游戏装置、音乐装置、无线传感器等等,本公开并未对此有所限制。基站210可包含(但不限于),例如,enb、家用enb(homeenb)、高级基站(advancedbasestation,abs)、基站收发系统(basetransceiversystem,bts)、接取点、本地基站(homebs)、中继器、中间节点、中间设备以及/或者基于卫星的通信基站,但本公开的可实施方式并不限于此。在本公开的实施例中,基站210可以至少表示为如图3所示的功能元件。图3为本公开之一实施例示出的基站的方块图。基站210可至少包含(但不限于)收发电路310、存储电路320及处理电路330。收发电路310可包含传送器电路、模拟-数字(analog-to-digital,a/d)转换器、d/a转换器、低噪音放大、混频、滤波、阻抗匹配、传输线、功率放大、一或多个天线电路及本地存储媒体元件(但本公开并不限于此),以为基站210提供无线传送/接收功能给所述至少四个用户设备(即,用户设备221、222、223、224)。存储电路320例如是存储器、硬盘、或任何其它用以存储数据的元件,并可经配置以记录多个程序码或模块。处理电路330耦接收发电路310及存储电路320,其可为一般用途处理器、特殊用途处理器、传统的处理器、数字信号处理器、多个微处理器(microprocessor)、一个或多个结合数字信号处理器核心的微处理器、控制器、微控制器、特殊应用集成电路(applicationspecificintegratedcircuit,asic)、场可程序门阵列电路(fieldprogrammablegatearray,fpga)、任何其他种类的积体电路、状态机、基于进阶精简指令集机器(advancedriscmachine,arm)的处理器以及类似品。在本实施例中,处理电路330可存取并执行存储在存储电路320中的用户配置模块320_1、信号产生模块320_2、预编码器建立模块320_3、预编码器选择模块320_4、信号运算模块320_5以及信号叠加模块320_6,以执行本公开提出的联合用户分组与预编码方法的各个步骤。图4为本公开之一实施例示出的联合用户分组与预编码方法的流程图。请参看图2、图3和图4,图4的方法可由图3的基站210执行,且适用于图2中所示的无线通信系统200。以下将参照图3基站210的各个元件来说明图4联合用户分组与预编码方法的各个步骤。首先,在步骤s410中,用户配置模块320_1将用户设备221、222、223、224两两区分为第一群组232与第二群组232。在本实施例中,为了使用户设备221、222、223、224可采用前述提及的sic技术将基站210传送的多个叠加的使用者信号分离,用户配置模块320_1将用户设备221、222、223、224两两区分为第一群组231与第二群组232,使得用户设备221、222、223、224以分别在对应的群组中执行两个用户之间的sic。需说明的是,本实施例并未对用户设备221、222、223、224的划分方式有所限制,只要第一群组231与第二群组232包含任意两个用户设备即可。为了便于说明,在本实施例中假设第一群组231包含用户设备221、222,而第二群组232包含用户设备223、224。在步骤s420中,信号产生模块320_2产生欲传送给第一群组231的第一群组信号,与产生欲传送给第二群组232的第二群组信号。在本实施例中,基站210在将用户设备221、222、223、224两两区分为第一群组231与第二群组232之后,信号产生模块320_2分别在第一群组231与第二群组232中,依据第一群组231与第二群组232所包含的用户设备及其通道增益,为欲传送给用户设备221、222、223、224的信号做适当的功率分配。之后,信号产生模块320_2分别产生对应于第一群组231与第二群组232的第一群组信号与第二群组信号。详细而言,第一群组231包含用户设备221、222,故第一群组信号包括欲分别传送给用户设备221与222的第一信号与第二信号。信号产生模块320_2可比较第一用户设备的第一通道增益与第二用户设备的第二通道增益,以依据通道增益的比较结果,为第一信号配置第一功率因子及为第二信号配置第二功率因子。需说明的是,若第一通道增益大于第二通道增益,则配置第一功率因子小于第二功率因子,以为通道增益较低的用户设备222配置较多的功率分配,反之亦然。在本实施例中,假设第一通道增益大于第二通道增益,故定义具有较大通道增益的用户设备221为第一群组231中的强用户,而定义具有较小通道增益的用户设备122为第一群组231中的弱用户。