放射线成像装置和放射线成像系统的制作方法

文档序号:13518721阅读:103来源:国知局
放射线成像装置和放射线成像系统的制作方法

本发明涉及放射线成像装置和放射线成像系统。



背景技术:

以二维阵列布置各自组合将放射线转换成电荷的转换元件和诸如薄膜晶体管(tft)等的开关元件的像素的放射线成像装置已被广泛使用。近年来,考虑增加这样的放射线成像装置的多功能性,自动曝光控制(aec)功能的加入正被视为一个要被增加的这样的功能。aec功能在放射线正被从放射线源发射的同时被放射线成像装置使用以获得放射线照射信息。

日本专利公开no.2012-15913公开了放射线成像装置,在该放射线成像装置中,包括成像像素和放射线检测像素的多个像素被以矩阵设置在用于检测放射线的检测区域中。放射线检测像素被用于检测放射线照射的开始和结束,并且被用于检测累积的放射线照射剂量。日本专利公开no.2012-52896公开了放射线成像装置,在该放射线成像装置中,布置成像像素和放射线检测像素并且包括在像素中产生的信号被输出到的图像配线和放射线检测配线以及用于检测来自图像配线和放射线检测配线的信号的信号检测电路。图像配线和放射线检测配线具有几乎相同的图案,但是比放射线检测配线上少的放射线检测像素或没有放射线检测像素被连接在图像配线上。信号检测电路基于从图像配线获得的信号与从放射线检测配线获得的信号之间的差检测放射线。



技术实现要素:

在根据日本专利公开no.2012-15913的放射线成像装置的结构中,在每个成像像素的电极与放射线检测像素被连接到的放射线检测配线之间存在不能被忽略的寄生电容器。通过该寄生电容器,产生将由放射线照射产生的每个成像像素的电极的电势变动传输到放射线检测配线的串扰。在流过放射线检测配线的每个信号中,包括来自每个放射线检测像素的信号的成分和由串扰产生的成分。由于该串扰成分,在放射线照射期间来自每个放射线检测像素的信号变得难以获得。

在日本专利公开no.2012-52896中所公开的方法中,通过获得从图像配线和放射线检测配线获得的信号之间的差,获得来自每个放射线检测像素的信号的成分。由串扰产生的成分可以通过获得从具有几乎相同的配线图案的图像配线和放射线检测配线获得的信号的差来减小。同时,由于驱动放射线成像装置时的温度变化,诸如每个像素中使用的转换元件的暗电流和开关元件的偏移电平的特性改变。当要检测放射线时,放射线检测像素被接通以操作并且每个成像像素的开关元件被关断。在这种情况下从图像配线和放射线检测配线获得的信号的差不仅具有由于入射放射线导致的成分,而且叠加有诸如被接通并且操作的放射线检测像素的偏移电平和暗电流的特性的变化成分。由于诸如每个放射线检测像素的偏移电平和暗电流的特性的变化,来自每个放射线检测像素的信号可以改变,并且可能不能够精确检测放射线。

本发明的一些实施例提供用于通过校正由于像素与配线之间的串扰或驱动时的温度变化导致的像素特性的变化来提高放射线检测的精度的技术。

根据一些实施例,提供一种放射线成像装置,所述放射线成像装置包括:多个像素,所述多个像素以阵列布置在图像感测区域中并且被配置为获得放射线图像;至少一个第一检测元件和至少一个第二检测元件,所述至少一个第一检测元件和至少一个第二检测元件各自包括转换元件,所述转换元件被配置为将放射线转换成电信号以获得放射线照射信息,所述放射线照射信息包括放射线照射的开始、放射线照射的结束、放射线照射强度和放射线照射剂量中的至少一个;第一信号线和第二信号线,来自所述第一检测元件的信号要被输出到所述第一信号线,来自所述第二检测元件的信号要被输出到所述第二信号线;以及信号处理电路,所述信号处理电路被配置为处理经由所述第一信号线从所述第一检测元件输出的信号和经由所述第二信号线从所述第二检测元件输出的信号,其中,所述第一信号线和第二信号线被布置在所述图像感测区域中或被布置为与所述图像感测区域相邻,所述第一检测元件具有比所述第二检测元件大的、用于检测放射线的区域,并且所述信号处理电路基于来自所述第一信号线的信号和来自所述第二信号线的信号产生所述放射线照射信息。

