信号生成方法及信号生成装置与流程

文档序号:11138106阅读:304来源:国知局

技术领域
:(与相关申请有关的说明)包含在2010年12月10日提出申请的日本专利申请2010-276447号中的权利要求书、说明书、附图及说明书摘要的公开内容全部在本申请中援用。本发明特别涉及进行使用了多天线(multi-antenna)的通信的信号生成方法及信号生成装置。
背景技术
::以往,作为使用多天线的通信方法,例如有被称为MIMO(Multiple-InputMultiple-Output:多输入多输出)的通信方法。在以MIMO为代表的多天线通信中,通过分别对多个系列的发送数据进行调制,并从不同的天线同时发送各调制信号,来提高数据的通信速度。图23表示发送天线数为2、接收天线数为2、发送调制信号(发送流)数为2时的收发装置的结构的一例。在发送装置中,对编码后的数据进行交错(interleave),对交错后的数据进行调制,并进行频率变换等,从而生成发送信号,发送信号被从天线发送。此时,从发送天线在同一时刻以同一频率分别发送不同的调制信号的方式是空间复用MIMO方式。此时,在专利文献1中提出了一种在每个发送天线中具备不同的交错模式的发送装置。也就是说,在图23的发送装置中2个交错器(πa、πb)具有相互不同的交错模式。而且,在接收装置中,如非专利文献1、非专利文献2所示,通过反复进行利用软值(softvalue)的检波方法(图23中的MIMOdetector),来提高接收品质。可是,作为无线通信中的实际传播环境的模型,存在以瑞利衰落(Rayleighfading)环境为代表的NLOS(non-lineofsight:非视距)环境和以莱斯衰落(Ricianfading)环境为代表的LOS(lineofsight:视距)环境。在发送装置中发送单个调制信号,在接收装置中对由多个接收天线接收到的信号进行最大比合成、并对最大比合成后的信号进行解调及解码的情况下,在LOS环境、特别是表示直接波的接收功率相对于散射波的接收功率的大小的莱斯因子较大的环境下,能够获得良好的接收品质。但是,根据传输方式(例如空间复用MIMO传输方式)的不同,会产生若莱斯因子增大则接收品质劣化的问题。(参见非专利文献3)图24(A)(B)表示,在瑞利衰落环境及莱斯因子K=3、10、16dB的莱斯衰落环境下,对LDPC(low-densityparity-check:低密度校验)编码后的数据进行了2×2(2天线发送、2天线接收)空间复用MIMO传输的情况下的BER(BitErrorRate:误比特率)特性(纵轴:BER,横轴:SNR(signal-to-noisepowerratio:信噪比))的模拟结果的一例。图24(A)表示,不进行反复检波的Max-log-APP(参见非专利文献1、非专利文献2)(APP:aposteriorprobability:后验概率))的BER特性,图24(B)表示,进行反复检波后的Max-log-APP(参见非专利文献1、非专利文献2)(反复次数为5次)的BER特性。从图24(A)(B)可知,无论是否进行反复检波,在空间复用MIMO系统中,都能够确认到若莱斯因子增大则接收品质变坏的情况。由此可知,具有“在空间复用MIMO系统中,在传播环境变得稳定时接收品质变坏”这样的、在以往的发送单个调制信号的系统中不存在的空间复用MIMO系统固有的课题。广播或多播通信是必须适应各种各样的传播环境的服务,用户持有的接收机和广播站之间的电波传播环境当然有可能是LOS环境。将具有上述课题的空间复用MIMO系统应用到广播或多播通信中时,在接收机中电波的接收电场强度较高,但是可能产生因接收品质的劣化而无法接受服务的现象。也就是说,为了在广播或多播通信中采用空间复用MIMO系统,期望在NLOS环境及LOS环境的任一个的情况下,都获得一定程度的接收品质的MIMO传输方式的开发。在非专利文献8中,阐述了从来自通信对象的反馈信息中选择用于预编码的码本(预编码矩阵(也称为预编码权重矩阵))的方法,但是如上所述,像广播或多播通信那样,在无法得到来自通信对象的反馈信息的状况下进行预编码的方法,却完全没有记述。另一方面,在非专利文献4中,阐述了在没有反馈信息时也能够应用的、随着时间来切换预编码矩阵的方法。在该文献中,阐述了作为用于预编码的矩阵而使用酉矩阵、并且随机切换酉矩阵的方法,但是对于上述的对于LOS环境下的接收品质的劣化的应用方法却完全没有记述,仅记述了随机切换。当然,完全没有记载用于改善LOS环境的接收品质的劣化的预编码方法以及预编码矩阵的构成方法。现有技术文献专利文献专利文献1:国际公开第2005/050885号非专利文献非专利文献1:“Achievingnear-capacityonamultiple-antennachannel”IEEETransactiononcommunications,vol.51,no.3,pp.389-399,March2003.非专利文献2:“PerformanceanalysisanddesignoptimizationofLDPC-codedMIMOOFDMsystems”IEEETrans.SignalProcessing.,vol.52,no.2,pp.348-361,Feb.2004.非专利文献3:“BERperformanceevaluationin2x2MIMOspatialmultiplexingsystemsunderRicianfadingchannels,”IEICETrans.Fundamentals,vol.E91-A,no.10,pp.2798-2807,Oct.2008.非专利文献4:“Turbospace-timecodeswithtimevaryinglineartransformations,”IEEETrans.Wirelesscommunications,vol.6,no.2,pp.486-493,Feb.2007.非专利文献5:“LikelihoodfunctionforQR-MLDsuitableforsoft-decisionturbodecodinganditsperformance,”IEICETrans.Commun.,vol.E88-B,no.1,pp.47-57,Jan.2004.非专利文献6:“Shannon限界への道標:“Parallelconcatenated(Turbo)coding”,“Turbo(iterative)decoding”とその周辺”電子情報通信学会、信学技法IT98-51非专利文献7:“AdvancedsignalprocessingforPLCs:Wavelet-OFDM,”Proc.ofIEEEInternationalsymposiumonISPLC2008,pp.187-192,2008.非专利文献8:D.J.Love,andR.W.heath,Jr.,“Limitedfeedbackunitaryprecodingforspatialmultiplexingsystems,”IEEETrans.Inf.Theory,vol.51,no.8,pp.2967-1976,Aug.2005.非专利文献9:DVBDocumentA122,Framingstructure,channelcodingandmodulationforasecondgenerationdigitalterrestrialtelevisionbroadcastingsystem,(DVB-T2),June2008.非专利文献10:L.Vangelista,N.Benvenuto,andS.Tomasin,“Keytechnologiesfornext-generationterrestrialdigitaltelevisionstandardDVB-T2,”IEEECommun.Magazine,vo.47,no.10,pp.146-153,Oct.2009.非专利文献11:T.Ohgane,T.Nishimura,andY.Ogawa,“ApplicationofspacedivisionmultiplexingandthoseperformanceinaMIMOchannel,”IEICETrans.Commun.,vo.88-B,no.5,pp.1843-1851,May2005.非专利文献12:R.G.Gallager,“Low-densityparity-checkcodes,”IRETrans.Inform.Theory,IT-8,pp-21-28,1962.非专利文献13:D.J.C.Mackay,“Gooderror-correctingcodesbasedonverysparsematrices,”IEEETrans.Inform.Theory,vol.45,no.2,pp399-431,March1999.非专利文献14:ETSIEN302307,“Secondgenerationframingstructure,channelcodingandmodulationsystemsforbroadcasting,interactiveservices,newsgatheringandotherbroadbandsatelliteapplications,“v.1.1.2,June2006.非专利文献15:Y.-L.Ueng,andC.-C.Cheng,“afast-convergencedecodingmethodandmemory-efficientVLSIdecoderarchitectureforirregularLDPCcodesintheIEEE802.16estandards,”IEEEVTC-2007Fall,pp.1255-1259.非专利文献16:S.M.Alamouti、“Asimpletransmitdiversitytechniqueforwirelesscommunications,”IEEEJ.Select.AreasCommun.,vol.16,no.8,pp.1451-1458,Oct1998.非专利文献17:V.Tarokh,H.Jafrkhani,andA.R.Calderbank、“Space-timeblockcodingforwirelesscommunications:Performanceresults、”IEEEJ.Select.AreasCommun.,vol.17,no.3,no.3,pp.451―460,March1999.技术实现要素:发明概要发明要解决的问题本发明的目的是提供一种能够改善LOS环境中的接收品质的MIMO系统。用于解决问题的手段有关本发明的信号生成方法,从多个基带信号生成以同一频带且同一时刻发送的多个信号,其特征在于,对从第1多个比特生成的第1基带信号s1和从第2多个比特生成的第2基带信号s2的双方进行相位变更,生成相位变更后的第1基带信号s1’和相位变更后的第2基带信号s2’;对上述相位变更后的第1基带信号s1’和上述相位变更后的第2基带信号s2’进行依据规定的矩阵F的加权合成,生成第1加权合成信号z1和第2加权合成信号z2作为以上述同一频带且同一时刻发送的多个信号;上述第1加权合成信号z1及上述第2加权合成信号z2满足(z1,z2)T=F(s1’,s2’)T;对上述第1基带信号s1及上述第2基带信号s2实施的相位变更量分别是一边切换N个相位变更量的候选一边选择出的一个相位变更量,上述N个相位变更量分别在规定的期间内至少被选择一次,其中N是2以上的整数。有关本发明的信号生成装置,从多个基带信号生成以同一频带且同一时刻发送的多个信号,其特征在于,该信号生成装置具备:相位变更部,对从第1多个比特生成的第1基带信号s1和从第2多个比特生成的第2基带信号s2的双方进行相位变更,生成相位变更后的第1基带信号s1’和相位变更后的第2基带信号s2’;以及加权合成部,对上述相位变更后的第1基带信号s1’和上述相位变更后的第2基带信号s2’进行依据规定的矩阵F的加权合成,生成第1加权合成信号z1和第2加权合成信号z2作为以上述同一频带且同一时刻发送的多个信号,上述第1加权合成信号z1及上述第2加权合成信号z2满足(z1,z2)T=F(s1’,s2’)T;对上述第1基带信号s1及上述第2基带信号s2实施的相位变更量分别是一边切换N个相位变更量的候选一边选择出的一个相位变更量,上述N个相位变更量分别在规定的期间内至少被选择一次,其中N是2以上的整数。发明效果这样,根据本发明,能够提供改善LOS环境中的接收品质的劣化的信号生成方法、信号生成装置,所以能够在广播或多播通信中对于可见范围内的用户提供品质较高的服务。附图说明图1是空间复用MIMO传输系统中的收发装置的结构例。图2是帧结构的一例。图3是应用相位变更方法时的发送装置的结构例。图4是应用相位变更方法时的发送装置的结构例。图5是帧结构的例子。图6是相位变更方法的例子。图7是接收装置的结构例。图8是接收装置的信号处理部的结构例。图9是接收装置的信号处理部的结构例。图10是解码处理方法。图11是接收状态的例子。图12是应用相位变更方法时的发送装置的结构例。图13是应用相位变更方法时的发送装置的结构例。图14是帧结构的例子。图15是帧结构的例子。图16是帧结构的例子。图17是帧结构的例子。图18是帧结构的例子。图19是映射方法的一例。图20是映射方法的一例。图21是加权合成部的结构例。图22是码元的排序方法一例。图23是空间复用MIMO传输系统中的收发装置的结构例。图24是BER特性例。图25是相位变更方法的例子。图26是相位变更方法的例子。图27是相位变更方法的例子。图28是相位变更方法的例子。图29是相位变更方法的例子。图30是能够获得较高的接收品质的调制信号的码元配置例。图31是能够获得较高的接收品质的调制信号的帧结构例。图32是能够获得较高的接收品质的调制信号的码元配置例。图33是能够获得较高的接收品质的调制信号的码元配置例。图34是使用块码时的1个编码后的块所需要的码元数、时隙数的变化例。图35是使用块码时的2个编码后的块所需要的码元数、时隙数的变化例。图36是数字广播用系统的整体结构图。图37是表示接收机结构例的框图。图38是表示多路复用数据的结构的图。图39是示意地表示各流在多路复用数据中如何被多路复用的图。图40是表示在PES数据包列中视频流如何被存储的详细图。图41是表示多路复用数据中的TS数据包和源数据包的结构的图。图42是表示PMT的数据结构的图。图43是表示多路复用数据信息的内部结构的图。图44是表示流属性信息的内部结构的图。图45是影像显示、声音输出装置的结构图。图46是通信系统的结构一例。图47是能够获得较高的接收品质的调制信号的码元配置例。图48是能够获得较高的接收品质的调制信号的码元配置例。图49是能够获得较高的接收品质的调制信号的码元配置例。图50是能够获得较高的接收品质的调制信号的码元配置例。图51是发送装置的结构例。图52是发送装置的结构例。图53是发送装置的结构例。图54是发送装置的结构例。图55是表示基带信号变换部的图。具体实施方式下面,参照附图详细说明本发明的实施方式。(实施方式1)详细说明本实施方式的发送方法、发送装置、接收方法及接收装置。在进行本说明之前,说明作为以往系统的空间复用MIMO传输系统中的发送方法、解码方法的概要。图1表示Nt×Nr空间复用MIMO系统的结构。对信息矢量z实施编码及交错(interleave)。然后,作为交错的输出,得到编码后比特的矢量u=(u1,…,uNt)。其中,设ui=(ui1,…,uiM)(M:每个码元的发送比特数)。若设发送矢量s=(s1,…,sNt)T,则来自发送天线#i的表达为发送信号si=map(ui),若将发送能量标准化,则表达为E{|si|2}=Es/Nt(Es:每信道的总能量)。而且,若设接收矢量为y=(y1,…,yNr)T,则如公式(1)那样表达。[数式1]此时,HNtNr是信道矩阵,n=(n1,…,nNr)T是噪声矢量,ni是平均值0、方差σ2的i.i.d.复高斯噪声。根据由接收机导入的发送码元和接收码元的关系,与接收矢量有关的概率可以如公式(2)那样以多维高斯分布来赋予。[数式2]这里,考虑由外部软入软出(outersoft-in-soft-out)解码器和进行由MIMO检波构成的图1那样的反复解码的接收机。图1中的对数似然比的矢量(L-value)如公式(3)-(5)那样表达。[数式3][数式4]L(ui)=(L(ui1),…,L(uiM))…式(4)[数式5]<反复检波方法>在此,说明NtxNr空间复用MIMO系统中的MIMO信号的反复检波。如公式(6)那样定义umn的对数似然比。[数式6]根据贝叶斯定理,公式(6)能够如公式(7)那样表达。[数式7]其中,设Umn,±1={u|umn=±1}。而且,若以lnΣaj~maxlnaj来近似,则公式(7)能够如公式(8)那样近似。还有,上面“~”的符号表示近似。[数式8]公式(8)中的P(u|umn)和lnP(u|umn)如下表达。[数式9][数式10][数式11]在此,公式(2)中定义的式子的对数概率如公式(12)那样表达。[数式12]因此,根据(7)、(13)得知,在MAP或APP(aposterioriprobability)中,事后的L-value如下表达。[数式13]以后称为反复APP解码。另外,根据公式(8)、(12),在基于Max-Log近似的对数似然比(Max-LogAPP)中,事后的L-value如下表达。[数式14][数式15]以后称为反复Max-logAPP解码。而且,在反复解码的系统中所需的外部信息可以通过从公式(13)或者(14)减去事前输入来求取。<系统模型>图23表示与后面的说明有关的系统的基本结构。在此,设为2×2空间复用MIMO系统,在流A、B中分别有外部编码器(outerencoder),2个外部编码器设为相同的LDPC码的编码器(在此作为外部编码器而以使用LDPC码的编码器的结构为例进行说明,但是外部编码器使用的纠错码并不限于LDPC码,使用Turbo码、卷积码、LDPC卷积码等其他的纠错码也能够同样地实施。另外,外部编码器设为在每个发送天线中都具有的结构,但是并不限于此,即便发送天线是多个,外部编码器也可以是一个,另外,也可以具有比发送天线数多的外部编码器。)。而且,在流A、B中分别有交错器(πa,πb)。在此,将调制方式设为2h-QAM(由1码元发送h比特。)。在接收机中,进行上述MIMO信号的反复检波(反复APP(或者Max-logAPP)解码)。而且,作为LDPC码的解码,例如进行和乘积解码。图2表示帧结构,记述了交错后的码元的顺序。此时,如下式那样表达(ia,ja)、(ib,jb)。[数式16][数式17]此时示出:ia,ib:交错后的码元的顺序,ja,jb:调制方式中的比特位置(ja,jb=1,…,h),πa,πb:流A、B的交错器,Ωaia,ja,Ωbib,jb:流A、B的交错前的数据的顺序。其中,图2表示ia=ib时的帧结构。<反复解码>在此,详细说明在接收机中的LDPC码的解码中使用的和乘积(sum-project)解码及MIMO信号反复检波的算法。和乘积解码将二元M×N矩阵H={Hmn}设为作为解码对象的LDPC码的检查矩阵。如下式那样定义集合[1,N]={1,2,…,N}的部分集合A(m)、B(n)。[数式18]A(m)≡{n:Hmn=1}…式(18)[数式19]B(n)≡{m:Hmn=1}…式(19)此时,A(m)意味着,在检查矩阵H的第m行上为1的列索引的集合,B(n)是在检查矩阵H的第n行上为1的行索引的集合。和乘积解码的算法如下所示。StepA·1(初始化):对于满足Hmn=1的全部组(m,n),设事前值对数比βmn=0。设循环变量(反复次数)lsum=1,并将循环最大次数设定为lsum,max。StepA·2(行处理):对于按m=1,2,…,M的顺序满足Hmn=1的全部组(m,n),使用下面的更新式来更新外部值对数比αmn。[数式20][数式21][数式22]此时,f是Gallager的函数。而且,λn的求取方法在后面详细说明。StepA·3(列处理):对于按n=1,2,…,N的顺序满足Hmn=1的全部组(m,n),使用下面的更新式来更新外部值对数比βmn。[数式23]StepA·4(对数似然比的计算):针对n∈[1,N],如下求取对数似然比Ln。[数式24]StepA·5(反复次数的计数):若lsum<lsum,max,则将lsum增量,并返回stepA·2。在lsum=lsum,max的情况下,此次的和乘积解码结束。上面是1次的和乘积解码的动作。随后,进行MIMO信号的反复检波。