之后,信号产生模块320_2将第一信号乘上第一功率因子,以产生第一用户信号,且将第二信号乘上第二功率因子,以产生第二用户信号。信号产生模块320_2将第一用户信号与第二用户信号叠加后产生对应于第一群组231的第一群组信号。类似地,第二群组232包含用户设备223、224,故第二群组信号包括欲分别传送给用户设备223与224的第三信号与第四信号。信号产生模块320_2可比较第三用户设备的第三通道增益与第四用户设备的第四通道增益,以依据通道增益的比较结果,为第三信号配置第三功率因子及为第四信号配置第四功率因子。需说明的是,若第三通道增益大于第四通道增益,则配置第三功率因子小于第四功率因子,以为通道增益较低的用户设备224配置较多的功率分配,反之亦然。在本实施例中,假设第三通道增益大于第四通道增益,故定义具有较大通道增益的用户设备223为第二群组232中的强用户,而定义具有较小通道增益的用户设备224为第二群组232中的弱用户。之后,信号产生模块320_2将第三信号乘上第三功率因子,以产生第三用户信号,且将第四信号乘上第四功率因子,以产生第四用户信号。信号产生模块320_2并将第三用户信号与第四用户信号叠加后产生对应于第二群组232的第二群组信号。在一实施例中,基站210向用户设备221、222、223、224传送的第一群组信号与第二群组信号,可表示为向量矩阵xn,如以下等式(3)。等式(3)其中sn,1∈cn×1表示为基站210欲传送给在第n个群组中强用户的信号(即,当n=1时,信号sn,1对应于传送给第一群组231中用户设备221的第一信号,当n=2时,信号sn,1对应于传送给第二群组231中用户设备223的第三信号),sn,2∈cn×1表示为基站210欲传送给在第n个群组中弱用户的信号(即,当n=1时,信号sn,2对应于传送给第一群组232中用户设备222的第二信号,当n=2时,信号sn,2对应于传送给第二群组232中用户设备224的第四信号),n为传送符元的个数,表示为对应于信号sn,1的功率因子与表示为对应于信号sn,2的功率因子,其中除此之外,本公开实施例设置传送符元的个数n为基站210或用户设备221、222、223、224配置的天线个数m的一半(即,n=m/2),但本公开并不限于此。在步骤s430中,预编码器建立模块320_3利用基站110与用户设备221、222、223、224之间的通道信息建立分别对应于第一群组与第二群组的第一预编码器集合与第二预编码器集合。在本实施例中,若将第一群组信号与第二群组信号分别乘上预编码器fn∈cm×n,n∈{1,2},则基站210传送的信号可表示为以下等式(4)。等式(4)在接收端(即,用户设备221、222、223、224)接收到的信号yn,i可表示为以下等式(5)。等式(5)其中i=1时,表示第n个群组中的强用户、i=2时表示第n个群组中的弱用户、yn,i表示在第n个群组的第i个用户设备接收到的信号、hn,i∈cm×n表示在第n个群组的第i个用户设备与基站210之间满秩(full-rank)的通道矩阵、以及vn,i表示在第n个群组的第i个用户设备接收到的噪声,其中vn,i例如为awgn向量,但本公开不限于此。除此之外,将等式(3)、(4)带入等式(5)中,在接收端(即,用户设备221、222、223、224)接收到的信号yn,i可扩展为以下等式(6)。等式(6)值得注意的是,在等式(6)中,对于在第n个群组中的强用户(即,用户设备221或223)而言,等式(6)中的第二项为欲传送给在相同群组中的弱用户(即,用户设备222或224)的信号sn,2,信号对强用户形成了群组内干扰(intra-clusterinterference);反之亦然。此外,等式(6)中的第三项为来自其他群组的信号信号则为群组间干扰(inter-clusterinterference)。在本实施例中,首先为了能在接收端有效地消除群组间干扰信号基站210分别依据第一群组231中的用户设备221、222与第二群组232中的用户设备223、224设计适当的预编码器fn∈cm×n,n∈{1,2}。预编码器建立模块320_3利用基站110与用户设备221、222、223、224之间的通道hn,i建立分别对应于第一群组231与第二群组232的第一预编码器集合和第二预编码器集合。详细而言,预编码器建立模块320_3利用各个群组中的用户设备于基站210之间的所有通道的特征空间来建立分别对应到第一群组231和第二群组232的预编码器集合。