根据一些其它实施例,提供一种放射线成像系统,所述放射线成像系统包括放射线成像装置和信号处理单元,其中,所述放射线成像装置包括:多个像素,所述多个像素以阵列布置在图像感测区域中并且被配置为获得放射线图像;至少一个第一检测元件和至少一个第二检测元件,所述至少一个第一检测元件和至少一个第二检测元件各自包括转换元件,所述转换元件被配置为将放射线转换成电信号以获得放射线照射信息,所述放射线照射信息包括放射线照射的开始、放射线照射的结束、放射线照射强度和放射线照射剂量中的至少一个;第一信号线和第二信号线,来自所述第一检测元件的信号要被输出到所述第一信号线,来自所述第二检测元件的信号要被输出到所述第二信号线;以及信号处理电路,所述信号处理电路被配置为处理经由所述第一信号线从所述第一检测元件输出的信号和经由所述第二信号线从所述第二检测元件输出的信号,其中,所述第一信号线和第二信号线被布置在所述图像感测区域中或被布置为与所述图像感测区域相邻,所述第一检测元件具有比所述第二检测元件大的、用于检测放射线的区域,所述信号处理电路基于来自所述第一信号线的信号和来自所述第二信号线的信号产生所述放射线照射信息,并且所述信号处理单元被配置为处理来自所述放射线成像装置的信号。

从以下(参考附图)的示例性实施例的描述,本发明的进一步的特征将变得清晰。

附图说明

图1是示出根据本发明的实施例的放射线成像装置的电路布置的等效电路图;

图2是示出图1的放射线成像装置的电路布置的修改的等效电路图;

图3a是图1的放射线成像装置的像素、检测元件和校正元件的平面图;

图3b是图1的放射线成像装置的像素、检测元件和校正元件的平面图;

图3c是图1的放射线成像装置的像素、检测元件和校正元件的平面图;

图3d是图1的放射线成像装置的像素、检测元件和校正元件的平面图;

图4是图1的放射线成像装置的像素的截面图;

图5是示出图1的放射线成像装置的电路布置的另一修改的等效电路图;

图6a是图5的放射线成像装置的像素的平面图;

图6b是图5的放射线成像装置的像素的平面图;

图7是示出图1的放射线成像装置的示意性布局的示图;

图8是示出示出图7的放射线成像装置的示意性布局的示图的修改的示图;

图9是示出图1的放射线成像装置的操作的流程图;

图10是示出根据本发明的实施例的放射线成像装置的电路布置的等效电路图;

图11是示出图10的放射线成像装置的电路布置的修改的等效电路图;

图12a是检测元件的平面图;

图12b是根据图10的放射线成像装置的校正元件的平面图;

图12c是检测元件的截面图;

图13是用于解释使用根据本发明的实施例的放射线成像装置的放射线成像系统的布置的示例的示图。

具体实施方式

现在将参考附图描述根据本发明的放射线成像装置的详细实施例。注意,在以下的描述和附图中,共用的附图标记贯穿多个附图表示共用的组件。因此,将通过交叉参考多个附图来描述共用的组件,并且将适当地省略由共用的附图标记表示的组件的描述。注意,根据本发明的放射线不仅可以包括作为由通过放射性衰变发射的粒子(包括光子)产生的射束的α射线、β射线和γ射线,而且可以包括具有等于或高于这些射束的能量的能量的射束,例如x射线、粒子射束和宇宙射线。

将参考图1-9描述根据第一实施例的放射线成像装置。图1是示出根据本实施例的放射线成像装置100的电路布置的等效电路图。根据本实施例的放射线成像装置100包括其中多个像素以阵列布置在基板上的图像感测区域和用于控制每个像素或处理从每个像素输出的电信号的周边区域。

周边区域包括电源电路150和栅极驱动电路160以及信号处理电路171,该电源电路150和栅极驱动电路160用于驱动和控制每个像素,该信号处理电路171包括用于处理从每个像素输出的电信号的读出电路170和信息处理电路180。然而,本发明不限于此。例如,读出电路170和信息处理电路180可以集成地形成。

图像感测区域包括用于获得放射线图像的多个像素和用于检测放射线照射并获得放射线照射信息的多个检测元件。在本实施例中,取决于每个像素中的配线的布置,像素102和各自具有用于将由检测元件获得的电信号传送到信号处理电路171的、延伸通过像素的信号线的像素110被包括。并且,作为检测元件,存在通过不同的信号线将电信号分别输出到信号处理电路的作为第一检测元件的检测元件101和作为第二元件的校正元件108。检测元件101和校正元件108用于在放射线照射的情况下获得放射线照射信息,该放射线照射信息与放射线图像不同并且是与放射线照射的开始、放射线照射的结束、放射线照射强度、放射线照射剂量等有关的信息。通过布置这样的检测元件101和校正元件108,变得能够在放射线成像装置100中加入自动曝光控制(aec)功能。尽管图1示出5×5(行×列)像素被设置在图像感测区中,但这是仅代表放射线成像装置100的图像感测区域的一部分的等效电路图。