在上述的和乘积解码的动作说明中所使用的变量m、n、αmn、βmn、λn及Ln中,用ma、na、αamana、βamana、λna、Lna来表达流A中的变量,用mb、nb、αbmbnb、βbmbnb、λnb、Lnb来表达流B中的变量。<MIMO信号的反复检波>在此,详细说明MIMO信号的反复检波中的λn的求取方法。从公式(1)得知,下面的公式成立。[数式25]y(t)=(y1(t),y2(t))T=H22(t)s(t)+n(t)…式(25)根据图2的帧结构,从公式(16)(17)得知,下面的关系式成立。[数式26][数式27]此时,na,nb∈[1,N]。以后,将MIMO信号的反复检波的反复次数k时的λna、Lna、λnb、Lnb分别表达为λk,na、Lk,na、λk,nb、Lk,nb。StepB·1(初始检波;k=0):在初始检波时,如下求取λ0,na、λ0,nb。反复APP解码时:[数式28]反复Max-logAPP解码时:[数式29][数式30]其中,设X=a,b。而且,将MIMO信号的反复检波的反复次数设为lmimo=0,将反复次数的最大次数设定为lmimo,max。StepB·2(反复检波;反复次数k):反复次数k时的λk,na、λk,nb如式(11)(13)-(15)(16)(17)到公式(31)-(34)那样表达。其中,(X,Y)=(a,b)(b,a)。反复APP解码时:[数式31][数式32]反复Max-logAPP解码时:[数式33][数式34]StepB·3(反复次数的计数、码字推定):若lmimo<lmimo,max,则将lmimo增量,返回stepB·2。在lmimo=lmimo,max的情况下,如下求取推定码字。[数式35]其中,设X=a,b。图3是本实施方式中的发送装置300的结构的一例。编码部302A以信息(数据)301A及帧结构信号313为输入,按照帧结构信号313(含有编码部302A在数据的纠错编码中使用的纠错方式、编码率、块长度等信息,使用帧结构信号313所指定的方式。另外,纠错方式也可以切换。),例如进行卷积码、LDPC码及Turbo码等的纠错编码,输出编码后的数据303A。交错器304A以编码后的数据303A及帧结构信号313为输入来进行交错、即顺序的排序,输出交错后的数据305A。(基于帧结构信号313,交错的方法也可以切换。)映射部306A以交错后的数据305A及帧结构信号313为输入,进行QPSK(QuadraturePhaseShiftKeying)、16QAM(16QuadratureAmplitudeModulation)、64QAM(64QuadratureAmplitudeModulation)等的调制,输出基带信号307A。(基于帧结构信号313,调制方式也可以切换。)图19是QPSK调制中的构成基带信号的同相成分I和正交成分Q的IQ平面上的映射方法的一例。例如,如图19(A)所示,在输入数据为“00”的情况下,输出I=1.0、Q=1.0,下面同样地,在输入数据为“01”的情况下,输出I=-1.0、Q=1.0,输出…。图19(B)是和图19(A)不同的QPSK调制的IQ平面上的映射方法的例子,图19(B)和图19(A)的不同之处为,能够通过使图19(A)中的信号点以原点为中心旋转而获得图19(B)的信号点。有关这种星座的旋转方法,在非专利文献9、非专利文献10中示出,另外,也可以应用非专利文献9、非专利文献10中所示的CyclicQDelay。作为和图19不同的例子,在图20中表示出16QAM时的IQ平面上的信号点配置,与图19(A)对应的例子是图20(A),与图19(B)对应的例子为图20(B)。编码部302B以信息(数据)301B及帧结构信号313为输入,按照帧结构信号313(含有使用的纠错方式、编码率、块长度等的信息,使用帧结构信号313所指定的方式。另外,纠错方式也可以切换。),例如进行卷积码、LDPC码、Turbo码等的纠错编码,输出编码后的数据303B。交错器304B以编码后的数据303B及帧结构信号313为输入来进行交错、即顺序的排序,输出交错后的数据305B。(基于帧结构信号313,交错的方法也可以切换。)映射部306B以交错后的数据305B及帧结构信号313为输入,进行QPSK(QuadraturePhaseShiftKeying)、16QAM(16QuadratureAmplitudeModulation)、64QAM(64QuadratureAmplitudeModulation)等的调制,输出基带信号307B。(基于帧结构信号313,调制方式也可以切换。)信号处理方法信息生成部314以帧结构信号313为输入,输出与基于帧结构信号313的信号处理方法有关的信息315。还有,与信号处理方法有关的信息315包含指定固定使用哪个预编码矩阵的信息和变更相位的相位变更模式的信息。加权合成部308A以基带信号307A、基带信号307B及与信号处理方法有关的信息315为输入,基于与信号处理方法有关的信息315,对基带信号307A及基带信号307B进行加权合成,输出加权合成后的信号309A。还有,有关加权合成的方法细节,将在后面详细说明。无线部310A以加权合成后的信号309A为输入,进行正交调制、频带限制、频率变换及放大等的处理,输出发送信号311A,发送信号311A被从天线312A作为电波输出。加权合成部308B以基带信号307A、基带信号307B及与信号处理方法有关的信息315为输入,基于与信号处理方法有关的信息315,对基带信号307A及基带信号307B进行加权合成,输出加权合成后的信号316B。图21表示加权合成部(308A、308B)的结构。在图21中用虚线围成的区域为加权合成部。基带信号307A和w11相乘而生成w11·s1(t),和w21相乘而生成w21·s1(t)。同样地,基带信号307B和w12相乘而生成w12·s2(t),和w22相乘而生成w22·s2(t)。接下来,获得z1(t)=w11·s1(t)+w12·s2(t)、z2(t)=w21·s1(t)+w22·s2(t)。此时,s1(t)及s2(t)从上述说明可知,成为BPSK(BinaryPhaseShiftKeying)、QPSK、8PSK(8PhaseShiftKeying)、16QAM、32QAM(32QuadratureAmplitudeModulation)、64QAM、256QAM、16APSK(16AmplitudePhaseShiftKeying)等调制方式的基带信号。这里,两个加权合成部使用固定的预编码矩阵来执行加权,作为预编码矩阵,作为一例有基于下式(37)或式(38)的条件而使用式(36)的方法。但这只是一例,α的值并不限于式(37)、式(38),也可以设为别的值,例如将α设为1。还有,预编码矩阵为[数式36]其中,在上述式(36)中,α为[数式37]或者,在上述式(36)中,α为[数式38]还有,预编码矩阵并不限于式(36),也可以使用式(39)所示的预编码矩阵。[数式39]在该式(39)中,只要以a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22来表达即可。另外,a、b、c、d的任一个也可以是“零”。例如,也可以是(1)a为零,b、c、d不为零,(2)b为零,a、c、d不为零,(3)c为零,a、b、d不为零,(4)d为零,a、b、c不为零这样的结构。还有,变更了调制方式、纠错码及其编码率的某一个时,也可以对使用的预编码矩阵进行设定及变更,并且固定地使用该预编码矩阵。相位变更部317B以加权合成后的信号316B及与信号处理方法有关的信息315为输入,规则地变更该信号316B的相位并输出。所谓规则地变更指的是,在预定的周期(例如每n个码元(n为1以上的整数)或者每一预定的时间)内,按照预定的相位变更模式来变更相位。有关相位变更模式的细节,将在下述实施方式4中进行说明。无线部310B以相位变更后的信号309B为输入,实施正交调制、频带限制、频率变换及放大等的处理,输出发送信号311B,发送信号311B被从天线312B作为电波输出。图4表示和图3不同的发送装置400的结构例。在图4中,说明和图3不同的部分。编码部402以信息(数据)401及帧结构信号313为输入,基于帧结构信号313进行纠错编码,输出编码后的数据402。分配部404以编码后的数据403为输入,分配并输出数据405A及数据405B。还有,在图4中,记述了编码部为一个的情况,但不限于此,针对将编码部设为m(m为1以上的整数),并由分配部将由各编码部制作的编码数据分为2个系统的数据来输出的情况,本发明也可以同样地实施。图5表示本实施方式中的发送装置的时间轴上的帧结构一例。码元500_1是用于向接收装置通知发送方法的码元,例如,传输用于传输数据码元的纠错方式、其编码率的信息以及用于传输数据码元的调制方式的信息等。码元501_1是用于推定发送装置所发送的调制信号z1(t){其中t为时间}的信道变动的码元。码元502_1是调制信号z1(t)向(时间轴上的)码元编号u发送的数据码元,码元503_1是调制信号z1(t)向码元编号u+1发送的数据码元。码元501_2是用于推定发送装置所发送的调制信号z2(t){其中,t为小时}的信道变动的码元。码元502_2是调制信号z2(t)向码元编号u发送的数据码元,码元503_2是调制信号z2(t)向码元编号u+1发送的数据码元。此时,在z1(t)内的码元和z2(t)内的码元中,同一时刻(同一时间)的码元使用同一(共同)频率,从发送天线发送。说明发送装置发送的调制信号z1(t)和调制信号z2(t)以及接收装置中的接收信号r1(t)、r2(t)的关系。在图5中,504#1、504#2表示发送装置中的发送天线,505#1、505#2表示接收装置中的接收天线,发送装置分别从发送天线504#1和发送天线504#2发送调制信号z1(t)和调制信号z2(t)。此时,调制信号z1(t)及调制信号z2(t)占用同一(共同的)频率(频带)。假设发送装置的各发送天线和接收装置的各接收天线的信道变动分别为h11(t)、h12(t)、h21(t)、h22(t),接收装置的接收天线505#1接收到的接收信号为r1(t),接收装置的接收天线505#2接收到的接收信号为r2(t),则下面的关系式成立。[数式40]图6是与本实施方式中的加权方法(预编码(Precoding)方法)及相位变更方法相关的图,加权合成部600是整合了图3的加权合成部308A和308B双方后的加权合成部。如图6所示,流s1(t)及流s2(t)对应于图3的基带信号307A及307B,也就是说,成为依据QPSK、16QAM、64QAM等调制方式的映射的、基带信号的同相I成分和正交Q成分。而且,如同图6的帧结构那样,流s1(t)将码元编号u的信号表达为s1(u),将码元编号u+1的信号表达为s1(u+1),…。同样,流s2(t)将码元编号u的信号表达为s2(u),将码元编号u+1的信号表达为s2(u+1),…。而且,加权合成部600以图3中的基带信号307A(s1(t))及307B(s2(t))及与信号处理方法有关的信息315为输入,实施依据与信号处理方法有关的信息315的加权,输出图3的加权合成后的信号309A(z1(t))、316B(z2'(t))。相位变更部317B变更加权后的信号316B(z2'(t))的相位,输出相位变更后的信号309B(z2(t))。此时,若假设固定的预编码矩阵F中的第1行的矢量为W1=(w11,w12),则z1(t)可以用下式(41)来表达。[数式41]z1(t)=W1×(s1(t),s2(t))T…式(41)另一方面,若假设固定的预编码矩阵F中的第2行的矢量为W2=(w21,w22),且由相位变更部得到的相位变更式为y(t),则z2(t)可以用下式(42)来表达。[数式42]z2(t)=y(t)×W2×(s1(t),s2(t))T…式(42)这里,y(t)是用于按照预定的方式来变更相位的公式,若设周期为4,则时刻u的相位变更式例如可以用式(43)来表达。[数式43]y(u)=ej0…式(43)同样,时刻u+1的相位变更式例如可以用式(44)来表达。[数式44]也就是说,时刻u+k的相位变更式可以用式(45)来表达。[数式45]还有,式(43)~(45)所示的规则的相位变更例只是一例。规则的相位变更的周期并不限于4。如果该周期的个数变多,则能够促进接收装置的接收性能(更加正确而言是纠错性能)提高该个数量(并不是说只要周期大就好,而是避开2那样小的值更好的可能性较高。)。另外,在由上式(43)~(45)所示的相位变更例中,示出了使其依次旋转规定的相位量(在上述式中分别为π/2)的结构,但也可以不使其旋转相同的相位量,而随机地变更相位。例如,y(t)也可以按照预定的周期,按式(46)或式(47)所示的顺序来变更相乘的相位。在相位的规则性变更中重要的是,规则地变更调制信号的相位,对于变更的相位的程度,优选为尽量均等,例如对-π弧度到π弧度,优选为均匀分布,但也可以是随机的。[数式46][数式47]这样,图6的加权合成部600使用预定的固定的预编码权重来执行预编码,相位变更部317B一边规则地改变其变更程度,一边变更所输入的信号的相位。在LOS环境下,若使用特殊的预编码矩阵,则存在接收品质得到较大改善的可能性,但是根据直接波的状况,该特殊的预编码矩阵因接收时的直接波的相位、振幅成分而不同。但是,在LOS环境下存在某种规则,若按照该规则来规则地变更发送信号的相位,则数据的接收品质较大改善。本发明提出了改善LOS环境的信号处理方法。图7表示本实施方式中接收装置700的结构的一例。无线部703_X以由天线701_X接收到的接收信号702_X为输入,实施频率变换及正交解调等处理,输出基带信号704_X。由发送装置发送的调制信号z1中的信道变动推定部705_1以基带信号704_X为输入,提取图5中的信道推定用的参考码元501_1,推定与式(40)的h11对应的值,输出信道推定信号706_1。由发送装置发送的调制信号z2中的信道变动推定部705_2以基带信号704_X为输入,提取图5中的信道推定用的参考码元501_2,推定与式(40)的h12对应的值,输出信道推定信号706_2。无线部703_Y以由天线701_Y接收到的接收信号702_Y为输入,实施频率变换及正交解调等处理,输出基带信号704_Y。由发送装置发送的调制信号z1中的信道变动推定部707_1以基带信号704_Y为输入,提取图5中的信道推定用的参考码元501_1,推定与式(40)的h21对应的值,输出信道推定信号708_1。由发送装置发送的调制信号z2中的信道变动推定部707_2以基带信号704_Y为输入,提取图5中的信道推定用的参考码元501_2,推定与式(40)的h22对应的值,输出信道推定信号708_2。控制信息解码部709以基带信号704_X及704_Y为输入,检测用于通知图5的发送方法的码元500_1,输出与发送装置所通知的发送方法的信息有关的信号710。信号处理部711以基带信号704_X、704_Y、信道推定信号706_1、706_2、708_1、708_2及与发送装置所通知的发送方法的信息有关的信号710为输入,进行检波及解码,输出接收数据712_1及712_2。接下来,详细说明图7的信号处理部711的动作。图8表示本实施方式中的信号处理部711的结构的一例。图8主要包括INNERMIMO检波部、软入软出解码器及系数生成部。有关该结构中的反复解码的方法,已经在非专利文献2、非专利文献3中详细记载,但是非专利文献2、非专利文献3中所述的MIMO传输方式是空间复用MIMO传输方式,而本实施方式中的传输方式和非专利文献2、非专利文献3的不同之处为,是一种随着时间而规则地变更信号的相位,并且使用预编码矩阵的MIMO传输方式。若设公式(36)中的(信道)矩阵为H(t),图6中的预编码权重矩阵为F(这里预编码矩阵是在1个接收信号中不变更的固定的矩阵),由图6的相位变更部得到的相位变更式的矩阵为Y(t)(这里Y(t)随着t而变化),接收矢量为R(t)=(r1(t),r2(t))T,流矢量S(t)=(s1(t),s2(t))T,则下面的关系式成立。[数式48]R(t)=H(t)×Y(t)×F×S(t)…式(48)其中此时,接收装置可以通过取得H(t)×Y(t)×F,对接收矢量R(t)应用非专利文献2、非专利文献3的解码方法。因此,图8的系数生成部819以与发送装置所通知的发送方法的信息(用于确定所使用的固定的预编码矩阵及变更了相位时的相位变更模式的信息)有关的信号818(对应于图7的710)为输入,输出与信号处理方法的信息有关的信号820。INNERMIMO检波部803以与信号处理方法的信息有关的信号820为输入,通过利用该信号,并利用式(48)的关系,进行反复检波·解码,以下说明其动作。在图8所示的结构的信号处理部中,为了进行反复解码(反复检波),需要进行图10所示的处理方法。首先,进行调制信号(流)s1的1码字(或者1帧)及调制信号(流)s2的1码字(或者1帧)的解码。其结果,从软入软出解码器获得调制信号(流)s1的1码字(或者1帧)及调制信号(流)s2的1码字(或者1帧)的各比特的对数似然比(LLR:Log-LikelihoodRatio)。然后,使用该LLR再次进行检波·解码。多次进行该操作(将该操作称为反复解码(反复检波)。)。以后,重点说明以1帧中的特定时间的码元的对数似然比(LLR)的制作方法。在图8中,存储部815以基带信号801X(对应于图7的基带信号704_X。)、信道推定信号群802X(对应于图7的信道推定信号706_1、706_2。)、基带信号801Y(对应于图7的基带信号704_Y。)及信道推定信号群802Y(对应于图7的信道推定信号708_1、708_2。)为输入,为了实现反复解码(反复检波),执行(计算)式(48)中的H(t)×Y(t)×F,作为变形信道信号群而存储计算出的矩阵。然后,存储部815在需要时输出上述信号,来作为基带信号816X、变形信道推定信号群817X及基带信号816Y、变形信道推定信号群817Y。有关其后的动作,将分为初始检波的情形和反复解码(反复检波)的情况进行说明。<初始检波的情形>INNERMIMO检波部803以基带信号801X、信道推定信号群802X、基带信号801Y及信道推定信号群802Y为输入。在此,将调制信号(流)s1、调制信号(流)s2的调制方式作为16QAM来说明。INNERMIMO检波部803首先根据信道推定信号群802X及信道推定信号群802Y,执行H(t)×Y(t)×F,求取与基带信号801X对应的候选信号点。图11表示此时的状况。在图11中,●(黑点)是IQ平面上的候选信号点,由于调制方式为16QAM,所以候选信号点存在256个。(但是,在图11中示出示意图,所以未示出全部256个候选信号点。)这里,若设由调制信号s1传输的4比特为b0、b1、b2、b3,由调制信号s2传输的4比特为b4、b5、b6、b7,则在图11中存在与(b0,b1,b2,b3,b4,b5,b6,b7)对应的候选信号点。然后,求取接收信号点1101(对应于基带信号801X。)和候选信号点各自之间的平方欧氏距离。然后,用噪声的方差σ2除以各个平方欧氏距离。因此,求出EX(b0,b1,b2,b3,b4,b5,b6,b7),该EX(b0,b1,b2,b3,b4,b5,b6,b7)是将与(b0,b1,b2,b3,b4,b5,b6,b7)对应的候选信号点和接收信号点平方欧氏距离除以噪声的方差后的值。还有,各基带信号、调制信号s1、s2是复信号。同样地,根据信道推定信号群802X及信道推定信号群802Y,执行H(t)×Y(t)×F,求取与基带信号801Y对应的候选信号点,并求取和接收信号点(对应于基带信号801Y。)之间的平方欧氏距离,将该平方欧氏距离除以噪声的方差σ2。因此,求出EY(b0,b1,b2,b3,b4,b5,b6,b7),该EY(b0,b1,b2,b3,b4,b5,b6,b7)是将与(b0,b1,b2,b3,b4,b5,b6,b7)对应的候选信号点和接收信号点平方欧氏距离除以噪声的方差后的值。然后,求取EX(b0,b1,b2,b3,b4,b5,b6,b7)+EY(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)。INNERMIMO检波部803作为信号804而输出E(b0,b1,b2,b3,b4,b5,b6,b7)。对数似然计算部805A以信号804为输入,计算比特b0、b1、b2及b3的对数似然(loglikelihood),输出对数似然信号806A。但是,在对数似然的计算中,计算“1”时的对数似然及“0”时的对数似然。