在本实施例中,预编码器建立模块320_3针对群组间干扰信号利用预编码器将所对应的信号于经过另一群组的通道矩阵hn,i后,对齐至相同空间,如以下等式(7)所示。等式(7)依据等式(7),当n=2时,矩阵(hn,1)-1hn,2便形成对应于第一群组231的第一预编码器集合,当n=1时,矩阵(hn,1)-1hn,2便形成对应于第二群组232的第二预编码器集合。在步骤s440中,预编码器选择模块320_4从第一预编码器集合中选出第一预编码器,且从第二预编码器集合中选出第二预编码器,其中第二预编码器将基站110与第一群组231中的用户设备之间的第一通道和第二通道对齐至第一空间,且第一预编码器将基站110与第二群组232中的用户设备之间的第三通道和第四通道对齐至第二空间。在本实施例中,预编码器选择模块320_4对第一预编码器集合与第二预编码器集合(即,(hn,1)-1hn,2,n∈{1,2})分别实施特征分解(eigen-decomposition),以产生第一预编码器集合与第二预编码器集合的多个第一特征向量(eigenvector)和多个第二特征向量。多个第一特征向量和多个第二特征向量可表示为以下等式(8)。等式(8)其中当n=2时,矩阵en便形成第一预编码器集合的多个第一特征向量,当n=1时,矩阵en便形成第二预编码器集合的多个第二特征向量。接下来,预编码器选择模块320_4从多个第一特征向量中选择第一部分作为第一预编码器,且从多个第二特征向量中选择第二部分作为第二预编码器。在本实施例中,依据等式(7),第二预编码器可将基站110与第一群组231中的用户设备之间的第一通道和第二通道对齐至第一空间,且第一预编码器可将基站110与第二群组232中的用户设备之间的第三通道和第四通道对齐至第二空间。前述提及的第一通道、第二通道、第三通道和第四通道可分别表示为h1,1、h1,2、h2,1和h2,2,且分别对应于欲传送给用户设备221、222、223、224的第一信号、第二信号、第三信号和第四信号。需说明的是,由于本公开实施例设置传送符元的个数n为基站210或用户设备221、222、223、224配置的天线个数m的一半,故第一部分的数量为多个第一特征向量的二分之一且第二部分的数量亦为多个第二特征向量的二分之一,但本公开并不限于此。之后,第一预编码器与第二预编码器可表示为以下等式(9)。等式(9)其中n=m/2。因此,依据等式(9),当n=2时,矩阵便形成第一预编码器,当n=1时,矩阵便形成第二预编码器。在步骤s450中,信号运算模块320_5将第一群组信号乘上第一预编码器,以产生第一传输信号,且将第二群组信号乘上第二预编码器,以产生第二传输信号。在步骤s460中,信号叠加模块320_6叠加第一传输信号与第二传输信号,并通过收发电路210同时传送至第一群组231中的用户设备与第二群组232中的用户设备。在本实施例中,类似于前述提及的等式(4),信号运算模块320_5将第一群组信号(向量)与第二群组信号(向量)分别乘上对应的第一预编码器(矩阵)和第二预编码器(矩阵),亦即利用第一预编码器与第二预编码器分别对第一群组信号与第二群组信号进行预编码,以分别产生第一传输信号(向量)和第二传输信号(向量)。而信号叠加模块320_6叠加第一传输信号与第二传输信号,则基站210传送的信号可表示为以下等式(10)。等式(10)其中fn∈cm×n。之后,基站210可将信号通过广播的方式同时传送至用户设备221、222、223、224。由于基站210在步骤s430~s440中分别依据第一群组231与第二群组232中用户设备221、222、223、224的传输通道设计适当的第一预编码器f1和第二预编码器f2,接收端的每一个用户设备221、222、223、224可利用zf矩阵来有效地消除群组间干扰信号值得一提的是,由于本公开假设传输信号的通道为全局(global)的通道状态信息(channelstateinformation),zf矩阵可由基站210取得再传送至用户设备221、222、223、224,或亦可由用户设备221、222、223、224直接计算出,本公开并未对此有所限制。在本公开的一实施例中,zf矩阵由基站210取得再传送至用户设备221、222、223、224。因此,基站210还可包括干扰消除矩阵产生模块320_7,用以取得zf矩阵。对于在第n个群组中的强用户(即,用户设备221或223)而言,干扰消除矩阵产生模块320_7针对群组间干扰信号将第二预编码器乘上第一通道或第二通道(即,或n=1),且将第一预编码器乘上第三通道或第四通道(即,或n=2),且分别实行矩阵分解。