数据接收方法、数据发送方法、装置和系统与流程

文档序号:17817058发布日期:2019-06-05 21:51
数据接收方法、数据发送方法、装置和系统与流程

本申请涉及通信领域,特别是涉及一种数据接收方法、数据发送方法、装置和系统。



背景技术:

随着通信技术的发展,对通信领域中设备的数据接收、发送需求也越来越高。在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在推动的第五代移动通信技术(5th-Generation,5G)中,通信设备需要接收周边来自不同波束方向的数据,也可以接收用于测量的参考信号。

在一些情况下,参考信号和数据会来自不同的波束方向,例如图1所示,接收设备是用户设备(User Equipment,UE),在当前时隙(slot)上该UE收到来自三个具有不同波束方向的数据和参考信号,其中,在波束方向1中发送了同步信号块(Synchronization Signal Block,SSB)1(一种用于测量的参考信号),在波束方向2发送了SSB2和数据,在波束方向3中发送了SSB3,其中,SSB1和SSB3与波束方向2中的数据来自不同的波束方向。该UE需要通过自身的收波束单元(Rx Beam1)接收这些波束方向发来的数据和SSB。

由于该UE除了需要接收来自波束方向2中数据,还需要通过接收SSB1-3实现对不同波束方向例如波束方向1-3的测量,以确定自身收波束单元与上述不同波束方向间的信道质量等。可见,接收设备需要具有接收来自不同波束方向的参考信号和数据的能力,才能兼顾测量精度,且不影响接收来自服务小区的数据。



技术实现要素:

第一设备向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述第一设备从第一波束方向获取数据,并根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠,所述第一波束方向为所述第二设备的发送波束的方向。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM传输资源。

可选的,所述第一设备至少包括第一收波束单元和第二收波束单元,所述第一设备从第一波束方向获取数据,包括:

所述第一设备通过所述第一收波束单元接收从所述第一波束方向发送的数据,所述第一发波束方向为所述第一设备所接收多个发波束方向中的一个;

所述方法还包括:

所述第一设备通过所述第二收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,若所述第一设备可接收波束方向的数量为一个,所述速率匹配方式为TDM。

可选的,所述第一设备从第一波束方向获取数据,包括:

所述第一设备在所述数据占用的传输资源上通过收波束单元从所述第一波束方向获取所述数据;

所述方法还包括:

所述第一设备在所述第一波束方向中参考信号占用的传输资源上通过所述收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述第二波束方向为第三设备发送波束的方向。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述第一设备根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述第一设备在发送所述指示信息之前还向所述第二设备发送包括所述第一设备可接收的波束能力的指示信息。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,在所述适用时间内,所述第一设备发送的所述指示信息覆盖所述第一设备发送的包括第一设备可接收的波束能力的指示信息。

可选的,若所述指示信息中所述第一设备支持的速率匹配方式为TDM,所述第一设备将所述第一设备可接收波束数量配置为一个。

可选的,所述方法还包括:

所述第一设备从所述二设备获取匹配方式信息,所述匹配方式信息指示了所述数据的速率匹配方式;

所述第一设备从所述第一波束方向获取所述数据,所述数据的速率匹配方式为所述匹配方式信息所指示的速率匹配方式。

可选的,所述第一设备可接收波束数量为一个。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第二方面,本申请实施例提供了一种用于数据接收的第一设备,所述第一设备包括发送单元和接收单元:

所述发送单元,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述接收单元,用于从第一波束方向获取数据,并根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠,所述第一波束方向为所述第二设备的发送波束的方向。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM传输资源。

可选的,所述第一设备至少包括第一收波束单元和第二收波束单元,所述第一设备从第一波束方向获取数据,包括:

所述接收单元,还用于通过所述第一收波束单元接收从所述第一波束方向发送的数据,所述第一发波束方向为所述第一设备所接收多个发波束方向中的一个;

所述接收单元,还用于通过所述第二收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,若所述第一设备可接收波束方向的数量为一个,所述速率匹配方式为TDM。

可选的,所述接收单元,还用于在所述数据占用的传输资源上通过收波束单元从所述第一波束方向获取所述数据;

所述接收单元,还用于在所述第一波束方向中参考信号占用的传输资源上通过所述收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述第二波束方向为第三设备发送波束的方向。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述接收单元根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述发送单元在发送所述指示信息之前,还用于向所述第二设备发送包括所述第一设备可接收的波束能力的指示信息。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,在所述适用时间内,所述发送单元发送的所述指示信息覆盖所述发送单元发送的包括第一设备可接收的波束能力的指示信息。

可选的,若所述指示信息中所述第一设备支持的速率匹配方式为TDM,所述第一设备将所述第一设备可接收波束数量配置为一个。

可选的,所述方法还包括:

所述接收单元,还用于从所述二设备获取匹配方式信息,所述匹配方式信息指示了所述数据的速率匹配方式,所述匹配方式信息所指示的速率匹配方式为所述第二设备根据所述第一设备的位置、所述第一波束方向和第三波束方向确定的,所述第三波束方向为所述第一设备所接收多个波束方向中的一个,所述第三波束方向中发送有参考信号;

所述接收单元,还用于从所述第一波束方向获取所述数据,所述数据的速率匹配方式为所述匹配方式信息所指示的速率匹配方式。

可选的,所述第一设备可接收波束数量为一个。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第三方面,本申请实施例提供了一种数据发送方法,所述方法包括:

第二设备从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述第二设备根据所述指示信息确定对数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠;

所述第二设备从第一波束方向对所述第一设备发送所述数据,所述数据采用所述速率匹配方式进行速率匹配。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM;若所述第一设备可接收波束数量为一个,所述速率匹配方式为TDM。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述第二设备根据所述指示信息确定对数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,第二设备还向所述第一设备发送包括所述第一设备支持的速率匹配方式的适用时间的指示信息。