其计算方法如式(28)、式(29)及式(30)所示,详细情况记载于非专利文献2、非专利文献3中。同样地,对数似然计算部805B以信号804为输入,计算比特b4、b5、b6及b7的对数似然,输出对数似然信号806B。解交错器(807A)以对数似然信号806A为输入,进行与交错器(图3的交错器(304A))对应的解交错,输出解交错后的对数似然信号808A。同样地,解交错器(807B)以对数似然信号806B为输入,进行与交错器(图3的交错器(304B))对应的解交错,输出解交错后的对数似然信号808B。对数似然比计算部809A以解交错后的对数似然信号808A为输入,计算由图3的编码器302A编码后的比特的对数似然比(LLR:Log-LikelihoodRatio),输出对数似然比信号810A。同样,对数似然比计算部809B以解交错后的对数似然信号808B为输入,计算由图3的编码器302B编码后的比特的对数似然比(LLR:Log-LikelihoodRatio),输出对数似然比信号810B。软入软出解码器811A以对数似然比信号810A为输入来进行解码,输出解码后的对数似然比812A。同样,软入软出解码器811B以对数似然比信号810B为输入来进行解码,输出解码后的对数似然比812B。<反复解码(反复检波)的情况,反复次数k>交错器(813A)以第k-1次的由软入软出解码器得到的解码后的对数似然比812A为输入来进行交错,输出交错后的对数似然比814A。此时,交错器(813A)的交错模式和图3的交错器(304A)的交错模式相同。交错器(813B)以第k-1次的由软入软出解码器得到的解码后的对数似然比812B为输入来进行交错,输出交错后的对数似然比814B。此时,交错器(813B)的交错模式和图3和交错器(304B)的交错模式相同。INNERMIMO检波部803以基带信号816X、变形信道推定信号群817X、基带信号816Y、变形信道推定信号群817Y、交错后的对数似然比814A及交错后的对数似然比814B为输入。这里,不使用基带信号801X、信道推定信号群802X、基带信号801Y及信道推定信号群802Y,而使用基带信号816X、变形信道推定信号群817X、基带号816Y及变形信道推定信号群817Y,这是因为,由于反复解码而产生了延迟时间。INNERMIMO检波部803反复解码时的动作和初始检波时的动作的不同之处为,在信号处理时使用了交错后的对数似然比814A及交错后的对数似然比814B。INNERMIMO检波部803首先和初始检波时同样地求取E(b0,b1,b2,b3,b4,b5,b6,b7)。除此之外,还根据交错后的对数似然比814A及交错后的对数似然比814B求取与式(11)、式(32)对应的系数。然后,利用该求出的系数来修正E(b0,b1,b2,b3,b4,b5,b6,b7)的值,将其值设为E'(b0,b1,b2,b3,b4,b5,b6,b7),作为信号804而输出。对数似然计算部805A以信号804为输入,计算比特b0、b1、b2及b3的对数似然(loglikelihood),输出对数似然信号806A。其中,在对数似然的计算中,计算“1”时的对数似然及“0”时的对数似然。其计算方法如式(31)、式(32)、式(33)、式(34)及式(35)所示,并且记载在非专利文献2、非专利文献3中。同样地,对数似然计算部805B以信号804为输入,计算比特b4、b5、b6及b7的对数似然,输出对数似然信号806B。解交错器此后的动作和初始检波相同。还有,在图8中示出了进行反复检波时的信号处理部的结构,但是反复检波在获得良好的接收品质的方面并不是必须的结构,也可以仅有反复检波所需的结构部分,而没有交错器813A、813B的结构。此时,INNERMIMO检波部803不进行反复的检波。而且,在本实施方式中重要的部分是,进行H(t)×Y(t)×F的运算。还有,如非专利文献5等所示,也可以使用QR分解来进行初始检波及反复检波。另外,如非专利文献11所示,也可以根据H(t)×Y(t)×F,进行MMSE(MinimumMeanSquareError)、ZF(ZeroForcing)的线性运算,进行初始检波。图9是和图8不同的信号处理部的结构,是图4的发送装置所发送的调制信号所需的信号处理部。和图8的不同之处为软入软出解码器的个数,软入软出解码器901以对数似然比信号810A、810B为输入,进行解码,输出解码后的对数似然比902。分配部903以解码后的对数似然比902为输入,进行分配。其以外的部分是和图8相同的动作。如上,如本实施方式那样,当MIMO传输系统的发送装置从多根天线发送多个调制信号时,将预编码矩阵相乘,并且随着时间变更相位,规则地进行该相位的变更,由此,在直接波占主导的LOS环境下,与使用以往的空间复用MIMO传输时相比,可以获得提高接收装置中的数据的接收品质的效果。在本实施方式中,特别是针对接收装置的结构,限定天线数而说明了其动作,但是增加天线数也可以同样地实施。也就是说,接收装置中的天线数并不给本实施方式的动作、效果带来影响。另外,在本实施方式中,特别是以LDPC码为例进行了说明,但是并不限于此,另外,有关解码方法,作为软入软出解码器也不限于和乘积解码,还有其他的软入软出的解码方法,例如BCJR算法、SOVA算法及Max-log-MAP算法等。详细情况记载在非专利文献6中。另外,在本实施方式中,以单载波方式为例进行了说明,但是并不限于此,在实施了多载波传输的情况下也能够同样地实施。因此,例如在采用扩频通信方式、OFDM(OrthogonalFrequency-DivisionMultiplexing)方式、SC-FDMA(SingleCarrierFrequencyDivisionMultipleAccess)、SC-OFDM(SingleCarrierOrthogonalFrequency-DivisionMultiplexing)方式及非专利文献7等中所示的子波OFDM方式等的情况下,也能够同样地实施。另外,在本实施方式中,数据码元以外的码元、例如导频码元(导言、独特字等)及控制信息传输用的码元等在帧中可以任意配置。下面,作为多载波方式的一例,说明采用OFDM方式时的例子。图12表示采用OFDM方式时的发送装置的结构。在图12中,对于和图3同样地动作的部分,赋予相同的符号。OFDM方式相关处理部1201A以加权后的信号309A为输入,实施OFDM方式相关的处理,输出发送信号1202A。同样地,OFDM方式相关处理部1201B以相位变更后的信号309B为输入,输出发送信号1202B。图13表示图12的OFDM方式相关处理部1201A、1201B以后的结构的一例,与图12的1201A到312A相关的部分是1301A到1310A,与1201B到312B相关的部分是1301B到1310B。串并行变换部1302A对加权后的信号1301A(对应于图12的加权后的信号309A)进行串并行变换,输出并行信号1303A。排序部1304A以并行信号1303A为输入,进行排序,输出排序后的信号1305A。还有,有关排序将在后面详细说明。逆快速傅立叶变换部1306A以排序后的信号1305A为输入,实施逆快速傅立叶变换,输出逆傅立叶变换后的信号1307A。无线部1308A以逆傅立叶变换后的信号1307A为输入,执行频率变换及放大等的处理,输出调制信号1309A,调制信号1309A被从天线1310A作为电波输出。串并行变换部1302B对于加权并且变更相位后的信号1301B(对应于图12的相位变更后的信号309B)进行串并行变换,输出并行信号1303B。排序部1304B以并行信号1303B为输入,进行排序,输出排序后的信号1305B。还有,有关排序将在后面详细说明。逆快速傅立叶变换部1306B以排序后的信号1305B为输入,实施逆快速傅立叶变换,输出逆傅立叶变换后的信号1307B。无线部1308B以逆傅立叶变换后的信号1307B为输入,执行频率变换及放大等的处理,输出调制信号1309B,调制信号1309B被从天线1310B作为电波输出。在图3的发送装置中,因为不是采用多载波的传输方式,所以像图6那样,以成为4周期的方式来变更相位,沿时间轴方向配置了相位变更后的码元。在图12所示的采用OFDM方式的多载波传输方式的情况下,当然可以想到如图3那样进行预编码,沿时间轴方向配置变更相位后的码元,在每个(子)载波中进行上述处理的方式,而在多载波传输方式的情况下,可以想到利用频率轴方向或者频率轴·时间轴双方来进行配置的方法。在下面,对于这一点进行说明。图14表示横轴频率、纵轴时间上的图13的排序部1301A、1301B中的码元的排序方法的一例,频率轴由(子)载波0~(子)载波9构成,调制信号z1和z2在同一时刻(时间)使用同一频带,图14(A)表示调制信号z1的码元的排序方法,图14(B)表示调制信号z2的码元的排序方法。串并行变换部1302A对于作为输入的加权后的信号1301A的码元,按顺序编号为#0、#1、#2、#3、…。在此,由于考虑了周期为4的情形,因而#0、#1、#2、#3成为一周期量。同样地考虑,#4n、#4N+1、#4n+2、#4n+3(n为0以上的整数)成为一周期量。此时,如图14(a)那样,规则地配置为,从载波0开始按顺序配置码元#0、#1、#2、#3、…,并在时刻$1配置码元#0~#9,然后,在时刻$2配置码元#10~#19。还有,调制信号z1和z2是复信号。同样,串并行变换部1302B对于作为输入的加权并且变更相位后的信号1301B的码元,按顺序编号为#0、#1、#2、#3、…。在此,由于考虑了周期为4的情形,因而#0、#1、#2、#3分别进行不同的相位变更,#0、#1、#2、#3成为一周期量。若同样地考虑,则#4n、#4N+1、#4n+2、#4n+3(n为0以上的整数)分别进行不同的相位变更,#4n、#4N+1、#4n+2、#4n+3成为一周期量。此时,象图14(b)那样,规则地配置为,从载波0开始按顺序配置码元#0、#1、#2、#3、…,并在时刻$1配置码元#0~#9,然后,在时刻$2配置码元#10~#19。而且,图14(B)所示的码元群1402是使用图6所示的相位变更方法时的1周期量的码元,码元#0是使用图6的时刻u的相位时的码元,码元#1是使用图6的时刻u+1的相位时的码元,码元#2是使用图6的时刻u+2的相位时的码元,码元#3是使用图6的时刻u+3的相位时的码元。因此,在码元#x中,xmod4为0(用4除以x时的余数,因此,mod:modulo)时,码元#x是使用图6的时刻u的相位时的码元,xmod4为1时,码元#x是使用图6的时刻u+1的相位时的码元,xmod4为2时,码元#x是使用图6的时刻u+2的相位时的码元,xmod4为3时,码元#x是使用图6的时刻u+3的相位时的码元。还有,在本实施方式中,图14(A)所示的调制信号z1未变更相位。这样,在采用OFDM方式等的多载波传输方式的情况下,和单载波传输时不同,具有能够沿频率轴方向排列码元的特征。而且,码元的排列方法不限于图14的排列方法。对于其他的例子,使用图15、图16进行说明。图15表示和图14不同的横轴频率、纵轴时间上的图13的排序部1301A、1301B中的码元的排序方法的一例,图15(A)表示调制信号z1的码元的排序方法,图15(B)表示调制信号z2的码元的排序方法。图15(A)(B)和图14的不同之处为,调制信号z1的码元的排序方法与调制信号z2的码元的排序方法不同,在图15(B)中,将码元#0~#5配置于载波4~载波9中,将码元#6~#9配置于载波0~3中,随后,以同样的规则,将码元#10~#19配置于各载波中。此时,和图14(B)相同,图15(B)所示的码元群1502是使用图6所示的相位变更方法时的1周期量的码元。图16表示和图14不同的横轴频率、纵轴时间上的图13的排序部1301A、1301B中的码元的排序方法的一例,图16(A)表示调制信号z1的码元的排序方法,图16(B)表示调制信号z2的码元的排序方法。图16(A)(B)和图14的不同之处为,在图14中,将码元依次配置到载波中,而在图16中,未将码元依次配置到载波中。当然,在图16中,也可以与图15同样地,使调制信号z1的码元的排序方法和调制信号z2的排序方法不同。图17表示和图14~16不同的横轴频率、纵轴时间上的图13的排序部1301A、1301B中的码元的排序方法的一例,图17(A)表示调制信号z1的码元的排序方法,图17(B)表示调制信号z2的码元的排序方法。在图14~16中,将码元沿频率轴方向进行排列,而在图17中利用频率、时间轴的双方来配置码元。在图6中,说明了按4时隙切换相位的变更时的例子,而在此,以按8时隙来切换的情况为例进行说明。图17所示的码元群1702是使用相位变更方法时的1周期量的码元(因此是8码元),码元#0是使用时刻u的相位时的码元,码元#1是使用时刻u+1的相位时的码元,码元#2是使用时刻u+2的相位时的码元,码元#3是使用时刻u+3的相位时的码元,码元#4是使用时刻u+4的相位时的码元,码元#5是使用时刻u+5的相位时的码元,码元#6是使用时刻u+6的相位时的码元,码元#7是使用时刻u+7的相位时的码元。因此,在码元#x中,xmod8为0时,码元#x是使用时刻u的相位时的码元,xmod8为1时,码元#x是使用时刻u+1的相位时的码元,xmod8为2时,码元#x是使用时刻u+2的相位时的码元,xmod8为3时,码元#x是使用时刻u+3的相位时的码元,xmod8为4时,码元#x是使用时刻u+4的相位时的码元,xmod8为5时,码元#x是使用时刻u+5的相位时的码元,xmod8为6时,码元#x是使用时刻u+6的相位时的码元,xmod8为7时,码元#x是使用时刻u+7的相位时的码元。在图17码元的排列方法中,虽然使用在时间轴方向上为4时隙、在频率轴方向上为2时隙的总计4×2=8时隙,来配置1周期量的码元,但是此时,设一周期量的码元的数量为m×n码元(即相乘的相位存在m×n种。),为了配置1周期量的码元而使用的频率轴方向的时隙(载波数)为n,在时间轴方向上使用的时隙为m,优选为m>n。此时,直接波的相位为,时间轴方向的变动和频率轴方向的变动相比较为缓和。因此,为了减小恒定的直接波的影响,而进行本实施方式的规则相位的变更,因而希望在进行相位变更的周期内减小直接波的变动。因此,优选为m>n。另外,若考虑到上面的问题,与只在频率轴方向或者只按时间轴方向上排序码元相比,像图17那样,利用频率轴和时间轴的双方来进行排序,直接波变得恒定的可能性较高,易于得到本发明的效果。但是,若沿频率轴方向进行排列,则频率轴的变动较为剧烈,可能会得到分集增益,因此利用频率轴和时间轴的双方来进行排序的方法未必是最佳的方法。图18表示和图17不同的横轴频率、纵轴时间上的图13的排序部1301A、1301B中的码元的排序方法的一例,图18(A)表示调制信号z1的码元的排序方法,图18(B)表示调制信号z2的码元的排序方法。图18和图17同样,利用频率、时间轴的双方来配置码元,但是和图17的不同之处在于,在图17中,使频率方向优先,然后沿时间轴方向配置码元,与之相对,在图18中,使时间轴方向优先,然后沿时间轴方向配置码元。在图18中,码元群1802是使用相位变更方法时的1周期量的码元。还有,在图17、图18中,和图15同样,配置为调制信号z1的码元配置方法和调制信号z2的码元配置方法不同也能够同样地实施,并且,能够获得能够得到较高的接收品质这样的效果。另外,在图17、图18中,即便象图16那样未依次配置码元,也能够同样地实施,并且,能够获得能够得到较高的接收品质这样的效果。图22表示和上述不同的横轴频率、纵轴时间上的图13的排序部1301A、130B中的码元的排序方法的一例。考虑使用图6的时刻u~u+3那样的4时隙来规则地变更相位的情况。在图22中特征点在于,虽然沿频率轴方向依次排列码元,但是在进入到时间轴方向时,使循环进行n(在图22的例子中n=1)码元循环移位。在图22中的频率轴方向的码元群2210所示的4码元中,执行图6的时刻u~u+3的相位变更。此时,在#0的码元中进行使用时刻u的相位的相位变更,在#1中进行使用时刻u+1的相位的相位变更,在#2中进行使用时刻u+2的相位的相位变更,在#3中进行使用时刻u+3的相位的相位变更。对于频率轴方向的码元群2220来说也同样地,在#4的码元中进行使用时刻u的相位的相位变更,在#5中进行使用时刻u+1的相位的相位变更,在#6中进行使用时刻u+2的相位的相位变更,在#7中进行使用时刻u+3的相位的相位变更。在时间$1的码元中,虽然进行了上述的相位的变更,但是在时间轴方向上,进行了循环移位,所以针对码元群2201、2202、2203、2204,如下执行相位的变更。对于时间轴方向的码元群2201来说,在#0的码元中进行使用时刻u的相位的相位变更,在#9中进行使用时刻u+1的相位的相位变更,在#18中进行使用时刻u+2的相位的相位变更,在#27中进行使用时刻u+3的相位的相位变更。对于时间轴方向的码元群2202来说,在#28的码元中进行使用时刻u的相位的相位变更,在#1中进行使用时刻u+1的相位的相位变更,在#10中进行使用时刻u+2的相位的相位变更,在#19中进行使用时刻u+3的相位的相位变更。对于时间轴方向的码元群2203来说,在#20的码元中进行使用时刻u的相位的相位变更,在#29中进行使用时刻u+1的相位的相位变更,在#2中进行使用时刻u+2的相位的相位变更,在#11中进行使用时刻u+3的相位的相位变更。对于时间轴方向的码元群2204来说,在#12的码元中进行使用时刻u的相位的相位变更,在#21中进行使用时刻u+1的相位的相位变更,在#30中进行使用时刻u+2的相位的相位变更,在#3中进行使用时刻u+3的相位的相位变更。图22中的特征为,例如在着眼于#11的码元时,同一时刻的频率轴方向的两邻的码元(#10和#12)都使用和#11不同的相位来进行相位的变更,并且#11码元的同一载波的时间轴方向两邻的码元(#2和#20)都使用和#11不同的相位来进行相位的变更。而且,这并不限于#11的码元,在频率轴方向及时间轴方向上,在两旁存在码元的全部码元中都具有和#11的码元相同的特征。由此,有效地变更相位,不易受到直接波对稳定状况的影响,因此数据的接收品质得到改善的可能性增高。在图22中,作为n=1进行了说明,但是并不限于此,作为n=3也能够同样地实施。另外,在图22中,在沿频率轴排列码元,并且时间沿轴向前进时,由于具有对码元的配置顺序进行循环移位的特征,所以实现了上述特征,但是还有通过随机(也可以规则地)地配置码元来实现上述特征的方法。(实施方式2)在上述实施方式1中,变更了加权合成后的(以固定的预编码矩阵预编码后的)信号z(t)的相位。在此,公开能够获得和上述实施方式1相同的效果的相位变更方法的各种实施方式。在上述实施方式中,如图3及图6所示,构成为相位变更部317B仅对来自加权合成部600的一方的输出执行相位的变更。但是,作为执行相位变更的定时,也可以在由加权合成部600进行预编码之前执行,并且发送装置也可以取代图6所示的结构,而如图25所示,将相位变更部317B设置于加权合成部600的前部。这种情况下,也可以是,相位变更部317B对依据所选择的调制方式的映射的基带信号s2(t)执行规则相位的变更,输出s2'(t)=s2(t)y(t)(其中,y(t)随着t变更),加权合成部600对s2'(t)执行预编码,输出z2(t)(=W2s2'(t))(参见公式(42))并发送。另外,相位的变更也可以对两个调制信号s1(t)、s2(t)的双方执行,并且发送装置也可以取代图6所示的结构,而如图26所示,采用对加权合成部600的双方的输出设置相位变更部的结构。相位变更部317A和相位变更部317B同样地,规则地变更所输入的信号的相位,变更来自加权合成部的预编码后的信号z1'(t)的相位,将变更相位后的信号z1(t)输出给发送部。但是,相位变更部317A及相位变更部317B的相互变更相位的相位的程度在相同的定时内,执行图26所示的相位的变更。(其中,下面为一例,相位的变更方法不限于此。)在时刻u,图26的相位变更部317A执行相位的变更,以成为z1(t)=y1(t)z1'(t),并且,相位变更部317B执行相位的变更,以成为z2(t)=y2(t)z2'(t)。例如,如图26所示,在时刻u,y1(u)=ej0、y2(u)=e-jπ/2,在时刻u+1,y1(u+1)=ejπ/4、y2(u+1)=e-j3π/4,…,在时刻u+k,y1(u+k)=ejkπ/4、y2(u+k)=ej(-kπ/4-π/2),如此执行相位的变更。