图像感测区域可以具有布置这些检测元件101和校正元件108的仅一个或多个像素区。在放射线成像装置100中,各自布置有检测元件101和校正元件108的像素区被以例如3×3或5×5矩阵布置。这允许对每个像素区单独地检测放射线成像装置100的每个被照射的像素区的放射线照射信息。稍后将参考图7和图8给出包括多个像素区的图像感测区域的描述。

布置在放射线成像装置100的图像感测区域中的像素102和110经由电源配线114从电源电路150被供给电源电压,并且经由相应的图像控制配线113被栅极驱动电路160控制。从像素102和110输出的电信号通过相应的图像信号线112被传送到信号处理电路171。这允许获得放射线图像。检测元件101和校正元件108也经由电源配线114从电源电路150被供给电源电压,并且经由检测控制配线116被栅极驱动电路160控制。从检测元件101输出的电信号通过用作第一信号线的检测信号线104被传送到信号处理电路171。从校正元件108输出的电信号通过用作第二信号线的校正信号线103被传送到信号处理电路171。通过使用检测元件101和校正元件108以获得放射线照射信息,变得能够获得诸如布置检测元件101和校正元件108的区域的放射线照射剂量的放射线照射信息。在本实施例中,检测信号线104和校正信号线103被布置在图像感测区域中。替代地,检测信号线104和校正信号线103也可以被布置为在图像感测区域的边缘处彼此相邻。

在放射线成像装置100中,除了检测元件101或校正元件108以外的部分被放射线照射。在放射线照射时,在像素102和110中产生并蓄积对应于放射线照射剂量的电荷。在这种情况下,在检测信号线104延伸通过的每个像素110中,蓄积的电荷经由存在于检测信号线104与将放射线转换成电荷的像素110的转换元件的电极之间的寄生电容器基于电荷守恒被传送到检测信号线104。作为结果,用作从检测信号线104读出的电信号的电荷的量将不可避免地包括两个成分,即,来自检测元件101的电荷和从每个像素110经由检测信号线104与像素110的转换元件之间的电容器传送的电荷。因此,例如,如果放射线照射区扩展并且要被放射线照射的像素110的数量增加,则要从每个像素110传送到检测信号线104的电荷的量将增加。而且,例如,如果放射线照射区变得较小并且通过放射线照射已蓄积大的电荷量的像素110的数量减少,则要从每个像素110传送到检测信号线104的电荷的量减小。

校正信号线103用于通过校正经由检测信号线104与检测信号线104延伸通过的像素110之间的电容器的电荷的传送,正确地读出对应于照射检测元件101的放射线照射剂量的电信号。例如,如果校正信号线103和检测信号线104具有相同的形状和/或延伸通过相同数量的像素110,则存在于每个像素110与校正信号线103之间和存在于每个像素110与检测信号线104之间的寄生电容器变得几乎相等。作为结果,分别从每个像素110传送到校正信号线103和从每个像素110传送到检测信号线104的电荷的量变得几乎相等。通过从作为由检测信号线104获得的电信号的值的电荷的量减去作为来自校正信号线103的电信号的值的电荷的量,可以产生并且获得等于在检测元件101中转换的电荷的量的电荷的量,作为检测元件101的信号信息。在这种情况下,作为相减方法可以使用各种方法。例如,可以使用模拟相减或数字相减。替代地,可以使用相关双采样(cds)电路。

然而,布置在图像感测区域的周边中的信号处理电路171等在信号处理时产生热。由于这种局部的热产生,布置像素102和110以及检测元件101的图像感测区域可能由于不均匀的温度或温度分布而改变。在一些情况下,如果在布置在检测元件101以及像素102和110中的每一个中的转换元件和用作开关元件的薄膜晶体管(tft)中温度改变,则诸如转换元件的暗电流和tft的偏移电平的特性可能改变。当检测放射线时,检测元件101被接通以操作,并且各像素102和110的tft被关断。在这种情况下,校正信号线103与检测信号线104之间的电信号差不仅叠加有由于入射放射线导致的成分,而且叠加有诸如被接通以操作的检测元件101的偏移电平或暗电流的特性的变化成分。如果诸如检测元件101的暗电流和偏移电平的特性改变,则通过该差获得的电信号的值也改变。例如,如果检测元件101的偏移电平由于温度的升高而增加,则即使不存在放射线照射,提取的电信号也可能超过用于检测放射线的阈值。在这样的情况下,即使没有放射线照射已被执行,也可能确认已执行放射线照射。