可选的,所述方法还包括:

所述第二设备根据所述第一设备的位置确定所述第一波束方向和第三波束方向间的角度;

若所述角度满足预设条件,所述第二设备从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为FDM,所述第三波束方向为所述第一设备所接收多个波束方向中的一个,所述第三波束方向中发送有参考信号;

若所述角度不满足预设条件,所述第二设备从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为TDM。

可选的,所述第一设备可接收波束数量为一个。

可选的,其特征在于,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第四方面,本申请实施例提供了一种用于数据发送的第二设备,所述第二设备包括接收单元、确定单元和发送单元:

所述接收单元,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述确定单元,用于根据所述指示信息确定对数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠;

所述发送单元,用于从第一波束方向对所述第一设备发送所述数据,所述数据采用所述速率匹配方式进行速率匹配。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM;若所述第一设备可接收波束数量为一个,所述速率匹配方式为TDM。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述确定单元根据所述指示信息确定对数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,所述发送单元,还用于向所述第一设备发送包括所述第一设备支持的速率匹配方式的适用时间的指示信息。

可选的,所述确定单元,还用于根据所述第一设备的位置确定所述第一波束方向和第三波束方向间的角度;

所述发送单元,还用于若所述角度满足预设条件,从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为FDM,所述第三波束方向为所述第一设备所接收多个波束方向中的一个,所述第三波束方向中发送有参考信号;

所述发送单元,还用于若所述角度不满足预设条件,从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为TDM。

可选的,所述第一设备可接收波束数量为一个。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第五方面,本申请实施例提供了一种数据接收方法,所述方法包括:

第一设备向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备,所述第一设备可接收发波束数量为一个;

所述第一设备从所述第二设备获取测量间隙的配置信息;

所述第一设备在所述配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第六方面,本申请实施例提供了一种用于数据接收的第一设备,所述第一设备包括发送单元和接收单元:

所述发送单元,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备,所述第一设备可接收发波束数量为一个;

所述接收单元,用于从所述第二设备获取测量间隙的配置信息;

所述接收单元,还用于在所述配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第七方面,本申请实施例提供了一种数据发送方法,所述方法包括:

第二设备从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

若所述第二设备根据所述指示信息确定所述第一设备可接收波束数量为一个,所述第二设备为所述第一设备配置测量间隙的配置信息;

所述第二设备从自身的波束方向对所述第一设备发送所述配置信息和参考信号,所述参考信号占用的传输资源为所述测量间隙对应的传输资源。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述测量间隙的配置信息指示是否配置了测量间隙。

可选的,所述方法还包括:

若所述第一设备可接收波束数量为多个,所述第二设备不为所述第一设备配置测量间隙。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第八方面,本申请实施例提供了一种用于数据发送的第二设备,所述第二设备包括接收单元、配置单元和发送单元:

所述接收单元,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述配置单元,用于若根据所述指示信息确定所述第一设备可接收波束数量为一个,为所述第一设备配置测量间隙的配置信息;

所述发送单元,用于从自身的波束方向对所述第一设备发送所述配置信息和参考信号,所述参考信号占用的传输资源为所述测量间隙对应的传输资源。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述测量间隙的配置信息指示是否配置了测量间隙。

可选的,所述配置单元,还用于若所述第一设备可接收波束数量为多个,不为所述第一设备配置测量间隙。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第九方面,本申请实施例提供了一种数据接收方法,所述方法包括:

第一设备从第二设备获取指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述第一设备从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,所述第一设备是通过目标波束方向获取所述数据的,所述目标波束方向为所述第二设备的发送波束的方向,所述目标波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述方法还包括:

所述第一设备从第二设备获取时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第十方面,本申请实施例提供了一种用于数据接收的第一设备,所述第一设备包括接收单元和确定单元:

所述接收单元,用于从第二设备获取指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述确定单元,用于从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,所述确认单元是通过目标波束方向获取所述数据的,所述目标波束方向为所述第二设备的发送波束的方向,所述目标波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述接收单元还用于从第二设备获取时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第十一方面,本申请实施例提供了一种数据发送方法,所述方法包括:

第二设备根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述第二设备向所述第一设备发送所述指示信息;

所述第二设备对所述第一设备发送所述数据,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,所述方法还包括:

所述第二设备向所述第一设备发送时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述预设条件包括所述数据的优先级程度或所述第二设备的功率消耗指示信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第十二方面,本申请实施例提供了一种用于数据发送的第二设备,所述第二设备包括确定单元和发送单元:

所述确定单元,用于根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述发送单元,用于向所述第一设备发送所述指示信息;

所述发送单元,还用于对所述第一设备发送所述数据,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,所述发送单元,还用于向所述第一设备发送时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述预设条件包括所述数据的优先级程度或所述第二设备的功率消耗指示信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

第十三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。

附图说明

图1为一种接收来自不同波束方向参考信号的系统示意图;

图2a为本申请实施例提供的一种蜂窝链路的场景示意图;

图2b为本申请实施例提供的一种D2D链路的场景示意图;

图3为本申请实施例提供的一种数据传输方法的方法流程图;

图4a为本申请实施例提供的一种数据和参考信号对传输资源的占用示意图;

图4b为本申请实施例提供的一种数据和参考信号对传输资源的占用示意图;

图4c为本申请实施例提供的一种数据和参考信号对传输资源的占用示意图;

图4d为本申请实施例提供的一种数据和参考信号对传输资源的占用示意图;

图5为本申请实施例提供的一种接收来自不同波束方向参考信号的系统示意图;