还有,规则地变更相位的周期既可以在相位变更部317A和相位变更部317B中相同,也可以是不同的周期。另外,如上所述,变更相位的定时也可以在由加权合成部执行预编码之前,发送装置也可以取代图26所示的结构,而采用图27所示的结构。在规则地变更两个调制信号的相位时,在各个发送信号中,例如作为控制信息而包含各自的相位变更模式的信息,接收装置可以通过取得该控制信息,来掌握发送装置所规则地切换的相位变更方法、即相位变更模式,由此,能够执行正确的解调(检波)。接下来,对于图6、图25的结构的变形例,使用图28、图29进行说明。图28和图6的不同之处为,存在与相位变更ON/OFF有关的信息2800以及将相位变更为z1'(t)、z2'(t)的某一个(按同一时刻或者同一频率,对z1'(t)、z2'(t)的某一个实施相位变更。)。因此,对z1'(t)、z2'(t)的某一个执行相位变更,所以图28的相位变更部317A、相位变更部317B存在执行相位变更(ON)的情况和不执行相位变更(OFF)的情况。该与ON/OFF有关的控制信息是与相位变更ON/OFF有关的信息2800。该与相位变更ON/OFF有关的信息2800从图3所示的信号处理方法信息生成部314输出。图28的相位变更部317A以成为z1(t)=y1(t)z1'(t)的方式执行相位的变更,并且,相位变更部317B以成为z2(t)=y2(t)z2'(t)的方式执行相位的变更。此时,例如z1'(t)按周期4进行相位变更。(此时,z2'(t)不进行相位变更。)因此,在时刻u,y1(u)=ej0、y2(u)=1,在时刻u+1,y1(u+1)=ejπ/2、y2(u+1)=1,在时刻u+2,y1(u+2)=ejπ、y2(u+2)=1,在时刻u+3,y1(u+3)=ej3π/2、y2(u+3)=1。接下来,例如z2'(t)按周期4进行相位变更。(此时,z1'(t)不进行相位变更。)因此,在时刻u+4,y1(u+4)=1、y2(u+4)=ej0,在时刻u+5,y1(u+5)=1、y2(u+5)=ejπ/2,在时刻u+6,y1(u+6)=1、y2(u+6)=ejπ,在时刻u+7,y1(u+7)=1、y2(u+7)=ej3π/2。因此,在上述的例子中,时刻8k时,y1(8k)=ej0、y2(8k)=1,时刻8k+1时,y1(8k+1)=ejπ/2、y2(8k+1)=1,时刻8k+2时,y1(8k+2)=ejπ、y2(8k+2)=1,时刻8k+3时,y1(8k+3)=ej3π/2、y2(8k+3)=1,时刻8k+4时,y1(8k+4)=1、y2(8k+4)=ej0,时刻8k+5时,y1(8k+5)=1、y2(8k+5)=ejπ/2,时刻8k+6时,y1(8k+6)=1、y2(8k+6)=ejπ,时刻8k+7时,y1(8k+7)=1、y2(8k+7)=ej3π/2如上所述,存在仅z1'(t)变更相位的时间和仅z2'(t)变更相位的时间。另外,通过仅z1'(t)变更相位的时间和仅z2'(t)变更相位的时间,构成相位变更的周期。另外,在上述情况下,使仅z1'(t)进行相位变更时的周期和仅z2'(t)进行相位变更时的周期相同,但是并不限于此,仅z1'(t)进行相位变更时的周期和仅z2'(t)进行相位变更时的周期也可以不同。另外,在上述的例子中,说明了在将z1'(t)按4周期进行相位变更之后将z2'(t)按4周期进行相位变更,但是并不限于此,z1'(t)的相位变更和z2'(t)的相位变更的顺序是任意的(例如,也可以交替进行z1'(t)的相位变更和z2'(t)的相位变更,还可以是依据某个规则的顺序,并且顺序也可以是随机的。)图29的相位变更部317A以成为s1'(t)=y1(t)s1(t)的方式进行相位的变更,并且,相位变更部317B以成为s2'(t)=y2(t)s2(t)的方式进行相位的变更。此时,例如s1(t)按周期4进行相位变更。(此时,s2(t)不进行相位变更。)因此,在时刻u,y1(u)=ej0、y2(u)=1,在时刻u+1,y1(u+1)=ejπ/2、y2(u+1)=1,在时刻u+2,y1(u+2)=ejπ、y2(u+2)=1,在时刻u+3,y1(u+3)=ej3π/2、y2(u+3)=1。接下来,例如s2(t)按周期4进行相位变更。(此时,s1(t)不进行相位变更。)因此,在时刻u+4,y1(u+4)=1、y2(u+4)=ej0,在时刻u+5,y1(u+5)=1、y2(u+5)=ejπ/2,在时刻u+6,y1(u+6)=1、y2(u+6)=ejπ,在时刻u+7,y1(u+7)=1、y2(u+7)=ej3π/2。因此,在上述的例子中时刻8k时,y1(8k)=ej0、y2(8k)=1,时刻8k+1时,y1(8k+1)=ejπ/2、y2(8k+1)=1,时刻8k+2时,y1(8k+2)=ejπ、y2(8k+2)=1,时刻8k+3时,y1(8k+3)=ej3π/2、y2(8k+3)=1,时刻8k+4时,y1(8k+4)=1、y2(8k+4)=ej0,时刻8k+5时,y1(8k+5)=1、y2(8k+5)=ejπ/2,时刻8k+6时,y1(8k+6)=1、y2(8k+6)=ejπ,时刻8k+7时,y1(8k+7)=1、y2(8k+7)=ej3π/2如上所述,存在仅s1(t)变更相位的时间和仅s2(t)变更相位的时间。另外,通过仅s1(t)变更相位的时间和仅s2(t)变更相位的时间,构成相位变更的周期。另外,在上述情况下,使仅s1(t)进行相位变更时的周期和仅s2(t)进行相位变更时的周期相同,但是并不限于此,仅s1(t)进行相位变更时的周期和仅s2(t)进行相位变更时的周期也可以不同。另外,在上述的例子,说明了在将s1(t)按4周期进行相位变更之后将s2(t)按4周期进行相位变更,但是并不限于此,s1(t)的相位变更和s2(t)的相位变更的顺序是任意的(例如,也可以交替进行s1(t)的相位变更和s2(t)的相位变更,还可以是依据某个规则的顺序,并且顺序也可以是随机的。)由此,能够使接收装置侧的接收到发送信号z1(t)及z2(t)时的各自的接收状态变得均等,并且通过在接收到的信号z1(t)及z2(t)各自的码元中周期性切换相位,能够提高纠错解码后的纠错能力,因而能够提高LOS环境下的接收品质。以上,采用实施方式2所示的结构也能够获得和上述实施方式1相同的效果。在本实施方式中,说明了单载波方式的例子,也就是对时间轴进行相位变更的情况,但是并不限于此,在进行多载波传输的情况下也能够同样地实施。因此,例如在采用扩频通信方式、OFDM(OrthogonalFrequency-DivisionMultiplexing)方式、SC-FDMA(SingleCarrierFrequencyDivisionMultipleAccess)、SC-OFDM(SingleCarrierOrthogonalFrequency-DivisionMultiplexing)方式及非专利文献7等中所示的子波OFDM方式等的情况下,也能够同样地实施。如前所述,在本实施方式中,作为进行相位变更的说明,说明了按时间t轴方向进行相位变更的情况,但是和实施方式1同样地,沿频率轴方向进行相位变更,也就是说,在本实施方式中,在t方向上的相位变更的说明中将t置换为f(f:频率((子)载波)),从而将本实施方式中说明的相位变更方法应用于频率方向的相位变更。另外,本实施方式的相位变更方法和实施方式1的说明同样,在对时间-频率方向的相位变更中也能够应用。因此,在图6、图25、图26及图27中表示按时间轴方向执行相位变更的情形,而在图6、图25、图26及图27中,相当于通过将时间t置换为载波f,来进行频率方向上的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是将(t)置换为(t、f),来按时间频率的块来进行相位变更。而且,在本实施方式中,数据码元以外的码元,例如导频码元(导言、独特字等)及控制信息传输用的码元等可以任意地配置到帧中。(实施方式3)在上述实施方式1及2中,规则地变更了相位。在本实施方式3中,公开如下的方法:从发送装置来看,在分散于各处的接收装置中,无论接收装置配置在哪里,各接收装置都获得良好的数据接收品质。在本实施方式3中,说明变更相位而得到的信号的码元配置。图31表示,在规则地变更相位的发送方式中,采用OFDM方式的多载波方式时的时间-频率轴上的信号的一部分码元的帧结构的一例。首先,说明对实施方式1中说明的2个预编码后的基带信号之中的一个基带信号(参见图6)进行相位变更时的例子。(还有,在图6中表示沿时间轴方向执行相位变更的情况,在图6中,相当于通过将时间t置换为载波f,来进行频率方向上的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是将(t)置换为(t、f),来按时间频率的块执行相位变更。)图31表示作为图12所示的相位变更部317B的输入的、调制信号z2'的帧结构,1个方形表示码元(其中,由于实施预编码而通常含有s1和s2双方的信号,但是根据预编码矩阵的结构不同,有时仅为s1和s2的一个信号。)。这里,着眼于图31的载波2、时刻$2的码元3100。还有,虽然在此记述为载波,但是也有时称呼为子载波。在载波2中,与时刻$2在时间上最邻接的码元、也就是载波2的时刻$1的码元3103和时刻$3的码元3101的各自的信道状态,和载波2的时刻$2的码元3100的信道状态相比,相关性非常高。同样地,在时刻$2,在频率轴方向上与载波2最邻接的频率的码元、也就是载波1的时刻$2的码元3104和时刻$2的载波3的码元3104的信道状态,和载波2的时刻$2的码元3100的信道状态相比,相关性都非常高。如上所述,码元3101、3102、3103及3104各自的信道状态和码元3100的信道状态的相关性非常高。在本说明书中,在规则地变更相位的发送方法中,作为相乘的相位,准备了N种相位(其中,N为2以上的整数)。在图31所示的码元中,例如附上了“ej0”这样的记述,这意味着,对该码元中的图6内的信号z2'乘以“ej0”而变更相位。也就是说,记述在图31的各码元中的值成为式(42)中的y(t)以及实施方式2中说明的z2(t)=y2(t)z2'(t)中的y2(t)的值。在本实施方式中,公开如下内容:利用在该按频率轴方向上相互邻接的码元及/或在时间轴方向上相互邻接的码元的信道状态的相关性较高的状况,在接收装置侧,获得较高的数据接收品质的变更相位后的码元的码元配置。作为在该接收侧获得较高的数据接收品质的条件,考虑<条件#1>、<条件#2>。<条件#1>像图6那样,在对预编码后的基带信号z2'规则地变更相位的发送方法中,采用OFDM那样的多载波传输方式的情况下,时间X·载波Y是数据传输用的码元(以下称为数据码元),在时间轴方向上邻接的码元,也就是时间X-1·载波Y及时间X+1·载波Y都是数据码元,在与这3个数据码元对应的预编码后的基带信号z2',也就是时间X·载波Y、时间X-1·载波Y及时间X+1·载波Y中的各个预编码后的基带信号z2'中,都执行不同的相位变更。<条件#2>象图6那样,在对预编码后的基带信号z2'规则地变更相位的发送方法中,采用OFDM的那种多载波传输方式的情况下,时间X·载波Y是数据传输用的码元(以下称为数据码元),并且是在频率轴方向上邻接的码元、即时间X·载波Y-1及时间X·载波Y+1都是数据码元的情况下,在与这3个数据码元对应的预编码后的基带信号z2'、即时间X·载波Y、时间X·载波Y-1及时间X·载波Y+1中的各个预编码后的基带信号z2'中,都执行不同的相位变更。而且,存在满足<条件#1>的数据码元即可。同样,存在满足<条件#2>的数据码元即可。导出该<条件#1><条件#2>的原因如下。在发送信号中存在某个码元(下面称为码元A),与该码元A在时间上邻接的码元各自的信道状态如上所述,和码元A的信道状态之间的相关性较高。因此,若在时间上邻接的3码元中使用不同的相位,则即使在LOS环境下码元A是很差的接收品质(虽然作为SNR得到了较高的接收品质,但是因为直接波的相位关系是很差的状况,所以是接收品质较差的状态),在剩余的与码元A邻接的2码元中,能够获得良好的接收品质的可能性也非常高,其结果为,纠错解码后能够获得良好的接收品质。同样地,在发送信号中存在某个码元(下面称为码元A),与该码元A在频率上邻接的码元各自的信道状态如上所述,和码元A的信道状态之间的相关性较高。因此,若在频率上邻接的3码元中使用不同的相位,则尽管在LOS环境下码元A是很差的接收品质(虽然作为SNR得到了较高的接收品质,但是因为直接波的相位关系是很差的状况,所以是接收品质较差的状态),在剩余的与码元A邻接的2码元中,能够获得良好的接收品质的可能性也非常高,其结果为,纠错解码后能够获得良好的接收品质。另外,若将<条件#1>和<条件#2>组合,则在接收装置中,能够进一步提高数据的接收品质。因此,能够导出下面的<条件#3>。<条件#3>像图6那样,在对预编码后的基带信号z2'规则地变更相位的发送方法中,采用OFDM那样的多载波传输方式的情况下,时间X·载波Y是数据传输用的码元(下面称呼为数据码元),并且是在时间轴方向上邻接的码元、即时间X-1·载波Y及时间X+1·载波Y都是数据码元,并且是在频率轴方向上邻接的码元、即时间X·载波Y-1及时间X·载波Y+1都是数据码元的情况下,在与这5个数据码元对应的预编码后的基带信号z2'、即时间X·载波Y、时间X-1·载波Y、时间X+1·载波Y、时间X·载波Y-1及时间X·载波Y+1中的各个预编码后的基带信号z2'中,都执行不同的相位变更。这里,对“不同的相位变更”进行补充。相位变更在0弧度到2π弧度内定义。例如,假设在时间X·载波Y中,对图6的预编码后的基带信号z2'实施的相位变更为ejθX,Y,在时间X-1·载波Y中,对图6的预编码后的基带信号z2'实施的相位变更为ejθX-1,Y,在时间X+1·载波Y中,对图6的预编码后的基带信号z2'实施的相位变更为ejθX+1,Y,则0弧度≦θX,Y<2π、0弧度≦θX-1,Y<2π、0弧度≦θX+1,Y<2π。因此,在<条件#1>中,θX,Y≠θX-1,Y且θX,Y≠θX+1,Y且θX+1,Y≠θX-1,Y成立。若同样地考虑,在<条件#2>中,θX,Y≠θX,Y-1且θX,Y≠θX,Y+1且θX,Y-1≠θX-1,Y+1成立,在<条件#3>中,θX,Y≠θX-1,Y且θX,Y≠θX+1,Y且θX,Y≠θX,Y-1且θX,Y≠θX,Y+1且θX-1,Y≠θX+1,Y且θX-1,Y≠θX,Y-1且θX-1,Y≠θX,Y+1且θX+1,Y≠θX,Y-1且θX+1,Y≠θX,Y+1且θX,Y-1≠θX,Y+1成立。而且,存在满足<条件#3>的数据码元即可。图31是<条件#3>的例子,其以如下方式排列:对与码元3100对应的图6预编码后的基带信号z2'相乘的相位、对与码元3101对应的图6预编码后的基带信号z2'、与3103对应的图6预编码后的基带信号z2'相乘的相位、以及对与在频率上邻接的码元3102对应的图6预编码后的基带信号z2'、与3104对应的图6预编码后的基带信号z2'相乘的相位相互不同,上述码元3100对应于码元A,上述码元3101与码元3100在时间上邻接;因此,尽管在接收侧码元3100的接收品质可能很差,但是其邻接的码元的接收品质变得非常高,所以能够确保纠错解码后的较高的接收品质。图32表示根据该条件来变更相位而得到的码元的配置例。从图32可知,在任一的数据码元中,对于其相位在频率轴方向及时间轴方向的双方上相互邻接的码元所变更的相位的程度成为相互不同的相位变更量。通过这样构成,能够进一步提高接收装置中的纠错能力。也就是说,在图32中,在时间轴方向上邻接的码元中存在数据码元的情况下,<条件#1>在全部的X、全部的Y中成立。同样,在图32中,在频率方向上邻接的码元中存在数据码元的情况下,<条件#2>在全部的X、全部的Y中成立。同样地,在图32中,在频率方向上邻接的码元中存在数据码元,且在时间轴方向上邻接的码元中存在数据码元的情况下,<条件#3>在全部的X、全部的Y中成立。下面,通过实施方式2中说明的、对2个预编码后的基带信号进行相位变更时(参见图26)的例子来进行说明。像图26那样,在对预编码后的基带信号z1'及预编码后的基带信号z2'的双方赋予相位变更的情况下,相位变更方法有数个方法。详细说明这一点。作为方法1,预编码后的基带信号z2'的相位变更如前所述,如图32那样进行相位变更。在图32中,预编码后的基带信号z2'的相位变更设为周期10。但是,如前所述,为了满足<条件#1><条件#2><条件#3>,在(子)载波1中,随着时间变更对预编码后的基带信号z2'实施的相位变更。(在图32中,实施了这种变更,但是也可以设为周期10,而采用别的相位变更方法)而且,预编码后的基带信号z1'的相位变更如图33那样,预编码后的基带信号z2'的相位变更为,周期10的1周期量的相位变更的值为一定。在图33中,在包含(预编码后的基带信号z2'的相位变更的)1周期量在内的时刻$1,预编码后的基带信号z1'的相位变更的值为ej0,在包含接下来的(预编码后的基带信号z2'的相位变更的)1周期量的时刻$2,预编码后的基带信号z1'的相位变更的值为ejπ/9,…。还有,在图33所示的码元中,例如附上了“ej0”这样的记述,这意味着,对该码元内图26中的信号z1',乘以“ej0”而变更了相位。也就是说,记述在图33的各码元中的值成为实施方式2中所说明的z1(t)=y1(t)z1'(t)中的y1(t)的值。预编码后的基带信号z1'的相位变更如图33那样,预编码后的基带信号z2'的相位变更为,周期10的1周期量的相位变更的值设为一定,进行相位变更的值和1周期量的编号一起变更。(如上所述,在图33中,对于第1个1周期量设为ej0,对于第2个1周期量设为ejπ/9,…。)通过上述那样构成,预编码后的基带信号z2'的相位变更为周期10,并且能够获得如下效果:考虑了预编码后的基带信号z1'的相位变更和预编码后的基带信号z2'的相位变更的双方时的周期能够大于10。因此,能够提高接收装置的数据接收品质。作为方法2,预编码后的基带信号z2'的相位变更如前所述,如图32那样执行相位变更。在图32中,预编码后的基带信号z2'的相位变更设为周期10。但是,如前所述,为了满足<条件#1><条件#2><条件#3>,在(子)载波1中,随着时间变更了对预编码后的基带信号z2'实施的相位变更。(在图32中,实施了这种变更,但是也可以设为周期10,而采用别的相位变更方法)而且,预编码后的基带信号z1'的相位变更如图30所示,预编码后的基带信号z2'的相位变更进行和周期10不同的周期3内的相位变更。还有,在图30所示的码元中,例如附上了“ej0”这样的记述,这意味着,对该码元内的图26中的信号z1'乘以“ej0”而变更了相位。也就是说,记述在图30的各码元中的值成为实施方式2中所说明的z1(t)=y1(t)z1'(t)中y1(t)的值。通过如上构成,预编码后的基带信号z2'的相位变更是周期10,并且能够获得如下的效果:考虑了预编码后的基带信号z1'的相位变更和预编码后的基带信号z2'的相位变更的双方时的周期为30,考虑了预编码后的基带信号z1'的相位变更和预编码后的基带信号z2'的相位变更的双方时的周期大于10。因此,能够提高接收装置的数据接收品质。作为方法2的一个有效方法,在将预编码后的基带信号z1'的相位变更的周期设为N,将预编码后的基带信号z2'的相位变更的周期设为M时,特别是若N和M是互为素数的关系,则具有如下优点:考虑到预编码后的基带信号z1'的相位变更和预编码后的基带信号z2'的相位变更的双方时的周期能够容易地设定为N×M这样的较大的周期的优点,即便N和M是互为素数的关系,也能够增大周期。还有,本实施方式3的相位变更方法是一例,并不限于此,如同实施方式1、实施方式2中所说明的那样,无论按频率轴方向进行相位变更,或按时间轴方向进行相位变更,或者按时间-频率的块执行相位变更,都同样地具有能够提高接收装置中数据的接收品质的效果。除了上面所说明的帧结构之外,还可以想到在数据码元间插入导频码元(SP(ScatteredPilot))或传输控制信息的码元等。详细说明这种情况下的相位变更。图47表示,调制信号(预编码后的基带信号)z1或者z1'及调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构,图47(a)是调制信号(预编码后的基带信号)z1或者z1'的时间-频率轴上的帧结构,图47(b)是调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构。