需说明的是,矩阵分解可以各种方式来实施,例如,qr分解或奇异值分解(singularvaluedecomposition,svd),本公开并未对此有所限制。在一实施例中,对矩阵实行qr分解可表示为以下等式(11)。等式(11)根据等式(11),可以得知矩阵qn的最后n行(即,矩阵)对应于矩阵的零空间(nullspace),使得zf矩阵可表示为以下等式(12)。等式(12)其中当n=1时,便可取得第一zf矩阵,当n=2时,便可取得第二zf矩阵。如此一来,通过在将接收端(即,用户设备221、222、223、224)接收到的信号乘上对应的zf矩阵则可有效地消除在等式(6)中第三项有关接收信号的群组间干扰如以下等式(13)所示。等式(13)值得一提的是,在本公开实施例所提出的预编码矩阵fn和zf矩阵gn分别具有和的么正特性(unitaryproperty),因而不会影响信号的传输功率与接收功率。除此之外,对于在等式(6)中第二项有关接收信号yn,i的群组内干扰可将图1中所提及的sic技术分别应用至图2所示的第一群组231与第二群组232当中。如此一来,在执行群组间干扰消除与群组内干扰消除等程序之后,在第n个群组中的强用户与弱用户所接收到的信号可分别表示为以下等式(14)。等式(14)简言之,本公开实施例的联合用户分组与预编码的方法,基站先将至少四个用户设备区分成两个群组,使得基站在各个群组中可依据用户设备与基站的间的传输通道为信号提供合适的预编码器。借此,各个用户设备在接收端可使用zf矩阵来消除群组间干扰,并可使用sic技术来消除群组内干扰,进而达到可降低多用户设备之间的干扰的效能。另一方面,根据等式(14),在第n个群组中的强用户与弱用户的系统容量则可分别表示为以下等式(15)。等式(15)其中由于本实施例的预编码器fn是由多个特征向量en选出的n个特征向量所形成(即,前述步骤s440),故第一预编码器f1和第二预编码器f2分别可具有种组合(即,m!/(n!)2种组合)。结合第一群组231与第二群组232共可具有种组合(即,(m!/(n!)2)2种组合)的预编码器对{f1,f2}。更进一步来看,本实施例的第一群组231与第二群组232分别可包含任意两个用户设备(即,前述步骤s410),使得在无线通信系统200中可具有总数为3×(m!/(n!)2)2种组合的预编码器对{f1,f2}。需注意的是,根据等式(15),由于预编码器fn为一个高矩阵(tallmatrix),通道矩阵hn,i的奇异值(singularvalues)会随着乘上不同的预编码器fn而有所改变,进而改变了系统的总容量。为了能够找出可最大化系统容量的预编码器对{f1,f2},本公开实施例更依据图4的方法进一步提出最大化系统容量的联合用户分组与预编码方法。图5为本公开之一实施例示出最大化系统容量的联合用户分组与预编码方法的流程图。请参看图2、图3和图5,图5的方法亦可由图3的基站210执行,且适用于图2中所示的无线通信系统200。以下将参照图3基站210的各个元件来说明图5最大化系统容量的联合用户分组与预编码方法的各个步骤。在本实施例中,图5的步骤与图4类似,主要不同的地方在于,针对步骤s410,在步骤s510中,用户配置模块320_1基于三种组合方式将用户设备221、222、223、224两两区分为第一群组231与第二群组232。举例而言,三种组合方式的第一组合包括将用户设备221和222分配至第一群组231,以及将用户设备223和224分配至第二群组232。三种组合方式的第二组合包括将用户设备221和223分配至第一群组231,以及将用户设备222和224分配至第二群组232。三种组合方式的第三组合包括将用户设备221和224分配至第一群组231,以及将用户设备222和223分配至第二群组232。同样地,本实施例并未对用户设备221、222、223、224的划分方式有所限制,只要第一群组231与第二群组232包含任意两个用户设备即可。在步骤s520中,基于前述用户设备的三种组合方式,预编码器建立模块320_3建立分别对应于第一群组231与第二群组232的第一预编码器集合和第二预编码器集合。详细而言,预编码器建立模块320_3利用系统全部mimo通道的特征空间来建立分别对应到第一群组231与第二群组232的预编码器集合。也就是说,预编码器建立模块320_3建立对应于第一组合的第一预编码器集合和第二预编码器集合、对应于第二组合的第一预编码器集合和第二预编码器集合以及建立对应于第三组合的第一预编码器集合和第二预编码器集合。本实施例可依据前述提及的等式(7)~(9),找出对于第一群组231与第二群组232的预编码器对{f1,f2}的集合fa。