图6为本申请实施例提供的一种基站为用户设备所分配测量窗的示意图;

图7为本申请实施例提供的一种数据传输方法的方法流程图;

图8为本申请实施例提供的一种数据传输方法的方法流程图;

图9为本申请实施例提供的一种用于数据接收的第一设备的装置结构图;

图10为本申请实施例提供的一种用于数据发送的第二设备的装置结构图;

图11为本申请实施例提供的一种用于数据接收的第一设备的装置结构图;

图12为本申请实施例提供的一种用于数据发送的第二设备的装置结构图;

图13为本申请实施例提供的一种用于数据接收的第一设备的装置结构图;

图14为本申请实施例提供的一种用于数据发送的第二设备的装置结构图;

图15为本申请实施例提供的一种数据传输系统的系统结构图;

图16为本申请实施例提供的一种数据传输系统的系统结构图;

图17为本申请实施例提供的一种数据传输系统的系统结构图;

图18为本申请实施例提供的一种第一设备的硬件结构示意图;

图19为本申请实施例提供的一种第二设备的硬件结构示意图;

图20为本申请实施例提供的一种第一设备的硬件结构示意图;

图21为本申请实施例提供的一种第二设备的硬件结构示意图;

图22为本申请实施例提供的一种第一设备的硬件结构示意图;

图23为本申请实施例提供的一种第二设备的硬件结构示意图。

具体实施方式

下面结合附图,对本申请的实施例进行描述。

在3GPP正在推动的5G标准化过程中,通信设备需要接收周边来自不同波束方向的数据,这些数据中可以包括业务数据,也可以包括用于测量的参考信号。其中,在本申请实施例中,数据可以包括控制信息例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息和业务数据例如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)数据等。参考信号为用于测量信道质量的信号,参考信号可以包括SSB,信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等。

这里SSB包括至少用于同步的同步信号,如主同步信号,从同步信号;可选的,SSB还可以包括用于辅助同步的广播信道,如物理广播信道PBCH(Physical Broadcast Channel)。SSB可以包括多个时域符号,这些时域符号包括上面提到的:主同步信号,从同步信号,可选的还包括PBCH所在的符号。

当第一设备需要同时接收来自不同波束方向的参考信号,且第一设备还需要从第二设备获取数据时,第一设备难以兼顾接收参考信号和数据,要么采用第一种方式需要丢弃部分数据来接收参考信号;要么采用第二种方式不接收来自其他波束方向的参考信号,而接收第二设备的数据。针对第一种方式,第一设备对所接收数据译码时可能会由于丢弃的数据部分导致译码错误;针对第二种方式,第一设备对来自第二设备波束方向以外的其他波束方向的测量精度降低,会对第一设备需要切换到其他设备时造成不好的影响。例如为了提升在同频测量下的系统性能,基站通常不会给做同频测量的UE配置测量间隔(GAP)。UE需要基于自身能力来测量来自各个不同波束方向的参考信号。UE如何做测量才能保证一定的测量精度,且又不影响对服务小区数据包的接收是一定需要解决的问题。否则要么测量精度会下降,影响到基于测量结果的小区切换;要么影响到自己下行数据的接收。

为此,本申请实施例提供了针对接收来自多波束方向参考信号的数据接收方法、数据发送方法、装置和系统,通过针对第一设备发送的指示信息配置第二设备所需发送的参考信号与数据的速率匹配方式,从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

在本申请实施例中,涉及到了需要接收来自不同波束方向的参考信号的第一设备,以及需要向第一设备发送参考信号以及数据的第二设备。第一设备可以包括发射设备,第二设备可以包括接收设备。第一设备和第二设备可以是各类具有传输功能的网元,例如可以是基站(Base Station,BS)、中继设备、终端设备(Terminal Equipments,TE)、演进型基站(evolved Node B,eNB)、5G中的NR基站(gNB)等。其中,TE可以包括UE。

第二设备为向第一设备发送数据的设备。一些情况下,第一设备与第二设备间可以建立了数据连接,该数据连接可以与本申请实施例所应用的场景相关。本申请实施例所应用的场景可以包括蜂窝链路,也可以包括设备间链路(Device-to-Device,D2D);还可以应用于基站间的回传链路。在蜂窝链路中,第一设备可以为UE,第二设备可以为基站,例如图2a所示,UE与基站间通过上下行链路进行通信;在D2D链路中,第一设备和第二设备都可以是UE,例如图2b所示,UE1与UE2间通过边链路(sidelink)进行通信。

在本申请实施例中,传输资源可以包括符号,符号可以是指用于传输参考信号、业务数据等的时域符号。在一个符号中可以同时包括至少一个子带、带宽部分、载波、扩频的码道或一个或多个指向特定空域的波束方向。一个符号可以是多载波系统(即包括多个频域的载波单元)中的符号,也可以是单载波系统中的符号或者扩频系统中的符号。多载波系统中的载波单元可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的载波单元,也可以是基于离散傅里叶变换(Discrete Fourier Transform,DFT)扩展的OFDM系统的载波单元,本申请实施例对此不做限定。

本申请实施例中的波束(beam或beam forming)可以是第一设备通过使用一定的波束成型方式形成的具有一定方向性的空间传输波形。波束成型的方式可以是基于模拟电路来形成的波束,也可以是基于多个数字天线端口通过预编码向量或矩阵生成的波束,本申请实施例对此不做限定。该波束具有一定空间指向性,波束方向可以用于指示波束的空间指向方向。

波束方向可以为一个设备例如第二设备发送波束的方向,一个设备可以具有多个波束方向,一个设备的波束方向可以改变。而一个设备例如第一设备的一个收波束单元可以为用于接收一个波束方向发来波束的单元。一个设备的收波束单元的接收波束的方向也可以改变。