相反,在本实施例中,连接到校正信号线103并且具有与连接到检测信号线104的检测元件101相同的转换元件结构和相同的tft结构的校正元件108被布置在放射线成像装置100的图像感测区域中。校正元件108可以被接通以与检测元件101同时操作。在图1中,校正元件108和检测元件101经由相同的检测控制配线116被控制并且被接通以同时操作。校正元件108可以靠近检测元件101被布置。如果图像感测区域的检测元件101的周围温度和温度分布改变,则诸如检测元件101以及像素102和110中的每一个的暗电流和偏移电平的特性改变。然而,通过布置具有相同的温度特性并且被布置在附近的校正元件108,即使诸如检测元件101的暗电流和偏移电平的特性改变,也可以减去暗电流和偏移电平。作为结果,变得能够精确地产生并获得与照射检测元件101的放射线有关的信息。

然而,由于如上所述校正元件108和检测元件101具有相同的转换元件和tft结构,因此用作从校正元件108和检测元件101针对入射的放射线量分别输出的电信号的电荷的量之间的差小。如果校正元件108和检测元件101的各输出之间的差小,则难以仅通过获得检测信号线104和校正信号线103的各电荷的量之间的差来获得检测元件101的信号信息。为了产生放射线照射信息,检测元件101和校正元件108在具有相同的转换元件和tft结构的同时需要针对入射放射线分别输出不同的电信号。为了输出不同的电信号,用于将入射放射线转换成电信号的灵敏度在检测元件101和校正元件108中可以不同。在本实施例中,放射线检测区域的大小在检测元件101和校正元件108中不同,并且检测元件101的放射线检测区域被形成为大于校正元件108的放射线检测区域。例如,在将放射线直接转换成电信号的放射线成像装置的情况下,使用诸如铅的重金属的遮蔽部件可以作为用于遮蔽放射线的遮蔽部件被设置在校正元件108的转换元件上。在通过使用闪烁体将放射线转换成光并且将光转换成电信号的间接型放射线成像装置的情况下,例如,铝遮蔽膜等可以作为用于遮蔽光的遮蔽部件被设置在校正元件108的转换元件与闪烁体之间。在任一转换类型的放射线成像装置中,遮蔽部件可以被布置在在关于图像感测区域的平面图中与校正元件108的转换元件至少部分地重叠(overlap)的区域中。作为结果,校正元件108的将放射线转换成电信号的灵敏度变得低于检测元件101的灵敏度。因此,不仅在每个像素110与检测元件101之间的寄生电容器改变时、而且在操作温度改变并且元件的特性改变时,通过减去从检测信号线104和校正信号线103分别获得的电信号,可以更精确地产生放射线照射信息。

例如,在使用闪烁体的间接型放射线成像装置的情况下,校正元件108可以是与检测元件101相同的大小并且具有相同的转换元件和tft结构,并且使用例如铝或铬来遮蔽光的遮蔽部件可以在比转换元件更靠近放射线进入的一侧形成。遮蔽部件可以例如布置在闪烁体与转换元件之间。另外,例如,校正元件108可以整个被遮蔽膜覆盖,使得几乎没有光将被检测到,并且获得转换元件的暗电流和tft部分的偏移电平以通过使用获得的值执行检测元件101的校正。

检测元件101和校正元件108可以被布置为彼此相邻。替代地,可以在检测元件101与校正元件108之间布置若干个列(例如,图1中所示的两个列)的像素102。如果检测元件101和校正元件108被布置为彼此相邻,则夹在检测元件101与校正元件108之间的像素102之间的间隔变宽。通过将像素102插入检测元件101与校正元件108之间,像素却失的检测元件101和校正元件108的部分的图像校正变得容易。在放射线成像装置100中使用的像素的每个边的大小小并且大约例如50μm-500μm。即使在其间布置两个像素102的情况下,检测元件101与校正元件108之间的相对距离也接近于大约150μm-1.5mm,并且可以假定检测元件101和校正元件108的温度环境相同。即使在若干个列的像素102被布置在检测元件101与校正元件108之间的情况下,也可以精确地产生并获得放射线照射信息。