以此方式,对于第一群组231与第二群组232的预编码器对{f1,f2}的集合fa可表示为以下等式(16)。等式(16)其中l∈{1,2,3}表示用户设备的第l种组合、p表示含有所有m!/(n!)2种组合的索引矩阵、[p]s,n和[p]t,n分别表示多个第一特征向量矩阵e1和多个第二特征向量矩阵e2的行索引值、且s=t=1,2,...,m!/(n!)2。如此一来,预编码器选择模块320_4不同于在步骤s440中从第一预编码器集合中任意选出第一预编码器,且从第二预编码器集合中任意选出第二预编码器,在步骤s530中,预编码器选择模块320_4从个别对应于三种组合方式的第一预编码器集合和第二预编码器集合中找出使系统容量最大化的第一预编码器与第二预编码器。也就是说,基站210可依据等式(16)的每一预编码器对{f1,f2}计算用户设备221、222、223、224的系统容量,并选择可最大化系统容量的预编码器对{f1,f2},如以下等式(17)所示。等式(17)其中wa表示可最大化系统容量的预编码器对{f1,f2}。需说明的是,在本实施例中系统容量为第一群组231的第一容量与第二群组232的第二容量的总和,但本公开并不限于此。在步骤s540中,信号产生模块320_2基于前述用户设备的三种组合方式,找出对应于最大化系统容量的特定组合,且找出对应于特定组合的第一群组信号与第二群组信号。在本实施例中,基站210可依据可最大化系统容量的预编码器对{f1,f2}找出预编码器对{f1,f2}分别所对应的用户设备,以找出对应于第一群组231与第二群组232可最大化系统容量的特定组合,并可同时完成用户设备的分组。之后,信号产生模块320_2找出对应于特定组合的第一群组信号和第二群组信号,其中第一群组信号和第二群组信号的产生方式与步骤s420相同或类似,具体细节可参考上述说明,在此不再赘述。接下来,在步骤s550中,信号运算模块320_5并将对应于特定组合的第一群组信号乘上使系统容量最大化的第一预编码器,以产生第一传输信号,且将对应于特定组合的第二群组信号乘上使系统容量最大化的第二预编码器,以产生第二传输信号。最后,同图4中的步骤s460,在步骤s560中,信号叠加模块320_6叠加第一传输信号和第二传输信号,并通过收发电路210同时传送至第一群组231与第二群组232。需说明的是,在图5的步骤中,基站210采用与前述实施例类似的方法来产生预编码器对{f1,f2},差别仅在于在本实施例中采用的预编码器对{f1,f2}可最大化无线通信系统200的系统容量。因此,在基站210为第一群组231与第二群组232提供适当的第一预编码器f1和第二预编码器f2的情况下,接收端的每一个用户设备221、222、223、224同样可利用zf矩阵来有效地消除群组间干扰信号虽然图5的方法可提供用户设备221、222、223、224最大化的系统容量,但由于上述方法是以穷举搜寻(exhaustivesearch)的方式找出最好的一组预编码器,以致有计算复杂度较高的问题。基此,在本公开的其它实施例中,更提供可降低复杂度的联合用户分组与预编码方法。由于在noma系统的sic技术中,基站可根据用户设备的通道增益来做功率配置。若在同一个群组中的两个用户设备的通道增益的差异越大,则用户设备所分配到的功率配置差异也会越大。可以知道的是,当用户设备所分配到的功率配置差异越大时,基站能较佳地将用户设备的信号分离。基此,本实施例更提出基于用户设备的通道增益来将无线通信系统200中的用户设备221、222、223、224两两区分为第一群组231与第二群组232。在本实施例中,针对步骤s410或s510,用户配置模块320_1分别计算四个用户设备221、222、223、224的通道增益gi,如以下等式(18)所示。等式(18)其中hi表示第i个用户设备的通道矩阵。用户配置模块320_1依据用户设备221、222、223、224个别的通道增益gi由大至小排序用户设备221、222、223、224。接下来,用户配置模块320_1将排序第一和第三的用户设备归类为第一群组231,且将排序第二和第四的用户设备归类为第二群组232。在完成用户设备221、222、223、224的分组之后,本实施例同样可依据前述提及的等式(7)~(9),找出对于第一群组231与第二群组232的预编码器对{f1,f2}的集合fb,如以下等式(19)所示。等式(19)其中p表示含有所有m!/(n!)2种组合的索引矩阵、[p]s,n和[p]t,n分别表示多个第一特征向量矩阵e1与多个第二特征向量矩阵e2的行索引值,且s=t=1,2,...,m!