在本申请实施例中,第一设备需要接收来自不同波束方向的参考信号,该不同波束方向中每个波束方向可以分别源于不同的设备,其中多个波束方向也可以源于相同的设备。例如图1所示的情况中,波束方向1和波束方向2可以都是第二设备发送波束的方向,即都是源于第二设备,波束方向1和2中的数据可以都是由第二设备发出的。或者,波束方向1-3分别为三个不同设备发射波束的方向。

实施例一

本实施例主要结合第一设备和第二设备介绍在第一设备需要接收来自多波束方向的参考信号时,数据接收、发送的各种方式。

接下来通过附图说明本申请实施例提供的接收多波束方向数据,以及数据发送的方法,如图3所示,该方法包括以下步骤:

301:第一设备向第二设备发送所述第一设备可接收波束数量的指示信息。

第一设备可接收波束数量可以体现第一设备的接收波束的能力。当第一设备可接收波束数量为一时,第一设备可以同时接收一个波束方向的数据和参考信号;当第一设备可接收波束数量为多个时,第一设备可以同时接收多个波束方向的数据和参考信号。第一设备能够同时接收波束数量越多,体现了第一设备接收波束的能力越强。相应的,第一设备接收波束的能力越强,得到第一设备所付出的成本就越高。

目前大部分的第一设备接收波束的能力较低,能够同时接收多个波束方向数据和参考信号的第一设备并不多见。所以,在面对需要同时接收多个波束方向参考信号的场景时,大部分第一设备难以做到测量精度和接收数据的兼顾。

由于不同的第一设备接收波束的能力可能有所不同,采用统一的速率匹配方式并不可取,需要考虑到接收波束能力较低的第一设备。故第一设备需要向第二设备上报第一设备可接收波束数量的指示信息,以便让第二设备可以有针对性的根据不同的可接收波束数量确定出对应的速率匹配方式。

该指示信息中可以包括以下中的任意一种:

第一设备可接收的波束数量、第一设备可接收的波束能力或第一设备支持的速率匹配方式。

其中,若指示信息为第一设备可接收的波束数量,那么该指示信息可以直接体现出第一设备可以接收的波束的数量,从而第二设备可以直接通过该指示信息明确第一设备可以同时接收波束的数量,从而选择相应的速率匹配方式应用于向该第一设备发送的数据。

若指示信息为第一设备可接收的波束能力,第一设备和第二设备间可以具有预设的波束能力对应关系,该对应关系中包括了不同波束能力对应的波束数量或速率匹配方式,例如能力1对应FDM,能力2对应TDM等,第二设备根据预设的对应关系以及指示信息中提供的波束能力查找得到第一设备可以同时接收波束的数量从而确定对应的速率匹配方式,或者能够直接查找到对应该报数能力的速率匹配方式,这里不做限定。

若指示信息为第一设备支持的速率匹配方式,该速率匹配方式可以是由第一设备自行选择的,选择的方式可以基于自身接收波束的能力,或者基于具体的应用场景动态的改变所能支持的速率匹配方式。例如需要节约功率消耗的情况下,原本可接收波束数量为多个的第一设备可以向第二设备发送的指示信息为TDM,这样,第一设备可以仅开启一个收波束单元接收来自多个波束方向的参考信号,并关闭剩余的收波束单元节约功率消耗;当不需要节约功率消耗时,该第一设可以向第二设备发送的指示信息为FDM,从而从第二设备通过第一波束方向发来的数据是根据FDM进行速率匹配的,该第一设备可以通过自身多个收波束单元实现接收来自多个波束方向的参考信号。在可选的情况下,当第一设备可接收波束数量为多个时,该第一设备所发送的指示信息可以为第一设备支持的速率匹配方式。若指示信息中第一设备支持的速率匹配方式为TDM,第一设备可以将第一设备可接收波束数量配置为一个,以节约功率消耗。

指示信息还可以在同一个应用场景下包括不同的可能,例如第一设备在第一时刻可以先向第二设备发送包括第一设备可接收的波束数量或第一设备可接收的波束能力的指示信息,之后通过第一波束方向接收的数据均为对应于第一设备可接收的波束数量或第一设备可接收的波束能力的速率匹配方式,第一时刻之后的第二时刻,第一设备可以根据自身需求再向第二设备发送包括第一设备支持的速率匹配方式的指示信息,该指示信息中的速率匹配方式可以与第一时刻后第二时刻前第二设备对数据采用的速率匹配方式不同,第一设备在发送了该指示信息后,之后通过第一波束方向接收的数据均为该指示信息中的速率匹配方式。又例如,第一设备在第一时刻可以先向第二设备发送包括第一设备支持的速率匹配方式的的指示信息,在第一时刻之后的第二时刻,第一设备可以根据自身需求再向第二设备发送第一设备可接收的波束数量或第一设备可接收的波束能力的指示信息。

指示信息中除了可以包括第一设备可接收的波束数量、第一设备可接收的波束能力或第一设备支持的速率匹配方式以外,还可以包括时长信息,该时长信息用于确定该指示信息中第一设备支持的速率匹配方式的适用时间。该时长信息可以预设的一段时间段,也可以是预设的多个时间段,也可以是预设的具有周期规律的多个时间段。当第二设备接收到具有时长信息的指示信息后,第二设备可以在该时长信息所指示的时间段对向第一设备发送的数据采用该指示信息所对应或指示的速率匹配方式,而在该时长信息所指示的时间段之外,可以根据自身需求或其他依据确定速率匹配方式,或者不对数据进行速率匹配。需要注意的是,当指示信息中可以包括时长信息时,若第一设备在向第二设备发送了包括时长信息的指示信息之前,已经向第二设备发送了包括第一设备可接收的波束能力的指示信息,那么在该时长信息所指示的适用时间内,第二设备将采用该包括了时长信息的指示信息所指示的速率匹配方式对发向第一设备的数据进行速率匹配。相当于覆盖了该包括第一设备可接收的波束能力的指示信息所对应的速率匹配方式。在该时长信息所指示的使用时间之外,第二设备对发向第一设备的数据还可以采用该包括第一设备可接收的波束能力的指示信息所对应的速率匹配方式。