图2是示出根据本实施例的放射线成像装置100的电路布置的等效电路图,并且示出图1中所示的电路布置的修改。与图1中所示的等效电路图的不同在于,控制检测元件101和校正元件108的检测控制配线116由与控制像素102和110的栅极驱动电路160分开设置的aec控制电路190控制。剩余的点可以是与图1中所示的等效电路图中相同的电路布置。在该布置中,与图1中所示的放射线成像装置100的栅极驱动电路160相比较,栅极驱动电路160不需要执行复杂的操作,并且变得容易设计驱动电路。例如,在执行放射线照射并且直到在检测元件101和校正元件108中的每一个中读出放射线照射信息的时段期间,aec控制电路190被驱动。随后,当要从像素102和110分别读出用于获得放射线图像的信号时,aec控制电路190停止,并且栅极驱动电路160可以被驱动以顺次读出信号。使周边区域电路对于检测元件101和校正元件108以及对于像素102和110单独操作的电路不限于控制电路。例如,可以通过在信号处理电路171的读出电路170中对于像素102和110以及对于来自检测信号线104和校正信号线103的信号设置单独的读出电路来执行处理。

图3a-3d分别示出像素102、像素110、检测元件101和校正元件108的平面图。图3a示出像素102的平面图。在本实施例中,放射线成像装置100是间接型放射线成像装置,并且在布置像素102和110、检测元件101以及校正元件108的图像感测区域上方布置闪烁体(未示出)。在每个像素102中,布置用作用于将经由闪烁体从放射线转换的光转换成电信号的转换元件的光电转换元件120。用作开关元件的薄膜晶体管(tft)111和各种类型的配线被布置在光电转换元件120下方。当tft111根据图像控制配线113的信号变为接通状态时,光电转换元件120中通过光电转换产生的电信号经由tft111被输出到图像信号线112。光电转换元件120的上部电极连接到施加恒定电压的电源配线114。检测控制配线116在光电转换元件120下面延伸。尽管如图1和图2中所示的那样存在检测控制配线116不延伸通过的像素102,但是图3a示出检测控制配线116延伸通过的像素102。

图3b示出检测信号线104或校正信号线103延伸通过的像素110。布置的除了检测信号线104或校正信号线103延伸通过像素的点以外的其余部分与像素102相同。布置在像素102和110中的每一个中的光电转换元件120的下部电极用作每个像素的单独电极。因此,在关于图像感测区域的平面图中,根据延伸通过像素110的检测信号线104或校正信号线103和光电转换元件120的下部电极重叠的区域上的重叠面积形成电容器。通过该电容器,基于电荷守恒,在光电转换元件120中蓄积的电荷被传送到检测信号线104或校正信号线103。

图3c示出检测元件101。光电转换元件115的下部电极经由tft119连接到检测信号线104,并且当tft119根据来自检测控制配线116的信号变为接通状态时,电信号从光电转换元件115被输出到检测信号线104。tft119被接通/关断以通过测量放射线照射的情况下的照度、检测放射线照射的开始/结束等获得放射线照射信息,并且蓄积在光电转换元件115中的信号被读出。

图3d示出校正元件108。校正元件108包括布置在图像感测区域上方的闪烁体(未示出)与光电转换元件123之间的遮蔽部件122。在本实施例中,布置在校正元件108上的光电转换元件123整个被遮蔽部件122覆盖。通过布置遮蔽部件122,在检测元件101的光电转换元件115的入射放射线的电信号的输出值与校正元件108的光电转换元件123的入射放射线的电信号的输出值之间出现差。除了这以外的结构可以与图3c中所示的检测元件101相同。光电转换元件123的下部电极经由tft124连接到校正信号线103,并且当tft124根据来自检测控制配线116的信号变为接通状态时,来自光电转换元件123的电信号被输出到校正信号线103。

如上所述,根据在检测信号线104与每个像素110的光电转换元件120之间形成的电容器,在光电转换元件120中产生的电荷被输出到检测信号线104。在图像感测区域中存在若干个这样的像素110,并且通过各像素110的光电转换元件120与检测信号线104之间的电容耦合写入的信号不能被忽略。例如,如果存在几百到几千个这些像素110,则可以存在由于电容耦合导致的信号量变为来自检测元件101的电信号的几倍到几十倍的情况。另外,例如,即使在光电转换元件120与检测信号线104不重叠的情况下,来自光电转换元件120的电荷也由于电场扩展的影响被传送。因此,通过在附近区域中布置校正信号线103并且获得每个信号差,可以减小要从这样的光电转换元件120传送的信号,并且可以读出来自检测元件101的信号。