/(n!)2。如此一来,根据等式(15)系统容量的计算方式,基站210可依据等式(19)的每一个预编码器对{f1,f2}计算用户设备221、222、223、224的系统容量,且选择可最大化系统容量的预编码器对{f1,f2},如以下等式(20)所示。等式(20)其中wb表示可最大化系统容量的预编码器对{f1,f2}。值得一提的是,由于在本实施例中仅考虑一组用户设备的群组分组方式,预编码器对{f1,f2}的集合fb共可具有种组合(即,(m!/(n!)2)2种组合),故相较于预编码器对{f1,f2}的集合fa为具有种组合,寻找最大化系统容量的预编码器对{f1,f2}之计算复杂度已降为前述实施例的三分之一。简言之,本公开实施例的联合用户分组与预编码的方法,基站基于用户设备的三种组合方式将至少四个用户设备区分成两个群组,且基站基于用户设备的三种组合方式建立分别对应到两个群组的预编码器集合,并从其中选出一组可以最大化系统容量的预编码器对,并同时完成用户设备的分组,以达到最大化下行链路系统容量的效能。除此之外,为了降低寻找最大化系统容量的预编码器对之计算复杂度,可依据各个用户设备的通道增益,仅考虑一组用户设备的群组分组方式。借此,不仅仍能达到降低多用户设备之间的干扰的效能,亦能进一步的提升noma的下行链路系统容量。在本公开的其他实施例中,还可将mimo-noma系统结合正交分频多工(orthogonalfrequency-divisionmultiplexing,ofdm)技术,以推广至能够承载多用户设备的下行链路系统。图6为本公开之一实施例示出的另一无线通信系统的示意图。请参照图6,无线通信系统600为mimo-noma结合ofdm系统,包含基站610和多个用户设备(例如,用户设备621_1、621_2、621_3、621_4、622_1、622_2、622_3、622_4)。需注意的是,虽然图6仅示出八个用户设备为例做说明,但本公开可以扩展到更多的用户设备。基站610和多个用户设备可分别配置有m根天线,其中m可为任意大于1的正整数。除此之外,无线通信系统600的子载波个数为r,其中r可为任意大于1的正整数。在本实施例中,每一个子载波可区分为两个群组(例如群组1-1、1-2或群组r-1、r-2),并支持四个用户设备。基站610可依据上述实施例所提出的联合用户分组与预编码方法来为每个子载波的群组配置适当的预编码器对{f1,f2}。图7为图6示出的无线通信系统600的传送端的示意图。在本实施例中,无线通信系统600的传送端700(即,基站610)至少包括(但不限于)数据源产生区块710、noma编码区块720以及ofdm调变区块730。上述各个实施例提出的联合用户分组与预编码方法可在noma编码区块720中执行。图8为图6示出的无线通信系统600的接收端的示意图。在本实施例中,无线通信系统600的接收端800(即,多个用户设备621_1、621_2、621_3、621_4、622_1、622_2、622_3、622_4中的任一者)至少包括(但不限于)ofdm解调变区块810、noma解码区块820以及数据区块830。在本实施例中,用户设备可在noma解码区块820中将接收到的信号乘上zf矩阵来消除群组间干扰,以及在同一群组中的强用户可利用sic技术消除群组内干扰,而群组中的弱用户可直接解码出基站所传送的信号。综上所述,本公开实施例的联合用户分组与预编码的方法以及使用所述方法的基站,基站先将至少四个用户设备区分成两个群组,使得基站在各个群组中可依据用户设备与基站之间的传输通道为信号提供合适的预编码器。或者,基站可基于用户设备的三种组合方式将至少四个用户设备区分成两个群组,以基于用户设备的三种组合方式建立分别对应到两个群组的预编码器集合,并从其中选出一组可以最大化系统容量的预编码器对,且同时完成用户设备的分组。除此之外,为了降低寻找最大化系统容量的预编码器对之计算复杂度,可依据各个用户设备的通道增益,仅考虑一组用户设备的群组分组方式。借此,各个用户设备在接收端可使用zf矩阵来消除群组间干扰,并可使用sic技术来消除群组内干扰。依此方式,基站不但可达到降低多用户设备之间的干扰的效能,亦能进一步的提升noma的下行链路系统容量。另一方面,本公开实施例的联合用户分组与预编码的方法所应用的mimo-noma系统还能结合ofdm的概念以推广至能够承载多用户设备的下行链路系统。最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1