在图47中,4701表示导频码元,4702表示数据码元,数据码元4702是实施了预编码或者预编码和相位变更后的码元。图47像图6那样,表示对预编码后的基带信号z2'进行相位变更时的码元配置(对预编码后的基带信号z1不进行相位变更)。(还有,在图6中示出了按时间轴方向进行相位变更的情况,但是在图6中,相当于通过将时间t置换为载波f来进行频率方向上的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是说将(t)置换为(t、f),来按时间频率的块执行相位变更。)因此,记述在图47的预编码后的基带信号z2'的码元中的数值表示相位的变更值。还有,图47的预编码后的基带信号z1'(z1)的码元由于不进行相位变更,因而未记述数值。在图47中重要之处为,对于预编码后的基带信号z2'的相位变更是对数据码元、也就是已经实施了预编码的码元实施的。(这里记述为码元,但是在这里所述的码元中,因为已经实施预编码,所以含有s1的码元和s2的码元的双方。)因此,对z2'内所插入的导频码元不实施相位变更。图48表示调制信号(预编码后的基带信号)z1或者z1'及调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构,图48(a)是调制信号(预编码后的基带信号)z1或者z1'的时间-频率轴上的帧结构,图48(b)是调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构。在图48中,4701表示导频码元,4702表示数据码元,数据码元4702是实施了预编码和相位变更的码元。图48像图26那样,表示对预编码后的基带信号z1'及预编码后的基带信号z2'进行相位变更时的码元配置。(还有,虽然在图26中示出了按时间轴方向进行相位变更的情况,但是在图26中,相当于通过将时间t置换为载波f来进行频率方向上的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是将(t)置换为(t、f),来按时间频率的块进行相位变更。)从而,记述在图48的预编码后的基带信号z1'及预编码后的基带信号z2'的码元中的数值表示相位的变更值。在图48中重要之处为,对于预编码后的基带信号z1'的相位变更是对数据码元、即已经实施了预编码的码元实施的,并且,对于预编码后的基带信号z2'的相位变更是对数据码元、即已经实施了预编码的码元实施的。(这里记述为码元,但是在这里所述的码元中,因为已经实施了预编码,所以含有s1的码元和s2的码元的双方。)因此,对z1'内所插入的导频码元不实施相位变更,并且,对z2'内插入的导频码元不实施相位变更。图49表示调制信号(预编码后的基带信号)z1或者z1'及调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构,图49(a)是调制信号(预编码后的基带信号)z1或者z1'的时间-频率轴上的帧结构,图49(b)是调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构。在图49中,4701是导频码元,4702是数据码元,4901是零码元,并且基带信号的同相成分I=0,正交成分Q=0。此时,数据码元4702是实施了预编码或者预编码和相位变更后的码元。图49和图47的不同为数据码元以外的码元的构成方法,并且在调制信号z1'中插入了导频码元的时间和载波上,调制信号z2'变成零码元(nullsymbol),相反,在调制信号z2'中插入了导频码元的时间和载波上,调制信号z1'变成零码元。图49像图6那样,表示对预编码后的基带信号z2'进行相位变更时的码元配置(对预编码后的基带信号z1不进行相位变更)。(还有,虽然在图6中示出了按时间轴方向进行相位变更的情况,但是在图6中,相当于通过将时间t置换为载波f来进行按频率方向的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是将(t)置换为(t、f),来按时间频率的块进行相位变更。)因此,记述在图49的预编码后的基带信号z2'的码元中的数值表示相位的变更值。还有,图49的预编码后的基带信号z1'(z1)的码元由于不进行相位变更,因而未记述数值。在图49中重要之处为,对于预编码后的基带信号z2'的相位变更是对数据码元、即已经实施了预编码的码元实施的。(这里记述为码元,但是在这里所述的码元中,因为已经实施了预编码,所以含有s1的码元和s2的码元的双方。)从而,对z2'内所插入的导频码元不实施相位变更。图50表示调制信号(预编码后的基带信号)z1或者z1'及调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构,图50(a)是调制信号(预编码后的基带信号)z1或者z1'的时间-频率轴上的帧结构,图50(b)是调制信号(预编码后的基带信号)z2'的时间-频率轴上的帧结构。在图50中,4701是导频码元,4702是数据码元,4901是零码元,并且基带信号的同相成分I=0,正交成分Q=0。此时,数据码元4702是实施了预编码或者预编码和相位变更后的码元。图50和图48的不同为数据码元以外的码元的构成方法,并且在调制信号z1'中插入了导频码元的时间和载波上,调制信号z2'变成零码元,相反,在调制信号z2'中插入了导频码元的时间和载波上,调制信号z1'变成零码元。图50像图26那样,表示对预编码后的基带信号z1'及预编码后的基带信号z2'进行相位变更时的码元配置。(还有,在图26中表示按时间轴方向进行相位变更的情形,但是在图26中,相当于通过将时间t置换为载波f来进行按频率方向的相位变更,并且相当于通过将时间t置换为时间t、频率f,也就是将(t)置换为(t、f),来按时间频率的块执行相位变更。)因此,记述在图50的预编码后的基带信号z1'及预编码后的基带信号z2'的码元中的数值表示相位的变更值。在图50中重要之处为,对于预编码后的基带信号z1'的相位变更是对数据码元、即已经实施了预编码的码元实施的,并且,对于预编码后的基带信号z2'的相位变更是对数据码元、即已经实施了预编码的码元实施的。(这里记述为码元,但是在这里所述的码元中,因为已经实施了预编码,所以含有s1的码元和s2的码元的双方。)从而,对z1'内所插入的导频码元不实施相位变更,并且,对z2'内所插入的导频码元不实施相位变更。图51表示生成图47、图49的帧结构的调制信号并发送的发送装置的结构的一例,对于和图4同样进行动作的部分,附上相同的符号。在图51中,加权合成部308A、308B及相位变更部317B仅在示出帧结构信号313是数据码元的定时的时刻进行动作。图51的导频码元(兼作零码元生成)生成部5101在帧结构信号313表示是导频码元(且零码元)的情况下,输出导频码元的基带信号5102A及5102B。虽然在图47到图50的帧结构中未示出,但是在采用不实施预编码(以及不实施相位旋转)的例如从1根天线发送调制信号的方式(这种情况下,不从另一根天线传输信号)、或者使用了空时码(特别是空时块码)的传输方式来发送控制信息码元的情况下,控制信息码元生成部5104以控制信息5103及帧结构信号313为输入,在帧结构信号313表示是控制信息码元时,输出控制信息码元的基带信号5102A、5102B。图51的无线部310A、310B根据作为输入的多个基带信号之中的帧结构信号313,从多个基带信号选择希望的基带信号。然后,实施OFDM信号处理,分别输出依据帧结构的调制信号311A、311B。图52表示生成图48、图50帧结构的调制信号并发送的发送装置的结构的一例,对于和图4、图51同样地进行动作的部分,附上相同的符号。对图51所添加的相位变更部317A仅在帧结构信号313表示是数据码元的定时的时刻才进行动作。其他与图51的动作相同。图53是和图51不同的发送装置的构成方法。以下说明不同之处。相位变更部317B像图53那样,以多个基带信号为输入。然后,在帧结构信号313表示是数据码元的情况下,相位变更部317B对预编码后的基带信号316B实施相位变更。然后,在帧结构信号313表示是导频码元(或者零码元)或者控制信息码元的情况下,相位变更部317B停止相位变更的动作,直接输出各码元的基带信号。(作为解释,只要认为强制进行与“ej0”对应的相位旋转即可。)选择部5301以多个基带信号为输入,选择帧结构信号313所示的码元的基带信号并输出。图54是和图52不同的发送装置的构成方法。下面说明不同之处。相位变更部317B像图54那样,以多个基带信号为输入。然后,在帧结构信号313表示是数据码元的情况下,相位变更部317B对预编码后的基带信号316B实施相位变更。然后,在帧结构信号313表示是导频码元(或者零码元)或者控制信息码元的情况下,相位变更部317B停止相位变更的动作,直接输出各码元的基带信号。(作为解释,认为强制进行与“ej0”对应的相位旋转即可。)同样地,相位变更部5201像图54那样,以多个基带信号为输入。然后,在帧结构信号313表示是数据码元的情况下,相位变更部5201对预编码后的基带信号309A实施相位变更。然后,在帧结构信号313表示是导频码元(或者零码元)或者控制信息码元的情况下,相位变更部5201停止相位变更的动作,直接输出各码元的基带信号输出。(作为解释,认为强制进行与“ej0”对应的相位旋转即可)在上面的说明中,以导频码元、控制码元及数据码元为例进行了说明,但是并不限于此,重要的是,只要采用和预编码不同的传输方法,例如使用了1天线发送、空时块码的传输方式等进行传输的码元,则同样地不赋予相位变更,与此相反,在本发明中重要的是,对于进行了预编码的码元进行相位变更。因此,本发明的特征为,并不是在时间-频率轴上的帧结构内的全部码元中进行相位变更,而是仅进行了预编码的信号赋予相位变更。(实施方式4)在上述实施方式1及2中,公开出规则地变更相位的情形,在实施方式3中,公开出使相互邻接的码元的相位变更之程度不同的情形。在本实施方式4中,表示相位变更方法根据发送装置使用的调制方式、纠错码的编码率,也可以不同。在下面的表1中,表示出按照发送装置所设定的各种设定参数来设定的相位变更方法一例。[表1]表1内的#1意味着上述实施方式1的调制信号s1(发送装置所设定的调制方式的基带信号s1),#2意味着调制信号s2(发送装置所设定的调制方式的基带信号s2)。表1内的编码率的列表示对于#1、#2的调制方式而由纠错码设定的编码率。表1内的相位变更模式的列如同实施方式1到实施方式3中所说明的那样,表示对预编码后的基带信号z1(z1')、z2(z2')实施的相位变更方法,虽然象A、B、C、D、E、…那样设定了相位变更模式,但是这实际上是表示变更相位的程度的变化的信息,例如,表示上述公式(46)或公式(47)所示的那种变更模式。还有,在表1内的相位变更模式的例子中记述为“‐”,这意味着不执行相位变更。还有,表1所示的调制方式或编码率的组合是一例,也可以包含表1所示的调制方式之外的调制方式(例如128QAM或256QAM等)或编码率(例如7/8等)。另外,如实施方式1所示,纠错码也可以对s1、s2分别设定(还有,在表1的情况下,像图4那样,设为实施一个纠错码的编码的情形。)。另外,也可以将相互不同的多个相位变更模式与相同的调制方式及编码率建立关联。发送装置对接收装置发送表示各相位变更模式的信息,接收装置通过参照该信息和表1来确定相位变更模式,执行解调及解码。还有,在相位变更模式相对于调制方式及纠错方式唯一决定的情况下,只要发送装置将调制方式和纠错方式的信息发送给接收装置,接收装置就可以通过取得其信息来识别相位变更模式,因而这种情况下,相位变更模式的信息不一定需要。在实施方式1到实施方式3中,说明了对预编码后的基带信号进行相位变更的情况,但不仅是相位,也可以和相位变更同样地以周期规则地变更振幅。因此,在该表1中,也可以与规则地变更调制信号的振幅的振幅变更模式建立对应。这种情况下,在发送装置中,只要在图3或图4的加权合成部308A的后面具备变更振幅的振幅变更部,或者在加权合成部308B的后面具备变更振幅的振幅变更部即可。还有,既可以对预编码后的基带信号z1(t)、z2(t)的一个实施振幅变更(这种情况下,只要在加权合成部308A、308B任一个的后面具备振幅变更部即可),也可以对双方实施振幅变更。再者,虽然在上述表1中未示出,但也可以不是规则地变更相位,而设为由映射部规则地变更映射方法的结构。也就是说,将调制信号s1(t)的映射方式从16QAM、将调制信号s2(t)的映射方式从16QAM进行变更,例如像16QAM→16APSK(16AmplitudePhaseShiftKeying)→在I-Q平面上作为和16QAM、16APSK不同的信号点配置的第1映射方法→在I-Q平面上作为和16QAM、16APSK不同的信号点配置的第2映射方法→…那样,规则地变更适用于调制信号s2(t)的映射方式,和如上所述规则地变更相位的情形相同,能够在接收装置中,获得使数据的接收品质得到提高的效果。另外,本发明也可以是规则地变更相位的方法、规则地变更映射方法的方法及变更振幅的方法任一个的组合,另外,也可以作为考虑到其全部来发送发送信号的结构。采用本实施方式,在单载波方式、多载波传输任一个的情况下,都能够实施。因此,对于例如采用扩频通信方式、OFDM(OrthogonalFrequency-DivisionMultiplexing)方式、SC-FDMA(SingleCarrierFrequencyDivisionMultipleAccess)、SC-OFDM(SingleCarrierOrthogonalFrequency-DivisionMultiplexing)方式及非专利文献7等中所示的子波OFDM方式等的情况,也能够实施。如前所述,在本实施方式中,作为进行相位变更、振幅变更及映射变更的说明,说明了在时间t轴方向上进行相位变更、振幅变更及映射变更的情况,但是和实施方式1同样,和在频率轴方向上进行相位变更时同样,也就是说,在本实施方式中,在t方向上的相位变更、振幅变更及映射变更的说明中,通过将t置换为f(f:频率((子)载波)),将本实施方式中所说明的相位变更、振幅变更及映射变更应用于频率方向上的相位变更、振幅变更及映射变更。另外,本实施方式的相位变更、振幅变更及映射变更方法和实施方式1的说明相同,对针对时间-频率方向的相位变更、振幅变更及映射变更,也能够应用。而且,在本实施方式中,除数据码元之外的码元,例如导频码元(导言、独特字等)、控制信息传输用的码元等可以采用任意的方式配置到帧中。(实施方式A1)在本实施方式中,详细说明非专利文献12~非专利文献15所示的、采用QC(QuasiCyclic)LDPC(Low-DensityPrity-Check)码(也可以不是QC-LDPC码,而是LDPC码)、LDPC码和BCH码(Bose-Chaudhuri-Hocquenghemcode)的连接码、以及使用了截尾的Turbo码或者Duo-BinaryTurboCode等的块码时的、规则地变更相位的方法。在此,作为一例,以发送s1、s2的2个流的情形为例进行说明。但是,当使用块码进行编码时,不需要控制信息等时,构成编码后的块的比特数和构成块码的比特数(但是,也可以在其中含有下面所述的那种控制信息等。)一致。当使用块码进行了编码时,需要控制信息等(例如CRC(cyclicredundancycheck)、传输参数等)时,构成编码后的块的比特数也有时是构成块码的比特数和控制信息等的比特数之和。图34是表示使用块码时,1个编码后的块所需要的码元数及时隙数的变化的图。图34是例如图4的发送装置所示,发送s1、s2的2个流,并且发送装置具有1个编码器时的“表示使用块码时,1个编码后的块所需要的码元数、时隙数的变化的图”。(此时,作为传输方式,也可以采用单载波传输或OFDM那样的多载波传输的任一个。)如图34所示,将块码中的构成1个编码后的块的比特数设为6000比特。为了发送该6000比特,在调制方式为QPSK时需要3000码元,16QAM时需要1500码元,64QAM时需要1000码元。而且,在图4的发送装置中,由于同时发送2个流,所以在调制方式为QPSK时,前述的3000码元给s1分配1500码元,给s2分配1500码元,因此,为了发送由s1发送的1500码元和由s2发送1500码元,需要1500时隙(在此命名为“时隙”。)。同样地考虑,在调制方式为16QAM时,为了发送构成1个编码后的块的全部比特,需要750时隙,在调制方式为64QAM时,为了发送构成1块的全部比特,需要500时隙。接下来,说明在规则地变更相位的方法中,上面所定义的时隙和相乘的相位之间的关系。在此,将为规则地变更相位的方法所准备的相位变更值(或者相位变更集合)的个数设为5。也就是说,为了图4发送装置的相位变更部,要准备5个相位变更值(或者相位变更集合)(成为实施方式1到实施方式4中的“周期”)(象图6那样,在只对预编码后的基带信号z2'执行相位变更的情况下,为了实施周期5的相位变更,只要准备5个相位变更值就可以。另外,象图26那样,在对预编码后的基带信号z1'及z2'的双方执行相位变更的情况下,为了1时隙,需要2个相位变更值。将该2个相位变更值称为相位变更集合。因此,这种情况下,为了实施周期5的相位变更,只要准备5个相位变更集合即可)。将该5个相位变更值(或者,相位变更集合)表达为PHASE[0]、PHASE[1]、PHASE[2]、PHASE[3]、PHASE[4]。在调制方式为QPSK时,在发送构成1个编码后的块的比特数6000比特所需的上述的1500时隙中,使用相位PHASE[0]的时隙需要为300时隙,使用相位PHASE[1]的时隙需要为300时隙,使用相位PHASE[2]的时隙需要为300时隙,使用相位PHASE[3]的时隙需要为300时隙,使用相位PHASE[4]的时隙需要为300时隙。其原因为,若在使用的相位中存在不平衡,则使用了较多数量的相位的影响较大,在接收装置中,成为依赖于该影响的数据的接收品质。同样,在调制方式为16QAM时,在发送构成1个编码后的块的比特数6000比特所需的上述750时隙中,使用相位PHASE[0]的时隙需要为150时隙,使用相位PHASE[1]的时隙需要为150时隙,使用相位PHASE[2]的时隙需要为150时隙,使用相位PHASE[3]的时隙需要为150时隙,使用相位PHASE[4]的时隙需要为150时隙。同样,在调制方式为64QAM时,在发送构成1个编码后的块的比特数6000比特所需的上述500时隙中,使用相位PHASE[0]的时隙需要为100时隙,使用相位PHASE[1]的时隙需要为100时隙,使用相位PHASE[2]的时隙需要为100时隙,使用相位PHASE[3]的时隙需要为100时隙,使用相位PHASE[4]的时隙需要为100时隙。如上,在规则地变更相位的方法中,在将准备的相位变更值(或者相位变更集合)设为N个(将N个不同的相位表达为PHASE[0]、PHASE[1]、PHASE[2]、…、PHASE[N-2]、PHASE[N-1])时,当发送全部构成1个编码后的块的比特时,把使用相位PHASE[0]的时隙数设为K0,把使用相位PHASE[1]的时隙数设为K1,把使用相位PHASE[i]的时隙数设为Ki(i=0,1,2,…,N-1(i为0以上且N-1以下的整数)),把使用相位PHASE[N-1]的时隙数设为KN-1,此时,<条件#A01>K0=K1=…=Ki=…=KN-1,也就是说,Ka=Kb,(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)。而且,在通信系统支持多个调制方式,并且从所支持的调制方式选择使用的情况下,在所支持的调制方式中,<条件#A01>成立即可。但是,在支持多个调制方式的情况下,一般来说,能够通过各调制方式由1码元发送的比特数不同(根据情况,也可能相同。),根据情况的不同,也有时存在不能满足<条件#A01>的调制方式。这种情况下,取代<条件#A01>而满足下面的条件即可。<条件#A02>Ka和Kb之差为0或者1,也就是说,|Ka―Kb|为0或者1(fo其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)图35是表示使用块码时,2个编码后的块所需要的码元数及时隙数的变化的图。图35是如图3的发送装置及图12的发送装置所示,发送s1、s2的2个流,并且发送装置具有2个编码器时的“表示使用块码时1个编码后的块所需要的码元数及时隙数的变化的图”。