图4示出沿着图3a中所示的像素102的线a-a′取得的截面图。像素和元件在图像感测区域的基板400上形成。在本实施例中,可以使用绝缘基板作为基板400。作为基板400,例如,可以使用玻璃基板或塑料基板。用作开关元件的tft111在基板400上形成。尽管在本实施例中使用反向交错的tft,但是可以使用顶栅tft。tft111包括栅电极401、源电极402、漏电极403和绝缘膜404。绝缘膜404可以充当tft111中的栅极绝缘膜。光电转换元件120被布置在层间绝缘膜406上,该层间绝缘膜406在保护膜405上形成,该保护膜405在tft111上形成。光电转换元件120包括在下部电极411与上部电极415之间依次层叠第一杂质半导体层412、本征半导体层413和与第一杂质半导体层412相对的导电的第二杂质半导体层414的结构。杂质半导体层412、本征半导体层413和杂质半导体层414形成pin光电二极管,并且通过该布置执行光电转换。尽管在本实施例中使用pin光电二极管作为光电转换元件,但是也可以使用mis元件。另外,电源配线114被布置在层间绝缘膜408上,该层间绝缘膜408在保护膜407上形成,该保护膜407在光电转换元件120上形成。像素102的上部被保护膜409覆盖。电源配线114经由接触插塞连接到光电转换元件120的上部电极415。光电转换元件120的下部电极411连接到tft111的漏电极403。当tft111通过连接到图像控制配线113的栅电极401接通时,通过光电转换在光电转换元件120中产生的电荷从源电极402被输出到图像信号线112。

图5是示出根据本实施例的放射线成像装置100的电路布置的等效电路图,并且示出图1和图2中所示的电路布置的修改。它与图1和图2中所示的等效电路图的不同在于,代替检测元件101和校正元件108,已布置其中检测元件和图像像素配对的像素131以及其中校正元件和图像像素配对的像素132。布置的其余部分可以与图1和图2中的放射线成像装置100中所示的那些相同。通过在已布置用于检测放射线的转换元件的区域中布置图像转换元件,可以抑制像素损失并且可以容易地执行图像校正。

图6a和图6b分别示出图5中所示的像素131和像素132的平面图。图6a示出像素131的平面图。像素131的上侧具有与像素110相同的布置,并且包括具有比像素110的光电转换元件120小的面积的光电转换元件120a。像素131的下侧具有与检测元件101相同的布置,并且具有具有比检测元件101的光电转换元件115小的面积的光电转换元件115a。图6b示出像素132的平面图。像素132的上侧具有与像素110相同的布置,并且包括具有比像素110的光电转换元件120小的面积的光电转换元件120a。像素132的下侧具有与校正元件108相同的布置,并且包括具有比校正元件108的光电转换元件123小的面积的光电转换元件123a。尽管光电转换元件120a的面积为每个像素102或110的光电转换元件120的大约1/2,但是可以通过诸如偏移校正和增益校正的图像处理来获得与每个像素102或110相同的量的输出。另外,布置在像素132中的光电转换元件123a和tft124可以具有与布置在像素131中的光电转换元件115a和tft119相同的结构。通过使各像素131和132的转换元件和tft具有相同的结构,变得能够校正从转换元件和tft输出并且特别地由于温度而改变的偏移电平和暗电流。作为结果,通过从从检测信号线104获得的电信号的值减去从校正信号线103获得的电信号的值,可以从差值精确地产生并获得照射检测元件101的放射线的放射线照射信息。

图7是示出本实施例的放射线成像装置100的示意性布局。图1、图2和图5中所示的等效电路图是代表如上所述的放射线成像装置的部分区域的示图。例如,图7是代表整个放射线成像装置100的示意性布局图,并且在包括图1中所示的等效电路的像素区中已设置9个区域(3行×3列)。关于照射每个像素区的放射线的多条信息可以由信号处理电路171的读出电路170和信息处理电路180收集。尽管图1示出了在像素区中设置一个检测元件101和一个校正元件108的示例,但是在图7中在像素区中布置三个检测元件101和三个校正元件108。要被连接到一个检测信号线104的检测元件101的数量可以与要被连接到一个校正信号线103的校正元件108的数量相同。一个检测信号线104延伸通过的像素110、检测元件101以及校正元件108的总和可以与一个校正信号线103延伸通过的像素110、检测元件101以及校正元件108的总和相同。通过使诸如要被连接的检测元件101和校正元件108的数量以及像素110、检测元件101和校正元件108的数量的数量相等,可以精确地获得照射检测元件101的放射线照射信息。另外,例如,以与像素区e相同的方式,检测元件101和校正元件108可以被布置为远离图像感测区域的边缘以处于图像感测区域的中心。可以通过作为图像感测目标的被检体的大小和布置来适当地决定检测元件101和校正元件108的布置。