302:第二设备根据该指示信息确定对数据的速率匹配方式。

在本申请实施例中,速率匹配是指在数据传输中,当参考信号所占用的传输资源与数据所占用的传输资源有重叠时,配置、调整参考信号和数据所占用传输资源的操作。也就是说,参考信号的传输资源与数据在根据速率匹配方式做速率匹配之前的传输资源有重叠。

而速率匹配范式是指进行速率匹配所采用的具体实现方式,速率匹配方式有多种方式,例如可以包括频分复用(Frequency Division Multiplexing,FDM)和时分复用(Time Division Multiplexing,TDM)。使用FDM的速率匹配方式时,参考信号占用的传输资源中包括了数据,例如图4a所示,参考信号与数据处于相同符号的的不同子载波上。而使用TDM的速率匹配方式时,参考信号和数据分别占用不同的时域传输符号,例如图4b所示,参考信号所占用的符号上没有映射数据子载波,数据仅在参考信号所占用符号以外的其他符号上传输。参考信号和数据所占用传输资源还可以有其他可能,例如图4c、4d所示。

这两种速率匹配方式有不同的频谱效率。FDM下,第二设备在同一个符号上可以同时传输数据和参考信号,能够将频谱效率最大化;而TDM下,由于参考信号和数据占用不同的时域传输符号,故为了传输参考信号,第二设备需要打掉一部分在参考信号符号上的原承载于数据子载波中的数据,并使用这部分子载波专用于传输参考信号,或者说不能再用这部分子载波传输业务数据,降低了频谱效率。

由于FDM的情况下,参考信号所占用时域符号中也包括有数据,故为了避免丢弃数据,第一设备需要保持在第二设备的波束方向接收数据。若第一设备的接收波束能力较低,例如只能同时接收一个波束方向的数据和参考信号时,第二设备采用FDM的方式对数据进行速率匹配将并不适用于这类第一设备,会导致这类第一设备难以兼顾接收参考信号和数据。

所以,当第二设备确定第一设备可接收波束数量为一时,可以对应的确定速率匹配方式为TDM,在TDM的情况下,参考信号所占用的时域符号中没有数据子载波,第一设备可以在该传输资源上改变自身收波束单元的接收方向,以接收其他波束方向中的参考信号,提高第一设备对来自不同波束方向的参考信号和数据的并行接收能力。

而当第一设备接收波束能力较高例如可以同时接收多个波束方向的数据和参考信号时,这类第一设备可以是一个收波束单元保持对第二设备的波束方向数据和参考信号接收的同时,通过其他收波束单元接收来自其他波束方向的参考信号,故当第二设备确定第一设备可接收波束数量为多个时,可以对应的确定对数据的速率匹配方式为频谱效率更高的FDM,提高系统资源的利用率。

当第二设备根据第一设备接收波束的能力明确了对应的速率匹配方式后,在向第一设备发送数据时,第二设备将采用该速率匹配方式设置数据中参考信号和数据所占用传输资源,或者说对数据采用该速率匹配方式进行速率匹配。

303:第一设备从第一波束方向获取数据,并根据第一设备可接收的波束数量确定该数据的速率匹配方式。该第一波束方向可以为第一设备所接收多个波束方向中的一个、且为第二设备的波束方向。

结合步骤301中针对指示信息能够包括的不同可能,第一设备从第一波束方向所获取数据被速率匹配的方式可以相应的改变。

第一设备除了可以从第二设备获取数据以外,还可以从第二设备获取第二设备发送的一种指示信息,该指示信息可以包括所述第一设备支持的速率匹配方式的适用时间。也就是说,第一设备虽然向第二设备告知了自身收波束的能力,但是,第二设备也可以根据自身需求等确定是否能够按照与第一设备收波束能力对应的速率匹配方式对发向第一设备的数据进行速率匹配,或者也可以在确定使用与第一设备收波束能力对应的速率匹配方式的情况下,确定使用该速率匹配方式的时间,当确定了使用该速率匹配方式的适用时间时,第二设备可以通过上述指示信息告知第一设备改适用时间,以便让第一设备了解在什么时间段采用何种速率匹配方式对从第二设备接收的数据进行译码。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。即,这里的传输的数据在做速率匹配之前,其传输所在的时频资源与参考信号传输的时频资源在参考信号所在的全部或部分符号上,在参考信号所在的子载波上与数据在这些符号上的传载波重叠。UE在同一个子载波上不至于收到两个完全不同的信号,第二设备需要在这些重叠的子载波或时域符号上做速率匹配。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

在指示信息包括第一设备可支持的速率匹配方式的情况下,在需要接收来自多个波束方向参考信号的场景下,第一设备从第一波束方向获取数据的速率匹配方式是第一设备在该场景下能够支持的,故第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

在步骤303之后,第一设备将需要接收来自不同波束方向的参考信号。接下来将结合从第一波束方向所获取数据被速率匹配的方式的不同,对第一设备如何实现接收来自多个波束方向数据进行介绍。

针对速率匹配方式为FDM的情况:

这种情况下,第一设备属于接收波束能力较强的设备。第一设备可接收波束方向的数量为多个,第一设备至少包括第一收波束单元和第二收波束单元。

针对步骤303,第一设备可以使用自身的一个收波束单元例如第一收波束单元接收从第二设备从第一波束方向发送的数据,该数据中参考信号和业务信号以FDM的方式进行了速率匹配,故第一设备需要保持第一收波束单元接收该数据以免丢弃业务数据。而第一设备还可以通过其他收波束单元例如第二收波束单元接收从第二波束方向发送的参考信号,该第二波束方向为所述第一设备所接收多个波束方向中的一个。

例如图5所示,第一设备包括了两个收波束单元,分别为Rx Beam1(第一收波束单元)和Rx Beam2(第二收波束单元),第一设备通过Rx Beam1接收波束方向2(第一波束方向)的数据,该数据由第二设备发出,包括了PDSCH和SSB2,PDSCH和SSB2通过FDM进行了速率匹配。第一设备在接收来自波束方向2的数据时,可以通过Rx Beam2接收来自波束方向3或波束方向1的参考信号。

从而第一设备实现了接收不同波束方向的参考信号的同时,还能兼顾接收第二设备发送的业务数据,而且实现了频谱效率最大化。

针对速率匹配方式为TDM的情况:

这种情况下,第一设备属于接收波束能力较弱的设备。第一设备可接收波束数量为一个,第一设备包括了一个收波束单元。

第一设备在数据占用的传输资源上通过收波束单元从第一波束方向获取数据。

第一设备还可以在参考信号占用的传输资源上通过收波束单元接收从第二波束方向发送的参考信号,该第二波束方向为第一设备所接收多个波束方向中的一个。

在同频测量的场景下,发送参考信号的设备会统一设置测量窗,每个测量窗中参考信号所处的传输资源位置是可以确定的。第一设备可以在测量窗所在的传输资源中获取用于测量的参考信号。例如图6所示为发送参考信号的基站为UE配置的不同测量窗。在测量窗1所在的传输资源中,第一设备可以通过自身的收波束单元获取来自第一波束方向的参考信号,在测量窗2所在的传输资源中,第一设备可以调整收波束单元的接收角度,接收来自第二波束方向的参考信号,以此类推。从而提高第一设备对参考信号和业务数据的兼顾能力。

需要注意的是,该第二波束方向可以为第二设备发送波束的方向,也可以是第三设备发送波束的方向。

实施例二

本实施例介绍一种可选的确定速率匹配方式的方式,该方式可以是基于实施例一实施的,也可以是脱离实施例一的基础实施的。

第一设备可以从第二设备获取匹配方式信息,该匹配方式信息指示了数据的速率匹配方式。也就是第一设备通过该匹配方式信息了解了从第一波束方向获取的数据是以什么速率匹配方式进行速率匹配的。从而当第一设备从第一波束方向获取该数据时,由于该数据的速率匹配方式为匹配方式信息所指示的速率匹配方式,故第一设备可以根据该匹配方式信息所指示的速率匹配方式对该数据进行译码。

其中,该匹配方式信息所指示的速率匹配方式为第二设备根据第一设备的位置、第一波束方向和第三波束方向确定的,该第三波束方向为第一设备所接收多个波束方向中的一个,第三波束方向中发送有参考信号。

第二设备在确定速率匹配方式时,需要考虑针对第一设备的位置,第一波束方向和第三波束方向间的夹角大小,当该夹角较小时,例如达到准共址(Quasi-Co-Location,QCL)时,第一波束方向和第三波束方向相同或近似,相对于第一设备来说,第一波束方向和第三波束方向可以视为一个波束方向,故第二设备可以确定出对应的速率匹配方式,例如FDM。当该夹角较大时,相对于第一设备来说,第一波束方向和第三波束方向为不同的波束方向,故第二设备可以确定出对应的速率匹配方式,例如TDM。这种确定速率匹配方式的方案,可以在一些情况下帮助收波束能力较低的第一设备提高频谱效率,例如可选的,第一设备可接收波束数量为一个。在需要接收来自多个波束方向参考信号的场景下,第二设备一般会对向第一设备发送的数据进行TDM的速率匹配,以帮助第一设备实现测量精度和接收数据的兼顾。当第一设备移动到的位置使得相对于第一设备的位置来说,第一波束方向和第三波束方向的夹角较小,那么第二设备可以将向第一设备所发送数据的速率匹配方式调整为FDM,并通过匹配方式信息告知第一设备,使得第一设备可以在所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

实施例三

本实施例主要结合第一设备和第二设备介绍在第一设备需要接收来自多波束方向的参考信号时,数据接收、发送的各种方式。在本实施例中,第二设备不会根据第一设备收波束的能力来确定出适合于第一设备收波束能力的速率匹配方式,而是采用了为不同收波束能力的第一设备配置测量间隙(GAP)的方式,使得第一设备可以在测量间隙所指示的传输资源上从多个波束方向获取用于测量的参考信号。

图7为本申请实施例提供的一种数据传输方法的方法流程图,方法包括:

701:第一设备向第二设备发送第一设备可接收波束数量的指示信息,第二设备为向第一设备发送数据的设备。

该指示信息包括以下中的任意一种:

第一设备可接收的波束数量或第一设备可接收的波束能力。

该指示信息的说明可以参见实施例一中的描述,这里不再赘述。

702:若第二设备根据指示信息确定第一设备可接收波束数量为一个,第二设备为第一设备配置测量间隙的配置信息。

703:若第二设备根据指示信息确定第一设备可接收波束数量为多个,所述第二设备不为所述第一设备配置测量间隙。

可见,当第二设备获取该指示信息后,可以确定第一设备可接收波束能力,并可以根据第一设备可接收波束能力确定是否为第一设备配置测量间隙。当第一设备可接收波束数量为多个时,该第一设备所具有的多个收波束单元可以接收来自不同波束方向的参考信号,故可以不为该第一设备配置测量间隙。当第一设备可接收波束数量为一个时,该第一设备只具有一个收波束单元,在面对接收来自不同波束方向的参考信号时,难以实现测量精度和接收数据的兼顾,故可以为该第一设备配置测量间隙。故在执行完702后,可以执行704。