(此时,作为传输方式,也可以采用单载波传输、OFDM那样的多载波传输的任一个。)如图35所示,将块码中的构成1个编码后的块的比特数设为6000比特。为了发送该6000比特,在调制方式为QPSK时需要3000码元,16QAM时需要1500码元,64QAM时需要1000码元。而且,在图3的发送装置及图12的发送装置中,由于同时发送2个流,并且存在2个编码器,所以通过2个流传输不同的码块。因此,在调制方式为QPSK时,由s1、s2在同一区间内发送2个编码块,所以例如由s1发送第1编码后的块,由s2发送第2编码块,因此,为了发送第1、第2编码后的块,需要3000时隙。同样地考虑,在调制方式为16QAM时,为了发送构成2个编码后的块的全部比特,需要1500时隙,在调制方式为64QAM时,为了发送构成2个编码后的块的全部比特,需要1000时隙。下面,说明在规则地变更相位的方法中,上面所定义的时隙和相乘的相位之间的关系。在此,将为规则地变更相位的方法所准备的相位变更值(或者相位变更集合)的个数设为5。也就是说,为了图3及图12发送装置的相位变更部,要准备5个相位变更值(或者相位变更集合)(成为实施方式1到实施方式4中的“周期”)(像图6那样,仅对预编码后的基带信号z2'进行相位变更的情况下,为了实施周期5的相位变更,只要准备5个相位变更值即可。另外,像图26那样,对预编码后的基带信号z1'及z2'的双方进行相位变更的情况下,为了1时隙,需要2个相位变更值。将该2个相位变更值称为相位变更集合。因此,这种情况下,为了实施周期5的相位变更,只要准备5个相位变更集合即可)。将该5个相位变更值(或者相位变更集合)表达为PHASE[0]、PHASE[1]、PHASE[2]、PHASE[3]、PHASE[4]。在调制方式为QPSK时,在发送构成2个编码后的块的比特数6000×2比特所需的上述3000时隙中,使用相位PHASE[0]的时隙需要为600时隙,使用相位PHASE[1]的时隙需要为600时隙,使用相位PHASE[2]的时隙需要为600时隙,使用相位PHASE[3]的时隙需要为600时隙,使用相位PHASE[4]的时隙需要为600时隙。其原因为,若在使用的相位中存在不平衡,则使用了较多数量的相位的影响较大,在接收装置中,成为依赖于该影响的数据的接收品质。另外,为了发送第1编码块,使用相位PHASE[0]的时隙需要为600次,使用相位PHASE[1]的时隙需要为600次,使用相位PHASE[2]的时隙需要为600次,使用相位PHASE[3]的时隙需要为600次,使用相位PHASE[4]的时隙需要为600次,另外,为了发送第2编码块,使用相位PHASE[0]的时隙是600次,使用相位PHASE[1]的时隙是600次,使用相位PHASE[2]的时隙是600次,使用相位PHASE[3]的时隙是600次,使用相位PHASE[4]的时隙是600次即可。同样,在调制方式为16QAM时,在发送构成2个编码后的块的比特数6000×2比特所需的上述1500时隙中,使用相位PHASE[0]的时隙需要为300时隙,使用相位PHASE[1]的时隙需要为300时隙,使用相位PHASE[2]的时隙需要为300时隙,使用相位PHASE[3]的时隙需要为300时隙,使用相位PHASE[4]的时隙需要为300时隙。另外,为了发送第1编码块,使用相位PHASE[0]的时隙需要为300次,使用相位PHASE[1]的时隙需要为300次,使用相位PHASE[2]的时隙需要为300次,使用相位PHASE[3]的时隙需要为300次,使用相位PHASE[4]的时隙需要为300次,另外,为了发送第2编码块,使用相位PHASE[0]的时隙是300次,使用相位PHASE[1]的时隙是300次,使用相位PHASE[2]的时隙是300次,使用相位PHASE[3]的时隙是300次,使用相位PHASE[4]的时隙是300次即可。同样,在调制方式为64QAM时,在发送构成2个编码后的块的比特数6000×2比特所需的上述1000时隙中,使用相位PHASE[0]的时隙需要为200时隙,使用相位PHASE[1]的时隙需要为200时隙,使用相位PHASE[2]的时隙需要为200时隙,使用相位PHASE[3]的时隙需要为200时隙,使用相位PHASE[4]的时隙需要为200时隙。另外,为了发送第1编码块,使用相位PHASE[0]的时隙需要为200次,使用相位PHASE[1]的时隙需要为200次,使用相位PHASE[2]的时隙需要为200次,使用相位PHASE[3]的时隙需要为200次,使用相位PHASE[4]的时隙需要为200次,另外,为了发送第2编码块,使用相位PHASE[0]的时隙是200次,使用相位PHASE[1]的时隙是200次,使用相位PHASE[2]的时隙是200次,使用相位PHASE[3]的时隙是200次,使用相位PHASE[4]的时隙是200次即可。如上,在规则地变更相位的方法中,将准备的相位变更值(或者相位变更集合)设为(表达为)PHASE[0]、PHASE[1]、PHASE[2]、…、PHASE[N-2]、PHASE[N-1]时,当全部发送构成2个编码后的块的比特时,把使用相位PHASE[0]的时隙数设为K0,把使用相位PHASE[1]的时隙数设为K1,把使用相位PHASE[i]的时隙数设为Ki(i=0,1,2,…,N-1(i为0以上且N-1以下的整数)),把使用相位PHASE[N-1]的时隙数设为KN-1,此时,<条件#A03>K0=K1=…=Ki=…=KN-1,也就是说,Ka=Kb,(fo其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)当全部发送构成第1编码后的块的比特时,把使用相位PHASE[0]的次数设为K0,1,把使用相位PHASE[1]的次数设为K1,1,把使用相位PHASE[i]的次数设为Ki,1(i=0,1,2,…,N-1(i为0以上且N-1以下的整数)),把使用相位PHASE[N-1]的次数设为KN-1,1,此时,<条件#A04>K0,1=K1,1=…=Ki,1=…=KN-1,1,也就是说,Ka,1=Kb,1,(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)当全部发送构成第2编码后的块的比特时,把使用相位PHASE[0]的次数设为K0,2,把使用相位PHASE[1]的次数设为K1,2,把使用相位PHASE[i]的次数设为Ki,2(i=0,1,2,…,N-1(i为0以上且N-1以下的整数)),把使用相位PHASE[N-1]的次数设为KN-1,2,此时,<条件#A05>K0,2=K1,2=…=Ki,2=…=KN-1,2,也就是说,Ka,2=Kb,2,(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)而且,在通信系统支持多个调制方式,并且从所支持的调制方式选择使用的情况下,在所支持的调制方式中,<条件#A03><条件#A04><条件#A05>成立即可。但是,在支持多个调制方式的情况下,一般来说,能够通过各调制方式由1码元发送的比特数不同(根据情况,也可能有时相同。),根据情况的不同,也有时存在不能满足<条件#A03><条件#A04><条件#A05>的调制方式。这种情况下,取代<条件#A03><条件#A04><条件#A05>而满足下面的条件即可。<条件#A06>Ka和Kb之差为0或者1,也就是说,|Ka―Kb|为0或者1(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)<条件#A07>Ka,1和Kb,1之差为0或者1,也就是说,|Ka,1―Kb,1|为0或者1(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)<条件#A08>Ka,2和Kb,2之差为0或者1,也就是说,|Ka,2―Kb,2|为0或者1(for其中,a,b=0,1,2,…,N-1(a为0以上且N-1以下的整数,b为0以上且N-1以下的整数),a≠b)如上,通过将编码后的块和相乘的相位建立关联,在为了传输编码块所使用的相位中不平衡消失,所以在接收装置中能够获得提高数据的接收品质这样的效果。在本实施方式中,在规则地变更相位的方法中,为了周期N的相位变更方法,需要N个相位变更值(或者相位变更集合)。此时,作为N个相位变更值(或者相位变更集合),准备PHASE[0]、PHASE[1]、PHASE[2]、…、PHASE[N-2]、PHASE[N-1],但还有在频率轴方向上按PHASE[0]、PHASE[1]、PHASE[2]、…、PHASE[N-2]、PHASE[N-1]的顺序排列的方法,并不限于此,也可以与实施方式1同样地,通过对时间轴、频率-时间轴的块配置码元,使N个相位变更值(或者相位变更集合)PHASE[0]、PHASE[1]、PHASE[2]、…、PHASE[N-2]、PHASE[N-1]变更相位。还有,虽然作为周期N的相位变更方法进行了说明,但是随机使用N个相位变更值(或者相位变更集合)也能够可以获得同样的效果,也就是说,虽然不是必需使用N个相位变更值(或者相位变更集合),以使其具有规则周期,但满足上面所说明的条件在接收装置中获得较高的数据接收品质的方面是重要的。另外,还存在空间复用MIMO传输方式、预编码矩阵为固定的MIMO传输方式、空时块编码方式、仅发送1个流且规则地变更相位的方法(实施方式1到实施方式4中所说明的发送方法)的方式,发送装置(广播站、基站)可以从这些方式选择任一个发送方法。还有,所谓的空间复用MIMO传输方式指的是,如非专利文献3所示,分别从不同的天线发送以所选择的调制方式映射的信号s1、s2的方法,所谓预编码矩阵固定的MIMO传输方式指的是,在实施方式1到实施方式4中,只进行预编码(不执行相位变更)的方式。另外,所谓的空时块编码方式指的是,非专利文献9、16、17所示的传输方式。所谓的仅发送1个流指的是,执行预定的处理,从天线发送以锁选择的调制方式映射的信号s1的信号的方法。另外,也可以采用OFDM那样的多载波的传输方式,像由多个载波构成的第1载波群、由多个载波构成的与第1载波群不同的第2载波群、…那样,以多个载波群实现了多载波传输,按每个载波群,设定为空间复用MIMO传输方式、预编码矩阵固定的MIMO传输方式、空时块编码方式、仅发送1个流且规则地变更相位的方法的任一个。特别是,对于选择了规则地变更相位的方法的(子)载波群而言,实施本实施方式即可。还有,在对一个预编码后的基带信号进行相位变更的情况下,例如将PHASE[i]的相位变更值设为“X弧度”时,在图3、图4、图6、图12、图25、图29、图51及图53内的相位变更部中,将ejX与预编码后的基带信号z2'相乘。而且,在对两个预编码后的基带信号进行相位变更的情况下,例如将PHASE[i]的相位变更集合设为“X弧度”及“Y弧度”时,在图26、图27、图28、图52及图54内的相位变更部中,将ejX与预编码后的基带信号z2'相乘,将ejY与预编码后的基带信号z1'相乘。(实施方式B1)下面,说明上述各实施方式中所示的发送方法及接收方法的应用例和使用该应用例的系统的结构例。图36是表示包括执行上述实施方式中所示的发送方法及接收方法的装置的系统结构例的附图。上述各实施方式中所示的发送方法及接收方法在数字广播用系统3600中实施,该数字广播用系统3600包括图36所示的广播站、电视机(television)3611、DVD记录器3612、STB(SetTopBox)3613、计算机3620、车载电视机3641及移动电话3630等的各种接收机。具体而言,广播站3601使用上述各实施方式中所示的发送方法,在规定的传输频带上发送将影像数据或声音数据等多路复用后的多路复用数据。从广播站3601发送的信号由内置于各接收机或设置于外部并和该接收机连接的天线(例如天线3660、3640)接收。各接收机使用上述各实施方式中所示的接收方法,对在天线中接收到的信号进行解调,取得多路复用数据。由此,数字广播用系统3600可以获得上述各实施方式中所说明的本申请发明的效果。这里,多路复用数据中包含的影像数据使用例如以MPEG(MovingPictureExpertsGroup)2、MPEG4-AVC(AdvancedVideoCoding)及VC-1等的标准为依据的动态图像编码方法进行编码。另外,多路复用数据中包含的声音数据以例如杜比AC(AudioCoding)-3、DolbyDigitalPlus、MLP(MeridianLosslessPacking)、DTS(DigitalTheaterSystems)、DTS-HD及线性PCM(PulseCodingModulation)等声音编码方法进行编码。图37是表示实施上述各实施方式中所说明的接收方法的接收机7900的结构的一例的附图。图37所示的接收机3700相当于图36所示的电视机(television)3611、DVD记录器3612、STB(SetTopBox)3613、计算机3620、车载电视机3641及移动电话3630等所具备的结构。接收机3700具备:调谐器3701,将由天线3760接收到的高频信号变换为基带信号;解调部3702,对频率变换后的基带信号进行解调,取得多路复用数据。上述各实施方式中所示的接收方法在解调部3702中实施,由此,能够获得上述各实施方式中所说明的本申请发明的效果。另外,接收机3700具有:流输入输出部3720,从由解调部3702得到的多路复用数据分离影像数据和声音数据;信号处理部3704,使用与分离后的影像数据对应的动态图像解码方法,将影像数据解码为影像信号,使用与分离后的声音数据对应的声音解码方法,将声音数据解码为声音信号;扬声器等声音输出部3706,输出解码后的声音信号;显示器等影像显示部3707,显示解码后的影像信号。例如,用户使用遥控器(remotecontroller)3750,将选出的信道(选出的(电视)节目、选出的声音广播)的信息发送给操作输入部3710。于是,接收机3700在由天线3760接收到的接收信号中,对与选出的信道对应的信号进行解调,执行纠错解码等处理,取得接收数据。此时,接收机3700通过取得包括与选出的信道对应的信号中包含的传输方法(上述实施方式中所述的传输方式、调制方式、纠错方式等)(关于这点,如图5、图41所示。)的信息在内的控制码元的信息,正确设定接收动作、解调方法及纠错解码等的方法,由此,能够取得由广播站(基站)发送的数据码元中包含的数据。以上说明了用户通过遥控器3750来选择信道的例子,但是使用接收机3700所搭载的选择按键来选择信道,也成为和上面相同的动作。采用上述结构,用户可以视听接收机370通过上述各实施方式中所示的接收方法而接收到的节目。另外,本实施方式的接收机3700具备记录部(驱动器)3708,将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据(根据情况的不同,也有时不对由解调部3702解调而得到的信号进行纠错解码。另外,接收机3700也有时在纠错解码后实施其他的信号处理。以后,对于进行相同表现的部分来说,这一点也相同。)中包含的数据或者与该数据对应的数据(例如,通过压缩数据而得到的数据)、或通过加工动态图像、声音而得到的数据,记录于磁盘、光盘及非易失性的半导体存储器等的记录介质中。这里,光盘指的是,例如DVD(DigitalVersatileDisc)或BD(Blu-rayDisc)等使用激光进行信息的存储及读出的记录介质。磁盘指的是,例如FD(FloppyDisk)(注册商标)或硬盘(HardDisk)等通过使用磁性将磁性体磁化来存储信息的记录介质。非易失性的半导体存储器指的是,例如闪存器或强电介质存储器(FerroelectricRandomAccessMemory)等由半导体元件构成的记录介质,可以举出使用了闪存器的SD卡或FlashSSD(SolidStateDrive)等。还有,这里所举出的记录介质的种类仅为一例,当然也可以使用上述记录介质以外的记录介质进行记录。通过上述结构,用户能够记录并保存接收机3700通过上述各实施方式中所示的接收方法接收到的节目,在广播节目的时间以后的任意时间读出所记录的数据,进行视听。还有,在上述的说明中,虽然接收机3700通过记录部3708来记录通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,但是也可以提取并记录多路复用数据中包含的数据中的一部分数据。例如,在通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含影像数据或声音数据以外的数据广播服务的内容等的情况下,记录部3708也可以从由解调部3702解调后的多路复用数据提取影像数据或声音数据,并记录多路复用后的新的多路复用数据。另外,记录部3708也可以记录仅将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的影像数据及声音数据之中的某一个多路复用后的新的多路复用数据。而且,记录部3708也可以记录上述多路复用数据中包含的数据广播服务的内容。再者,在电视机、记录装置(例如DVD记录器、Blu-ray记录器、HDD记录器及SD卡等)及移动电话中搭载了本发明中说明的接收机3700的情况下,在通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中,含有用于修正使电视机或记录装置进行动作而使用的软件的缺陷(bug:漏洞)的数据以及用于修正防止个人信息或所记录的流出的软件的缺陷(漏洞)的数据时,也可以通过安装这些数据,来修正电视机或记录装置的软件缺陷。而且,在数据中,含有用于修正接收机3700的软件的缺陷(漏洞)的数据时,也可以通过该数据来修正接收机3700的缺陷。由此,搭载有接收机3700的电视机、记录装置及移动电话能够进行更加稳定的动作。这里,从通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的多个数据提取一部分数据来进行多路复用的处理,例如由流输入输出部3703进行。具体而言,流输入输出部3703根据来自未图示的CPU等控制部的指示,将由解调部3702解调后的多路复用数据分离为影像数据、声音数据、数据广播服务的内容等多个数据,从分离后的数据仅提取指定的数据并进行多路复用,生成新的多路复用数据。还有,从分离后的数据提取哪个数据,例如既可以由用户决定,也可以按记录介质的每一种类预先决定。通过上述的结构,由于接收机3700能够仅提取并记录视听所记录的节目时需要的数据,因而能够减少要记录的数据的数据尺寸。另外,在上面的说明中,记录部3708记录通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,但是也可以将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的影像数据,变换为以与对该影像数据实施的动态图像编码方法不同的动态图像编码方法编码后的影像数据,以使数据尺寸或比特率低于该影像数据,并且记录将变换后的影像数据多路复用后的新的多路复用数据。此时,对原来的影像数据实施的动态图像编码方法和对变换后的影像数据实施的动态图像编码方法既可以依据相互不同的标准,也可以依据同一标准,仅仅编码时使用的参数不同。同样,记录部3708也可以将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的声音数据,变换为以与对该声音数据实施的声音编码方法不同的声音编码方法编码后的声音数据,以使数据尺寸或比特率低于该声音数据相比数据,并且记录将变换后的声音数据多路复用后的新的多路复用数据。这里,将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的影像数据或声音数据变换为数据尺寸或者比特率不同的影像数据或声音数据的处理,例如由流输入输出部3703及信号处理部3704进行。具体而言,流输入输出部3703根据来自CPU等控制部的指示,将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,分离为影像数据、声音数据及数据广播服务的内容等的多个数据。信号处理部3704根据来自控制部的指示,进行将分离后的影像数据变换为以与对该影像数据实施的动态图像编码方法不同的动态图像编码方法编码后的影像数据的处理,以及将分离后的声音数据变换为以与对该声音数据实施的声音编码方法不同的声音编码方法编码后的声音数据的处理。