每个像素区中的三个检测元件101连接到共用的检测信号线104,并且三个校正元件108连接到共用的校正信号线103。各检测信号线104和校正信号线103的列通过使它们各自的位置移位被布置,因此它们将不被不同的像素区共享。通过这种布置,例如,当检测控制配线116被驱动以将信号从检测元件101和校正元件108传送到信号处理电路171时,能够使所有的检测控制配线116同时操作。与在扫描时执行读出操作的情况相比较,同时读出操作可以缩短读出信号以获得放射线照射信息的间隔并提高读出速度。如果不需要提高读出速度,则可以使检测信号线104和校正信号线103在图7中所示的垂直方向上的像素区之间共用,并且检测控制配线116被单独地驱动。这可以简化读出电路170的处理电路并且减少连接到读出电路170的端子的数量。

图8是示出根据本实施例的放射线成像装置100的示意性布局的示图,并且示出图7中所示的示意性布局的修改。图8的布局与图7中所示的布局的不同在于,检测控制配线116在被连接到栅极驱动电路160之前针对每个像素区被捆扎在一起。通过这种布置,可以简化栅极驱动电路160,并且可以减少连接到栅极驱动电路160的端子的数量。

图9是示出根据本实施例的放射线成像装置100的从放射线照射的检测到照射强度的确定和照射停止时间的输出的顺序的流程图。在步骤901中,放射线成像装置100维持待机状态。当放射线照射开始时,处理前进到步骤902。在步骤902中,对由检测信号线104和校正信号线103传送的电信号进行采样,并且在步骤903中提取差值。在步骤904中,信号处理电路171基于差值确定放射线照射剂量是否已稳定。如果确定放射线照射剂量尚未稳定,则处理返回到步骤902。否则,处理前进到步骤905。在步骤905中,信号处理电路171基于差值计算停止放射线照射的时间(照射停止时间)。计算的照射停止时间在步骤906从信号处理电路171被传输到控制放射线源的控制器。控制器基于该照射停止时间停止放射线照射。在本实施例中,放射线源的控制由放射线成像装置100的信号处理电路171执行,但是本发明不限于此。代替计算和输出照射停止时间,可以从放射线成像装置100输出用于监视的放射线信息,并且可以由控制用于放射线照射的管的控制电路进行停止照射的确定。

将参考图10-12描述根据第二实施例的放射线成像装置。图10是示出根据本实施例的放射线成像装置100的电路布置的等效电路图。与第一实施例中所示的电路布置相比较,不同在于检测元件1001和校正元件1008直接连接到各信号线而不通过用作开关元件的tft。另外,信号从检测元件1001和校正元件1008分别输出到的检测信号线和校正信号线由多用途信号线1012配置,该多用途信号线1012还用作从各像素102的转换元件输出信号的各图像信号线。布置的其余部分可以与第一实施例中相同。

如图10中所示,在根据本实施例的放射线成像装置100的电路布置中,检测元件1001和校正元件1008直接连接到多用途信号线1012而不通过诸如tft等的开关元件。在本实施例中,要被连接到校正元件1008的多用途信号线1012的转换元件的大小和要被连接到相应的多用途信号线1012的校正元件1008的数量与要被连接到相应的多功能信号线1012的检测元件1001相同。同时,以与第一实施例相同的方式,检测元件1001的放射线检测区域的大小和校正元件1008的放射线检测区域的大小不同。在本实施例中,检测元件1001的放射线检测区域被形成为大于校正元件1008的放射线检测区域。例如,在将放射线直接转换成电信号的放射线成像装置的情况下,例如,重金属遮蔽部件可以作为用于遮蔽放射线的遮蔽部件被形成在校正元件1008的转换元件上。在使用闪烁体以将放射线转换成光并且将该光转换成电信号的间接型放射线成像装置的情况下,例如,铝遮蔽膜等可以作为用于遮蔽光的遮蔽部件被设置在校正元件1008的转换元件上。因此,以与第一实施例中相同的方式,通过从从检测元件1001连接到的信号线输出的每个信号减去从校正元件1008连接到的信号线输出的每个信号,可以精确地产生与照射检测元件1001的放射线有关的信息。并且,通过将转换元件直接连接到用于将不通过开关元件而输出的每个信号传送到信号处理电路171的信号线,用于驱动检测元件1001和校正元件1008的控制配线以及诸如tft等的开关元件不需要被布置。因此,变得能够简化栅极驱动电路160。另外,用作每个像素102的转换元件连接到的图像信号线的多用途信号线1012还被用作检测元件1001和校正元件1008分别连接到的检测信号线和校正信号线。作为结果,可以减少连接到读出电路170的端子的数量,并且可以简化读出电路170。