流输入输出部3703根据来自控制部的指示,对变换后的影像数据和变换后的声音数据进行多路复用,生成新的多路复用数据。还有,信号处理部3704按照来自控制部的指示,既可以只对影像数据和声音数据中的任一个进行变换的处理,也可以对双方进行变换处理。另外,变换后的影像数据及声音数据的数据尺寸或者比特率既可以由用户决定,也可以按记录介质的每个种类预先决定。通过上述的结构,接收机3700能够按照可记录于记录介质中的数据尺寸或记录部3708进行数据的记录或者读出的速度,变更并记录影像数据或声音数据的数据尺寸或者比特率。由此,无论是可记录于记录介质中的数据尺寸小于通过由解调部3702解调并进行纠错的解码而得到的多路复用数据的数据尺寸的情况,还是记录部进行数据的记录或者读出的速度低于由解调部3702解调后的多路复用数据的比特率的情况下,记录部都能够记录节目,因而用户能够在广播节目的时间以后的任意时间读出所记录的数据,并进行视听。另外,接收机3700具备流输出IF(Interface:接口)3709,该IF3709经由通信媒体3730对外部设备发送由解调部3702解调后的多路复用数据。作为流输出IF3709的一例,可举出使用以Wi-Fi(注册商标)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等无线通信标准为依据的无线通信方法,将调制后的多路复用数据经由无线媒体(相当于通信媒体3730)发送给外部设备的无线通信装置。另外,流输出IF3709也可以是使用以以太网(注册商标)或USB(UniversalSerialBus)、PLC(PowerLineCommunication)、HDMI(High-DefinitionMultimediaInterface)等有线通信标准为依据的通信方法,将调制后的多路复用数据经由与该流输出IF3709连接的有线传输通路(相当于通信媒体3730)发送给外部设备的有线通信装置。通过上述的结构,用户能够在外部设备中利用接收机3700通过上述各实施方式中所示的接收方法接收到的多路复用数据。这里所说的多路复用数据的利用,包括用户使用外部设备实时地视听多路复用数据,或由外部设备所具备的记录部记录多路复用数据,以及从外部设备进一步对其他外部设备发送多路复用数据等。还有,在上面的说明中,在接收机3700中,由流输出IF3709输出通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,但是也可以提取多路复用数据中包含的数据中的一部分数据,并进行输出。例如,在通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含影像数据或声音数据以外的数据广播服务的内容等的情况下,流输出IF3709也可以从通过由解调部3702解调并进行纠错的解码而得到的多路复用数据提取影像数据或声音数据,输出多路复用后的新的多路复用数据。另外,流输出IF3709也可以输出仅将由解调部3702解调后的多路复用数据中包含的影像数据及声音数据中的任一个多路复用后的新的多路复用数据。这里,从通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的多个数据提取一部分数据并进行多路复用的处理,例如由流输入输出部3703进行。具体而言,流输入输出部3703根据来自未图示的CPU(CentralProcessingUnit)等控制部的指示,将由解调部3702解调后的多路复用数据分离为影像数据、声音数据、数据广播服务的内容等的多个数据,从分离后的数据仅提取指定的数据,并进行多路复用,生成新的多路复用数据。还有,从分离后的数据提取哪个数据,例如既可以由用户决定,也可以按流输出IF3709的每个种类预先决定。通过上述的结构,由于接收机3700能够仅提取外部设备需要的数据并进行输出,因而能够削减因多路复用数据的输出而消耗的通信频带。另外,在上面的说明中,流输出IF3709输出通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,但是也可以将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的影像数据,变换为以与对该影像数据实施的动态图像编码方法不同的动态图像编码方法编码后的影像数据,以使数据尺寸或者比特率低于该影像数据,并且输出将变换后的影像数据多路复用后的新的多路复用数据。此时,对原来的影像数据实施的动态图像编码方法和对变换后的影像数据实施的动态图像编码方法既可以依据相互不同的标准,也可以依据同一标准,仅仅在编码时使用的参数不同。同样,流输出IF3709也可以将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的声音数据,变换为以与对该声音数据实施的声音编码方法不同的声音编码方法编码后的声音数据,以使数据尺寸或者比特率低于该声音数据,并且输出将变换后的声音数据多路复用后的新的多路复用数据。这里,将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据中包含的影像数据或声音数据变换为数据尺寸或者比特率不同的影像数据或声音数据的处理,例如由流输入输出部3703及信号处理部3704进行。具体而言,流输入输出部3703根据来自控制部的指示,将通过由解调部3702解调并进行纠错的解码而得到的多路复用数据,分离为影像数据、声音数据及数据广播服务的内容等的多个数据。信号处理部3704根据来自控制部的指示,进行将分离后的影像数据变换为以与对该影像数据实施的动态图像编码方法不同的动态图像编码方法编码后的影像数据的处理,以及将分离后的声音数据变换为以与对该声音数据实施的声音编码方法不同的声音编码方法编码后的声音数据的处理。流输入输出部3703根据来自控制部的指示,对变换后的影像数据和变换后的声音数据进行多路复用,生成新的多路复用数据。还有,信号处理部3704按照来自控制部的指示,既可以仅对影像数据和声音数据中的任一个进行变换的处理,也可以对双方进行变换处理。另外,变换后的影像数据及声音数据的数据尺寸或者比特率既可以由用户决定,也可以按流输出IF3709的每个种类预先决定。通过上述的结构,接收机3700能够按照和外部设备之间的通信速度来变更影像数据或声音数据的比特率,并进行输出。由此,即便在和外部设备之间的通信速度低于通过由解调部3702解调并进行纠错的解码而得到的多路复用数据的比特率的情况下,也能够从流输出IF对外部设备输出新的多路复用数据,因而用户能够在其他的通信装置中利用新的多路复用数据。另外,接收机3700具备AV(AudioandVisual)输出IF(Interface)3711,对外部的通信媒体输出由信号处理部3704解码后的影像信号及声音信号。作为AV输出IF3711的一例,可举出使用以Wi-Fi(注册商标)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Gigbee等的无线通信标准为依据的无线通信方法,将调制后的影像信号及声音信号经由无线媒体发送给外部设备的无线通信装置。另外,流输出IF3709也可以是使用以以太网(注册商标)或USB、PLC、HDMI等的有线通信标准为依据的通信方法,将调制后的影像信号及声音信号经由与该流输出IF3709连接的有线传输通路发送给外部设备的有线通信装置。另外,流输出IF3709也可以是按模拟信号的原状输出影像信号及声音信号的连接电缆的端子。通过上述的结构,用户能够在外部设备中利用由信号处理部3704解码后的影像信号及声音信号。再者,接收机3700具备操作输入部3710,受理用户操作的输入。接收机3700根据按照用户的操作而输入到操作输入部3710中的控制信号,进行电源ON/OFF的切换或接收的信道切换、字幕显示的有无或显示的语言切换、从声音输出部3706输出的音量变更等各种动作的切换,或者可接收的信道的设定等设定的变更。另外,接收机3700也可以具备显示天线等级的功能,该天线等级表示当前由该接收机3700接收的信号的接收品质。这里,天线等级指的是,表示下述接收品质的指标,并且是表示信号电平、信号好坏的信号,上述接收品质例如基于接收机3700接收到的信号的RSSI(ReceivedSignalStrengthIndication、ReceivedSignalStrengthIndicator,接收信号强度)、接收电场强度、C/N(Carrier-to-noisepowerratio)、BER(BitErrorRate:比特错误率)、数据包错误率、帧错误率及信道状态信息(ChannelStateInformation)等来计算。这种情况下,解调部3702具备接收品质测量部,测量接收到的信号的RSSI、接收电场强度、C/N、BER、数据包错误率、帧错误率及信道状态信息等;接收机3700按照用户的操作将天线等级(表示信号电平、信号好坏的信号)以用户可识别的形式显示于影像表示部3707上。天线等级(表示信号电平、信号好坏的信号)的显示形式既可以是显示与RSSI、接收电场强度、C/N、BER、数据包错误率、帧错误率及信道状态信息等相应的数值的形式,也可以是按照RSSI、接收电场强度、C/N、BER、数据包错误率、帧错误率及信道状态信息等显示不同的图像的形式。另外,接收机3700既可以显示按使用上述各实施方式中所示的接收方法接收并分离后的多个流s1、s2、…的每个求出的多个天线等级(表示信号电平、信号好坏的信号),也可以显示从多个流s1、s2、…求出的1个天线等级(表示信号电平、信号好坏的信号)。另外,在当前使用分层传输方式发送构成节目的影像数据或声音数据的情况下,也可以按每层表示信号的电平(表示信号好坏的信号)。通过上述的结构,用户可以以数值或者目测的形式掌握使用上述各实施方式中所示的接收方法接收时的天线等级(表示信号电平、信号好坏的信号)。还有,在上面的说明中,以接收机3700具备声音输出部3706、影像显示部3707、记录部3708、流输出IF3709及AV输出IF3711的情形为例进行了说明,但是不需要具备这些结构的全部。只要接收机3700具备上述结构之中的至少任一个,用户就能够利用通过由解调部3702的解调并进行纠错的解码而得到的多路复用数据,所以各接收机只要按照其用途,任意地组合具备上述的结构即可。(多路复用数据)下面,详细说明多路复用数据的结构的一例。作为用于广播的数据结构,一般是MPEG2-传送流(TS),在此举出MPEG2-TS为例进行说明。但是,以上述各实施方式中所示的发送方法及接收方法传输的多路复用数据的数据结构当然不限于MPEG2-TS,其他的任何数据结构都能获得上述的各实施方式中所说明的效果。图38是表示多路复用数据的结构的一例的附图。如图38所示,多路复用数据是构成在各服务中提供的节目(program或者作为其一部分的event)的要素,例如是通过将视频流、音频流、演示图形流(PG)及交互式图形流(IG)等基本流中的1个以上多路复用而得到的。在以多路复用数据提供的节目是电影的情况下,视频流示出电影的主影像及副影像,音频流示出电影的主声音部分和与该主声音混合的副声音,演示图形流示出电影的字幕。这里,主影像表示显示于画面上的正常影像,副影像是在主影像中用小的画面显示的影像(例如示出电影梗概的文本数据的影像等)。另外,交互式图形流示出通过在画面上配置GUI部件来制作的对话画面。多路复用数据中包含的各流通过分配给各流的作为识别符的PID来识别。例如,对用于电影的影像的视频流分配0x1011,对音频流分配从0x1100到0x111F,对演示图形分配从0x1200到0x121F,对交互式图形流分配从0x1400到0x141F,对用于电影副影像的视频流分配从0x1B00到0x1B1F,对用于和主声音混合的副声音的音频流分配从0x1A00到0x1A1F。图39是模式表示多路复用数据如何被多路复用的一例的图。首先,将由多个视频帧组成的视频流3901以及由多个音频帧组成的音频流3904,分别变换为PES数据包列3902及3905,并变换为TS数据包3903及3906。同样,将演示图形流3911及交互式图形3914的数据分别变换为PES数据包列3912及3915,并变换为TS数据包3913及3916。多路复用数据3917通过将这些TS数据包(3903、3906、3913、3916)多路复用为1个流而构成。图40更加详细地示出在PES数据包列内如何存储视频流。图40中的第1段表示视频流的视频帧列。第2段表示PES数据包列。如图40的箭头yy1、yy2、yy3、yy4所示,视频流中的多幅作为VideoPresentationUnit的I图片、B图片及P图片按每幅图片进行分割,并保存在PES数据包的有效载荷中。各PES数据包具有PES包头,在PES包头中,存储作为图片的显示时刻的PTS(PresentationTime-Stamp)和作为图片的解码时刻的DTS(DecodingTime-Stamp)。图41示出在多路复用数据中最终写入的TS数据包的形式。TS数据包是188Byte固定长度的数据包,包括:4Byte的TS包头,具有识别流的PID等的信息;184Byte的TS有效载荷,保存数据;上述PES数据包被分割,并保存在TS有效载荷中。在BD-ROM的情况下,对TS数据包赋予4Byte的TP_Extra_Header,构成192Byte的源数据包,写入多路复用数据中。在TP_Extra_Header中记述ATS(Arrival_Time_Stamp)等信息。ATS表示该TS数据包向解码器的PID滤波器的传送开始时刻。在多路复用数据中,如图41下段所示那样排列源数据包,从多路复用数据的开头起增量的编号被称为SPN(源数据包编号)。另外,在多路复用数据中包含的TS数据包内,除视频流、音频流及演示图形流等的各流之外,还有PAT(ProgramAssociationTable)、PMT(ProgramMapTable)及PCR(ProgramClockReference)等。PAT表示在多路复用数据中利用的PMT的PID是什么,PAT本身的PID用0来登录。PMT具有多路复用数据中包含的影像·声音·字幕等各流的PID和与各PID对应的流的属性信息(帧速率、纵横比等),并且具有与多路复用数据有关的各种描述符。在描述符中,存在指示多路复用数据的复制允许·不允许的复制控制信息等。PCR为了取得作为ATS的时间轴的ATC(ArrivalTimeClock)和作为PTS·DTS的时间轴的STC(SystemTimeClock)的同步,具有与该PCR数据包传送给解码器的ATS对应的STC时间的信息。图42是详细说明PMT的数据结构的图。在PMT的开头,配置有PMT包头,该PMT包头记述了该PMT中包含的数据的长度等。在其后面,配置多个与多路复用数据有关的描述符。上述复制控制信息等作为描述符来记述。在描述符的后面,配置多个与多路复用数据中包含的各流有关的流信息。流信息由流描述符构成,该流描述符记述了用于识别流的压缩解压器的流类型、流的PID及流的属性信息(帧速度、纵横比等)。流描述符存在多路复用数据中存在的流的个数。在记录于记录介质等中的情况下,上述多路复用数据和多路复用数据信息文件一起记录。图43是表示该多路复用数据信息文件的结构的图。多路复用数据信息文件如图43所示,是多路复用数据的管理信息,和多路复用数据1对1地对应,包括多路复用数据信息、流属性信息和入口映射。多路复用数据信息如图43所示,包括系统速率、再现开始时刻及再现结束时刻。系统速率表示多路复用数据向后述的系统目标解码器的PID滤波器的最大传送速率。多路复用数据中包含的ATS的间隔被设定为系统速率以下。再现开始时刻是多路复用数据的开头的视频帧的PTS,再现结束时刻设定为在多路复用数据的终端的视频帧的PTS中加上1帧量的再现间隔的时刻。图44是表示多路复用数据信息文件中包含的流属性信息的结构的图。流属性信息如图44所示,按每个PID登录有关多路复用数据中包含的各流的属性信息。属性信息按视频流、音频流、演示图形流及交互式图形流的每个具有不同的信息。视频流属性信息具有该视频流由什么样的压缩解压缩器压缩、构成视频流的各个图片数据的析像度是多少、纵横比是多少及帧速率是多少等的信息。音频流属性信息具有该音频流由什么样的压缩解压缩器压缩、该音频流中包含的信道数是多少、对应于哪种语言及取样频率是多少等的信息。这些信息用于播放器再现之前的解码器初始化等。在本实施方式中,利用上述多路复用数据中的、包含于PMT中的流类型。另外,在记录介质中记录有多路复用数据的情况下,利用多路复用数据信息中包含的视频流属性信息。具体而言,在上述各实施方式所示的动态图像编码方法或者装置中设置下述步骤或者机构,该步骤或者机构对PMT中包含的流类型或者视频流属性信息设定固有的信息,该固有的信息表示是由上述各实施方式中所示的动态图像编码方法或者装置所生成的影像数据这一情况。通过该结构,能够识别由上述各实施方式所示的动态图像编码方法或者装置生成的影像数据和依据其他标准的影像数据。图45示出包括接收装置4504的影像声音输出装置4500的结构的一例,该接收装置4504接收从广播站(基站)发送的、包含影像及声音的数据或者用于数据广播的数据在内的调制信号。还有,接收装置4504的结构对应于图37的接收装置3700。在影像声音输出装置4500中,例如搭载有OS(OperatingSystem:操作系统),并且搭载有用于与因特网连接的通信装置4506(例如无线LAN(LocalAreaNetwork)或用于以太网的通信装置)。因此,在显示影像的部分4501上,能够同时显示影像及声音的数据,或者用于数据广播的数据中的影像4502以及在因特网上提供的超文本(WorldWideWeb(万维网:WWW))4503。而且,通过操作遥控器(也可以是移动电话或键盘)4507,来选择用于数据广播的数据中的影像4502、在因特网上提供的超文本4503的某一个,从而变更动作。例如,在选择出了因特网上提供的超文本4503的情况下,通过操作遥控器,来变更当前显示的WWW的站点。另外,在选择了影像及声音的数据或者用于数据广播的数据中的影像4502的情况下,通过遥控器4507,发送所选出的信道(选出的(电视)节目、选出的声音广播)的信息。于是,IF4505取得由遥控器发送的信息,接收装置4504对与选出的信道对应的信号进行解调、纠错解码等的处理,获得接收数据。此时,接收装置4504通过取得包括与选出的信道对应的信号中包含的传输方法(关于这一点,如图5所述。)的信息在内的控制码元的信息,正确设定接收动作、解调方法及纠错解码等的方法,以此就能够取得由广播站(基站)所发送的数据码元中包含的数据。在上面,虽然说明了用户通过遥控器4507,来选择信道的例子,但是即便使用影像声音输出装置4500所搭载的选择按键,来选择信道,也成为和上面相同的动作。另外,也可以利用因特网来操作影像声音输出装置4500。例如,从其他的连接在因特网上的终端,对影像声音输出装置4500进行录制(存储)的预约。(因此,影像声音输出装置4500如图37那样,具有记录部3708。)然后,在开始录制之前,选择信道,接收装置4504对与选出的信道对应的信号进行解调,执行纠错解码等的处理,取得接收数据。此时,接收装置4504通过取得包括与选出的信道对应的信号中包含的传输方法(上述实施方式中所述的传输方式、调制方式及纠错方式等)(关于这点,如图5所述。)的信息在内的控制码元的信息,正确设定接收动作、解调方法及纠错解码等的方法,由此,能够取得由广播站(基站)发送的数据码元中包含的数据。(其他补充)在本说明书中,具备发送装置的设备可以想到:例如广播站、基站、接入点、终端及移动电话(mobilephone)等的通信·广播设备,此时,具备接收装置的装置可以想到:电视机、收音机、终端、个人计算机、移动电话、接入点及基站等的通信设备。另外,本发明中的发送装置、接收装置是具有通信功能的设备,还可以想到该设备是能够通过任何的接口(例如,USB)连接于电视机、收音机、个人计算机及移动电话等用于执行应用的装置上的形式。另外,在本实施方式中,除数据码元之外的码元,例如导频码元(也可以将导频码元称为导言、独特字、后同步码、参考码元及分散导频等。)、控制信息用的码元等能够以任何方式配置到帧中。而且,在此命名为导频码元、控制信息用的码元,但是可以进行任何命名方法,重要的是功能本身。导频码元例如在收发机中,只要是使用PSK调制而调制的已知的码元(或者也可以通过由接收机取得同步,接收机识别发送机所发送的码元。)