以这种方式,通过使用检测元件1001、校正元件1008和多用途信号线1012,与第一实施例的电路布置相比较,本实施例的电路布置可以简化放射线成像装置100的结构和制造过程。

图11是示出根据本实施例的放射线成像装置100的电路布置的等效电路图,并且示出图10中所示的电路布置的修改。该修改与图10中所示的放射线成像装置100的等效电路图的不同在于,从检测元件1001和校正元件1008输出的电信号如第一实施例中所示的那样通过信号处理电路171分别被输入到指定的检测信号线104和校正信号线103。布置的其余部分可以与图10中所示的放射线成像装置100中相同。通过这种布置,可以减少要被连接到图像信号线112的元件的数量,并且减小图像信号线112的电容。因此,它可以提供具有高的信噪比(snr)的放射线成像装置。

图12a和图12c分别示出检测元件1001的平面图和截面图,并且图12b示出校正元件1008的平面图。图12a是检测元件1001的平面图。光电转换元件115在不设置诸如tft的开关元件的情况下直接连接到检测信号线104。图12b是校正元件1008的平面图。在校正元件1008中,以与检测元件1001中相同的方式,光电转换元件123也直接连接到校正信号线103而不通过开关元件。另外,通过在校正元件1008与布置在图像感测区域上方的闪烁体之间设置遮蔽部件122,进入光电转换元件123的光的量减小。因此,用于将放射线变为电信号的灵敏度将与检测元件1001的灵敏度不同,并且校正元件1008可以充当校正由于驱动时的温度而改变的偏移电平或暗电流的元件。图12c示出沿着图12a中所示的检测元件1001的线b-b'取得的截面图。与图4中所示的像素102的截面图相比较,不存在用作开关元件的tft。光电转换元件115的下部电极411和检测信号线104直接连接。

尽管已描述了本发明的两个实施例,但是可以适当地改变和组合上述实施例。关于被认为可由本领域技术人员容易想到的设计事项的细节没有被描述,并且本发明不限于这些实施例。例如,转换元件、闪烁体和tft可以由不同的材料或布置制成,或者可以使用用于直接检测放射线的转换元件。另外,图3d中所示的校正元件108和图6b中所示的像素132分别具有光电转换元件123和123a的整个表面被遮蔽的布置。然而,在检测元件101与校正元件108之间或者在像素131与132之间,仅需要具有放射线与电信号之间的转换灵敏度差,并且例如,允许光部分到达转换元件的开口可以被设置在光电转换元件123和123a中的每一个上。并且,例如,信号从检测元件101和1001以及校正元件108和1008分别输出到的检测信号线104和校正信号线103中的一个可以是多用途信号线1012,该多用途信号线1012还用作来自每个像素102的转换元件的信号被输出到的图像信号线。

将参考图13例示加入根据本发明的放射线成像装置100的放射线成像系统。由用作放射线源的x射线管6050产生的x射线6060穿过患者或被检体6061的胸部6062,并且进入根据本发明的放射线成像装置100。入射的x射线包括关于患者或被检体6061的身体的内部的信息。在放射线成像装置100中,闪烁体根据x射线6060的进入发射光,并且发射的光通过光电转换元件被光电转换以获得电信息。该信息被转换成数字数据,经受用作信号处理单元的图像处理器6070的图像处理,并且可以在控制室中的用作显示单元的显示器6080上被观察。并且,该信息可以通过诸如电话线6090的传输处理单元被传送到遥远的地方。这允许信息在另一个地方的医生室等中的用作显示单元的显示器6081上被显示,并且甚至遥远的地方的医生可以进行诊断。另外,信息可以保存在诸如光盘的记录介质上,并且膜处理器6100也可以将信息记录在用作记录介质的膜6110上。

尽管已参考示例性实施例描述了本发明,但是应理解,本发明不限于公开的示例性实施例。以下权利要求的范围应被赋予最宽的解释以便包含所有这样的修改以及等同的结构和功能。

本申请要求2015年5月22日提交的日本专利申请no.2015-104912的权益,该专利申请通过在此整体引用而特此加入。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1