即可,接收机使用该码元,来实施频率同步、时间同步、(各调制信号的)信道推定(CSI(ChannelStateInformation)的推定)及信号的检测等。另外,控制信息用的码元是用来传输用于实现(应用等的)数据以外的通信的、向通信对象传输所需的信息(例如当前在通信中使用的调制方式·纠错编码方式·纠错编码方式的编码率及上层的设定信息等)的码元。还有,本发明不限定为全部的实施方式,而能够进行各种变更来实施。例如,在上述实施方式中,说明了作为通信装置来进行的情形,但是并不限于此,也可以将该通信方法作为软件来进行。另外,上面说明了从2根天线发送2个调制信号的方法中的相位变更方法,但是并不限于此,在下述方法中也同样规则地变更相位的相位变更方法,也可以同样地实施,该方法为,对4个映射后的信号进行预编码并且变更相位,来生成4个调制信号,并从4根天线进行发送,即,对N个映射后的信号进行预编码,生成N个调制信号,从N根天线进行发送。另外,在上述实施方式所示的系统例中,公开了从2根天线发送2个调制信号,由2根天线接收各自的MIMO方式的通信系统,但是本发明当然也可以应用于MISO(MultipleInputSingleOutput)方式的通信系统。在MISO方式的情况下,接收装置的结构没有图7所示的结构中的天线701_Y、无线部703_Y、调制信号z1的信道变动推定部707_1及调制信号z2的信道变动推定部707_2,这种情况下,通过执行上述实施方式1所示的处理,也能够分别推定r1、r2。还有,在同一频带、同一时间内,能够由1根天线接收所发送的多个信号并进行解码是公知的技术,在本说明书中,信号处理部中的将在发送侧变更的相位复原所需的处理被追加到以往技术中的处理中。另外,在本发明的说明所示的系统例中,公开出从2根天线发送2个调制信号,由2根天线接收各自的MIMO方式的通信系统,但是本发明当然也可以应用于MISO(MultipleInputSingleOutput)方式的通信系统。在MISO方式的情况下,在发送装置中应用预编码和相位变更,这一点与此前的说明相同。另一方面,接收装置的结构没有图7所示的结构中的天线701_Y、无线部703_Y、调制信号z1的信道变动推定部707_1及调制信号z2的信道变动推定部707_2,这种情况下,通过执行本说明书中所示的处理,能够推定发送装置所发送的数据。还有,在同一频带、同一时间内,能够由1根天线接收所发送的多个信号进行解码是周知的技术(在单天线接收中,只要实施ML运算等(Max-logAPP等)的处理即可。),在本发明中,只要在图7的信号处理部711中,进行考虑了在发送侧使用的预编码和相位变更的解调(检波)即可。在本说明书中,使用了“预编码”“预编码权重”“预编码矩阵”等的词汇,但是名称本身可以是任意的(例如也可以称为码本(codebook)。),在本发明中,重要的是其信号处理本身。另外,在本说明书中,以作为发送方法而采用OFDM方式的情况为中心进行了说明,但是并不限于此,在采用OFDM方式以外的多载波方式、单载波方式的情况下,也能够同样地实施。此时,也可以采用扩频通信方式。还有,在采用单载波方式的情况下,相位变更要按时间轴方向进行相位变更。另外,在本说明书中,在接收装置中,使用ML运算、APP、Max-logAPP、ZF、MMSE等进行了说明,其结果,取得发送装置所发送的数据的各比特的软判定结果(对数似然、对数似然比)或硬判定结果(“0”或者“1”),但是也可以将它们统称为检波、解调、检测、推定及分离。通过流s1(t)、s2(t)(s1(i)、s2(i)),既可以传输不同的数据,也可以传输同一数据。另外,在对2个流的基带信号s1(i)、s2(i)(其中,i代表(时间或者频率(载波)的)顺序)进行规则的相位变更及预编码(顺序哪个在前都可以)而生成的、两个信号处理后的基带信号z1(i)、z2(i)中,将两个信号处理后的基带信号z1(i)的同相I成分设为I1(i),将正交成分设为Q1(i),将两个信号处理后的基带信号z2(i)的同相I成分设为I2(i),将正交成分设为Q2(i)。此时,也可以实施基带成分的替换,·将替换后的基带信号r1(i)的同相成分设为I1(i),将正交成分设为Q2(i),将替换后的基带信号r2(i)的同相成分设为I2(i),将正交成分设为Q1(i),如同分别从发送天线1和发送天线2在同一时刻使用同一频率发送与替换后的基带信号r1(i)对应的调制信号和与替换后的基带信号r2(i)对应的调制信号那样,从不同的天线在同一时刻使用同一频率发送与替换后的基带信号r1(i)对应的调制信号和替换后的基带信号r2(i)。另外,也可以是,·将替换后的基带信号r1(i)的同相成分设为I1(i),将正交成分设为I2(i),将替换后的基带信号r2(i)的同相成分设为Q1(i),将正交成分设为Q2(i)·将替换后的基带信号r1(i)的同相成分设为I2(i),将正交成分设为I1(i),将替换后的基带信号r2(i)的同相成分设为Q1(i),将正交成分设为Q2(i)·将替换后的基带信号r1(i)的同相成分设为I1(i),将正交成分设为I2(i),将替换后的基带信号r2(i)的同相成分设为Q2(i),将正交成分设为Q1(i)·将替换后的基带信号r1(i)的同相成分设为I2(i),将正交成分设为I1(i),将替换后的基带信号r2(i)的同相成分设为Q2(i),将正交成分设为Q1(i)·将替换后的基带信号r1(i)的同相成分设为I1(i),将正交成分设为Q2(i),将替换后的基带信号r2(i)的同相成分设为Q1(i),将正交成分设为I2(i)·将替换后的基带信号r1(i)的同相成分设为Q2(i),将正交成分设为I1(i),将替换后的基带信号r2(i)的同相成分设为I2(i),将正交成分设为Q1(i)·将替换后的基带信号r1(i)的同相成分设为Q2(i),将正交成分设为I1(i),将替换后的基带信号r2(i)的同相成分设为Q1(i),将正交成分设为I2(i)·将替换后的基带信号r2(i)的同相成分设为I1(i),将正交成分设为I2(i),将替换后的基带信号r1(i)的同相成分设为Q1(i),将正交成分设为Q2(i)·将替换后的基带信号r2(i)的同相成分设为I2(i),将正交成分设为I1(i),将替换后的基带信号r1(i)的同相成分设为Q1(i),将正交成分设为Q2(i)·将替换后的基带信号r2(i)的同相成分设为I1(i),将正交成分设为I2(i),将替换后的基带信号r1(i)的同相成分设为Q2(i),将正交成分设为Q1(i)·将替换后的基带信号r2(i)的同相成分设为I2(i),将正交成分设为I1(i),将替换后的基带信号r1(i)的同相成分设为Q2(i),将正交成分设为Q1(i)·将替换后的基带信号r2(i)的同相成分设为I1(i),将正交成分设为Q2(i),将替换后的基带信号r1(i)的同相成分设为I2(i),将正交成分设为Q1(i)·将替换后的基带信号r2(i)的同相成分设为I1(i),将正交成分设为Q2(i),将替换后的基带信号r1(i)的同相成分设为Q1(i),将正交成分设为I2(i)·将替换后的基带信号r2(i)的同相成分设为Q2(i),将正交成分设为I1(i),将替换后的基带信号r1(i)的同相成分设为I2(i),将正交成分设为Q1(i)·将替换后的基带信号r2(i)的同相成分设为Q2(i),将正交成分设为I1(i),将替换后的基带信号r1(i)的同相成分设为Q1(i),将正交成分设为I2(i)另外,上面说明了对2个流的信号进行双方的信号处理,并替换两个信号处理后的信号的同相成分和正交成分,但是并不限于此,也可以对多余2个流的信号进行两者的信号处理,并进行两个信号处理后的信号的同相成分和正交成分的替换。另外,在上述的例子中,说明了同一时刻(同一频率((子)载波))的基带信号的替换,但是也可以不是同一时刻的基带信号的替换。作为例子,可以如下来记述·将替换后的基带信号r1(i)的同相成分设为I1(i+v),将正交成分设为Q2(i+w),将替换后的基带信号r2(i)的同相成分设为I2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r1(i)的同相成分设为I1(i+v),将正交成分设为I2(i+w),将替换后的基带信号r2(i)的同相成分设为Q1(i+v),将正交成分设为Q2(i+w)·将替换后的基带信号r1(i)的同相成分设为I2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r2(i)的同相成分设为Q1(i+v),将正交成分设为Q2(i+w)·将替换后的基带信号r1(i)的同相成分设为I1(i+v),将正交成分设为I2(i+w),将替换后的基带信号r2(i)的同相成分设为Q2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r1(i)的同相成分设为I2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r2(i)的同相成分设为Q2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r1(i)的同相成分设为I1(i+v),将正交成分设为Q2(i+w),将替换后的基带信号r2(i)的同相成分设为Q1(i+v),将正交成分设为I2(i+w)·将替换后的基带信号r1(i)的同相成分设为Q2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r2(i)的同相成分设为I2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r1(i)的同相成分设为Q2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r2(i)的同相成分设为Q1(i+v),将正交成分设为I2(i+w)·将替换后的基带信号r2(i)的同相成分设为I1(i+v),将正交成分设为I2(i+w),将替换后的基带信号r1(i)的同相成分设为Q1(i+v),将正交成分设为Q2(i+w)·将替换后的基带信号r2(i)的同相成分设为I2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r1(i)的同相成分设为Q1(i+v),将正交成分设为Q2(i+w)·将替换后的基带信号r2(i)的同相成分设为I1(i+v),将正交成分设为I2(i+w),将替换后的基带信号r1(i)的同相成分设为Q2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r2(i)的同相成分设为I2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r1(i)的同相成分设为Q2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r2(i)的同相成分设为I1(i+v),将正交成分设为Q2(i+w),将替换后的基带信号r1(i)的同相成分设为I2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r2(i)的同相成分设为I1(i+v),将正交成分设为Q2(i+w),将替换后的基带信号r1(i)的同相成分设为Q1(i+v),将正交成分设为I2(i+w)·将替换后的基带信号r2(i)的同相成分设为Q2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r1(i)的同相成分设为I2(i+w),将正交成分设为Q1(i+v)·将替换后的基带信号r2(i)的同相成分设为Q2(i+w),将正交成分设为I1(i+v),将替换后的基带信号r1(i)的同相成分设为Q1(i+v),将正交成分设为I2(i+w)图55是用于说明上述记载的表示基带信号替换部5502的图。如图55所示,在两个信号处理后的基带信号z1(i)5501_1、z2(i)5501_2中,将两个信号处理后的基带信号z1(i)5501_1的同相I成分设为I1(i),将正交成分设为Q1(i),并将两个信号处理后的基带信号z2(i)5501_2的同相I成分设为I2(i),将正交成分设为Q2(i)。然后,假设替换后的基带信号r1(i)5503_1的同相成分为Ir1(i),正交成分为Qr1(i),替换后的基带信号r2(i)5503_2的同相成分为Ir2(i),正交成分为Qr2(i),则替换后的基带信号r1(i)5503_1的同相成分Ir1(i)、正交成分Qr1(i)以及替换后的基带信号r2(i)5503_2的同相成分Ir2(i)、正交成分Qr2(i)以上面所说明的某一个来表达。还有,在该例子中,说明了同一时刻(同一频率((子)载波))的两个信号处理后的基带信号的替换,但是如上所述,也可以是不同的时刻(不同的频率((子)载波))的两个信号处理后的基带信号的替换。发送装置的发送天线、接收装置的接收天线以及附图中所述的1根天线也可以由多根天线构成。在本说明书中,表示全称量词(universalquantifier),表示存在量词(existentialquantifier)。另外,在本说明书中,复平面上的例如偏角那样的相位的单位设为“弧度(radian)”。若利用了复平面,则作为基于复数的极坐标的显示,可以用极形式来表示。在对复数z=a+jb(a、b都是实数,j是虚数单位),使复平面上的点(a,b)相对应时,如果该点在极坐标上表示为[r,θ],则a=r×cosθ,b=r×sinθ[数式49]成立,r是z的绝对值(r=|z|),θ为偏角(argument)。而且,z=a+jb表达为rejθ。在本发明的说明中,基带信号s1、s2、z1、z2为复信号,所谓复信号是指,在将同相信号设为I,将正交信号设为Q时,复信号表达为I+jQ(j为虚数单位)。此时,既可以I为零,也可以Q为零。图46表示使用了本说明书中说明的相位变更方法的广播系统的一例。在图46中,影像编码部4601以影像为输入,进行影像编码,输出影像编码后的数据4602。声音编码部4603以声音为输入,进行声音编码,输出声音编码后的数据4604。数据编码部4605以数据为输入,进行数据的编码(例如数据压缩),输出数据编码后的数据4606。将它们汇总到一起,就成为信息源编码部4600。发送部4607以影像编码后的数据4602、声音编码后的数据4604及数据编码后的数据4606为输入,把这些数据的某一个或这些数据的全部作为发送数据,进行纠错编码、调制、预编码及相位变更等处理(例如图3的发送装置中的信号处理),输出发送信号4608_1~4608_N。然后,发送信号4608_1~4608_N分别通过天线4609_1~4609_N,作为电波而被发送。接收部4612以由天线4610_1~4610_M接收到的接收信号4611_1~4611_M为输入,进行频率替换、相位变更、预编码的解码、对数似然比计算及纠错解码等处理(例如图7的接收装置中的处理),输出接收数据4613、4615、4617。信息源解码部4619以接收数据4613、4615、4617为输入,影像解码部4614以接收数据4613为输入,进行影像用的解码,输出影像信号,并且影像被显示于电视机、显示器上。另外,声音解码部4616以接收数据4615为输入,进行声音用的解码,输出声音信号,并且声音从扬声器传播。另外,数据解码部4618以接收数据4617为输入,进行数据用的解码,输出数据的信息。另外,在本发明已经说明的实施方式中,如同前面所说明的那样在OFDM方式的那种多载波传输方式中,发送装置所具有的编码器的个数可以是任何数量。因此,例如像图4那样,发送装置当然可以具备1个编码器,将分配输出的方法还应用于OFDM方式那样的多载波传输方式中。此时,只要将图4的无线部310A、310B置换为图12的OFDM方式相关处理部1301A、1301B即可。此时,OFDM方式相关处理部的说明如实施方式1所示。另外,在实施方式1中,作为预编码矩阵的例子,提供了公式(36),但是与之不同地,可以想到作为预编码矩阵而使用下面的公式的方法。[数式50]还有,记述了在预编码公式(36)、公式(50)中,作为α的值而设定公式(37)、公式(38),但是并不限于此,若设定为α=1,则成为简单的预编码矩阵,因而该值也是有效的值之一。另外,在实施方式A1中,在图3、图4、图6、图12、图25、图29、图51及图53内的相位变更部中,作为用于周期N的相位变更值(在图3、图4、图6、图12、图25、图29、图51及图53中,仅对一个基带信号赋予相位变更,因而成为相位变更值。),表现为PHASE[i](i=0,1,2,…,N-2,N-1(i为0以上且N-1以下的整数))。而且,在本说明书中,在对一个预编码后的基带信号进行相位变更时(即图3、图4、图6、图12、图25、图29、图51及图53),仅对预编码后的基带信号z2'赋予了相位变更。此时,如下赋予PHASE[k]。[数式51]此时,设k=0,1,2,…,N-2,N-1(k为0以上且N-1以下的整数)。而且,假设N=5,7,9,11,15,则在接收装置中,可以获得良好的数据接收品质。另外,在本说明书中,详细说明了由多根天线发送2个调制信号时的相位变更方法,但是并不限于此,对3个以上调制方式的映射后的基带信号进行预编码、相位变更,对预编码、相位变更后的基带信号进行规定的处理,并从多根天线进行发送的情况下,也能够同样地实施。还有,例如也可以将执行上述通信方法的程序预先保存在ROM(ReadOnlyMemory)中,由CPU(CentralProcessorUnit)使该程序进行动作。另外,也可以将执行上述通信方法的程序记录于计算机可读取的存储介质中,把存储介质中所存储的程序记录于计算机的RAM(RandomAccessMemory)中,按照该程序使计算机进行动作。而且,上述各实施方式等的各结构典型地作为集成电路、即LSI(LargeScaleIntegration)来实现。它们既可以单独进行单芯片化,也可以以包含各实施方式的全部构成或一部分构成的方式进行单芯片化。在此采用了LSI,但是根据集成度的不同,也有时称为IC(IntegratedCircuit)、系统LSI、超大LSI及极大LSI。另外,集成电路化的方法并不限于LSI,也可以采用专用电路或者通用处理器来实现。也可以利用能在LSI制造后进行编程的FPGA(FieldProgrammableGateArray),或者能够将LSI内部的电路单元的连接及设定的重构的可重构处理器。再者,如果通过半导体技术的进步或者派生的其他技术,而出现了代替LSI的集成电路化的技术,当然也可以使用该技术进行各处理部的集成化。生物技术的应用等也存在可能性。产业上的可利用性本发明能够在从多个天线分别发送不同的调制信号的无线系统中广泛地适用,例如优选的是在OFDM-MIMO通信系统中适用。此外,对于在具有多个发送部位的有线通信系统(例如,PLC(PowerLineCommunication:电力线通信)系统、光通信系统、DSL(DigitalSubscriberLine:数字用户线路)系统)中进行MIMO传输的情况也能够适用,此时,成为使用多个发送部位发送在本发明中说明那样的多个调制信号。此外,也可以将调制信号从多个发送部位发送。标号说明302A,302B编码器304A,304B交错器306A,306B映射部314信号处理方法信息生成部308A,308B加权合成部310A,310B无线部312A,312B天线317A,317B相位变更部402编码器404分配部504#1,504#2发送天线505#1,505#2接收天线600加权合成部701_X,701_Y天线703_X,703_Y无线部705_1信道变动推定部705_2信道变动推定部707_1信道变动推定部707_2信道变动推定部709控制信息解码部711信号处理部803INNERMIMO检波部805A,805B对数似然计算部807A,807B解交错器809A,809B对数似然比计算部811A,811BSoft-in/soft-out解码器813A,813B交错器815存储部819系数生成部901Soft-in/soft-out解码器903分配部1201A,1201BOFDM方式相关处理部1302A,1302A串并行变换部1304A,1304B排序部1306A,1306B逆快速傅立叶变换部1308A,1308B无线部当前第1页1 2 3 当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1