其中,703为可选的实施步骤。

704:第二设备从自身的波束方向对第一设备发送配置信息和参考信号,参考信号占用的传输资源为测量间隙对应的传输资源。

705:第一设备在配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

该配置信息可以指示是否配置了测量间隙。故当第一设备可接收波束数量为一个时,第一设备通过从第二设备获取的配置信息可以明确第二设备为第一设备配置了测量间隙,该测量间隙中不会通过第一波束方向对第一设备发送数据,故第一设备可以在该测量间隙的传输资源上从多个波束方向获取用于测量的参考信号,且不会因此丢弃来自第一波束方向的数据。

可选的,第二设备在确定为第一设备配置测量间隙的情况下,还可以根据需求确定使用测量间隙的适用时间,在确定了该适用时间后,第二设备可以通过配置信息携带该时长信息,并向第一设备发送该配置信息,该时长信息用以指示测量间隔配置生效的时间长度的信息。以便让第一设备了解在什么时间段通过测量间隙获取多个波束方向的参考信号。

当第一设备可接收波束数量为多个时,可选的,该第一设备也可以从第二设备获取配置信息,指示第二设备未给第一设备配置测量间隙。

可见,第一设备可以第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定是否为第一设备配置测量间隙的配置信息。由于第一设备可接收波束方向的数量为一个,故第一设备可以从第二设备获取该配置信息。由于在该配置信息所指示的传输资源上不会出现数据,使得第一设备在该传输资源上可以不用接收来自第二设备的数据,而能够从多个波束方向获取用于测量的参考信号。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

实施例四

本实施例介绍一种可选的确定速率匹配方式的方式,该方式可以是基于实施例一实施的,也可以是脱离实施例一的基础实施的。

图8为本申请实施例提供的一种数据传输方法的方法流程图,所述方法包括:

801:第二设备根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备。

在本实施例中,第二设备可以根据预设条件来确定向第一设备发送的数据采用何种速率匹配方式进行速率匹配,该预设条件可以与第二设备所处环境、需求、状态、情况相关。例如预设条件可以包括需要向第一设备发送的数据的优先级程度或第二设备的功率消耗程度。可选的,对所述数据的速率匹配方式包括FDM或TDM。例如第二设备可以当所需发送数据优先级较高时采用FDM的方式,减少该数据被第一设备丢弃的几率,而当所需发送数据优先级较低时采用TDM的方式,使得第一设备可以有机会接收来自其他波束方向的参考信号。

802:第二设备向所述第一设备发送所述指示信息;

第二设备可以将以此确定出的速率匹配方式通过指示信息向第一设备发送,故这里的指示信息与前述实施例中所提到的指示信息有所不同。

803:第一设备从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

针对从第二设备接收到数据,第一设备将按照从第二设备获取的指示信息中指示的速率匹配方式对该数据进行译码。

第一设备可以从目标波束方向接收到该数据,该目标波束方向为第二设备的发送波束的方向,该目标波束方向为第一设备所接收多个波束方向中的一个。

第一设备除了可以从第二设备获取指示信息以外,还可以从第二设备获取时长信息,该时长信息包括用以指示前述指示信息中速率匹配方式生效的时间长度。

该时长信息所指示的时间长度可以是第二设备根据需求确定的,即明确了在哪个时间长度内采用指示信息中所指示的速率匹配方式。第一设备获取该时长信息后,可以明确在哪个时间长度内容采用前述指示信息所指示的速率匹配方式对从第二设备接收的数据进行译码。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

实施例五

本实施例为对应实施例一、实施例二的装置实施例。

图9为本申请实施例提供的一种用于数据接收的第一设备的装置结构图,所述第一设备900包括发送单元901和接收单元902:

所述发送单元901,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述接收单元902,用于从第一波束方向获取数据,并根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠,所述第一波束方向为所述第二设备的发送波束的方向。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM传输资源。

可选的,所述第一设备至少包括第一收波束单元和第二收波束单元,所述第一设备从第一波束方向获取数据,包括:

所述接收单元,还用于通过所述第一收波束单元接收从所述第一波束方向发送的数据,所述第一发波束方向为所述第一设备所接收多个发波束方向中的一个;

所述接收单元,还用于通过所述第二收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,若所述第一设备可接收波束方向的数量为一个,所述速率匹配方式为TDM。

可选的,所述接收单元,还用于在所述数据占用的传输资源上通过收波束单元从所述第一波束方向获取所述数据;

所述接收单元,还用于在所述第一波束方向中参考信号占用的传输资源上通过所述收波束单元接收从第二波束方向发送的参考信号,所述第二波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述第二波束方向为第三设备发送波束的方向。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述接收单元根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述发送单元在发送所述指示信息之前,还用于向所述第二设备发送包括所述第一设备可接收的波束能力的指示信息。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,在所述适用时间内,所述发送单元发送的所述指示信息覆盖所述发送单元发送的包括第一设备可接收的波束能力的指示信息。

可选的,若所述指示信息中所述第一设备支持的速率匹配方式为TDM,所述第一设备将所述第一设备可接收波束数量配置为一个。

可选的,所述方法还包括:

所述接收单元,还用于从所述二设备获取匹配方式信息,所述匹配方式信息指示了所述数据的速率匹配方式,所述匹配方式信息所指示的速率匹配方式为所述第二设备根据所述第一设备的位置、所述第一波束方向和第三波束方向确定的,所述第三波束方向为所述第一设备所接收多个波束方向中的一个,所述第三波束方向中发送有参考信号;

所述接收单元,还用于从所述第一波束方向获取所述数据,所述数据的速率匹配方式为所述匹配方式信息所指示的速率匹配方式。

可选的,所述第一设备可接收波束数量为一个。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

图10为本申请实施例提供的一种用于数据发送的第二设备的装置结构图,所述第二设备1000包括接收单元1001、确定单元1002和发送单元1003:

所述接收单元1001,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述确定单元1002,用于根据所述指示信息确定对数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠;

所述发送单元1003,用于从第一波束方向对所述第一设备发送所述数据,所述数据采用所述速率匹配方式进行速率匹配。

可见,第一设备可以向第二设备发送自身可接收波束数量的指示信息,由向第一设备发送数据的第二设备根据该指示信息来确定使用何种速率匹配方式对所需发送的数据进行速率匹配,并从第一波束方向对第一设备发送该数据,其中,参考信号的传输资源与所述数据在根据该速率匹配方式做速率匹配之前的传输资源有重叠。来自第一波束方向的数据和参考信号占用的传输资源间的关系适合于第一设备接收波束数量的能力,使得第一设备通过第一波束方向获取数据时,具有了从其他波束方向获取参考信号的可能。从而在需要接收来自多个波束方向参考信号的场景下,第一设备能够从多个波束方向获取到参考信号,也能不影响接收从第二设备发送的数据,实现了保证测量精度和数据接收这两方面的兼顾。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力;

所述第一设备支持的速率匹配方式。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,若所述第一设备可接收波束数量为多个,所述速率匹配方式为FDM;若所述第一设备可接收波束数量为一个,所述速率匹配方式为TDM。

可选的,若所述指示信息包括所述第一设备支持的速率匹配方式,所述确定单元根据所述指示信息确定对数据的速率匹配方式为所述指示信息中所述第一设备支持的速率匹配方式。

可选的,所述第一设备可接收波束数量为多个。

可选的,所述指示信息还包括时长信息,所述时长信息用于确定所述指示信息中所述第一设备支持的速率匹配方式的适用时间。

可选的,所述发送单元,还用于向所述第一设备发送包括所述第一设备支持的速率匹配方式的适用时间的指示信息。

可选的,所述确定单元,还用于根据所述第一设备的位置确定所述第一波束方向和第三波束方向间的角度;

所述发送单元,还用于若所述角度满足预设条件,从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为FDM,所述第三波束方向为所述第一设备所接收多个波束方向中的一个,所述第三波束方向中发送有参考信号;

所述发送单元,还用于若所述角度不满足预设条件,从所述第一波束方向对所述第一设备发送数据,所述数据的速率匹配方式为TDM。

可选的,所述第一设备可接收波束数量为一个。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

本实施例中特征说明请参见实施例一、实施例二中的相关描述,这里不再赘述。

实施例六

本实施例为对应实施例三的装置实施例。

图11为本申请实施例提供的一种用于数据接收的第一设备的装置结构图,所述第一设备1100包括发送单元1101和接收单元1102:

所述发送单元1101,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备,所述第一设备可接收发波束数量为一个;

所述接收单元1102,用于从所述第二设备获取测量间隙的配置信息;

所述接收单元1102,还用于在所述配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述指示信息包括以下中的任意一种:

所述第一设备可接收的波束数量;

所述第一设备可接收的波束能力。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

图12为本申请实施例提供的一种用于数据发送的第二设备的装置结构图,所述第二设备1200包括接收单元1201、配置单元1202和发送单元1203:

所述接收单元1201,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

所述配置单元1202,用于若根据所述指示信息确定所述第一设备可接收波束数量为一个,为所述第一设备配置测量间隙的配置信息;

所述发送单元1203,用于从自身的波束方向对所述第一设备发送所述配置信息和参考信号,所述参考信号占用的传输资源为所述测量间隙对应的传输资源。

可见,第一设备可以在测量间隙所处的该位置通过一个收波束单元同时接收来自第一波束方向和第三波束方向的参考信号,且不会丢弃来自第一波束方向的数据,提高了频谱效率。

可选的,所述测量间隙的配置信息指示是否配置了测量间隙。

可选的,所述配置单元,还用于若所述第一设备可接收波束数量为多个,不为所述第一设备配置测量间隙。

可选的,所述测量间隙的配置信息还包括时长信息,所述时长信息用以指示所述测量间隔配置生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

本实施例中特征说明请参见实施例三中的相关描述,这里不再赘述。

实施例七

本实施例为对应实施例四的装置实施例。

图13为本申请实施例提供的一种用于数据接收的第一设备的装置结构图,所述第一设备1300包括接收单元1301和确定单元1302:

所述接收单元1301,用于从第二设备获取指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述确定单元1302,用于从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,对所述数据的速率匹配方式包括频分复用FDM或时分复用TDM。

可选的,所述确认单元是通过目标波束方向获取所述数据的,所述目标波束方向为所述第二设备的发送波束的方向,所述目标波束方向为所述第一设备所接收多个波束方向中的一个。

可选的,所述接收单元还用于从第二设备获取时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

图14为本申请实施例提供的一种用于数据发送的第二设备的装置结构图,所述第二设备1400包括确定单元1401和发送单元1402:

所述确定单元1401,用于根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

所述发送单元1402,用于向所述第一设备发送所述指示信息;

所述发送单元1402,还用于对所述第一设备发送所述数据,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可见,当第一设备需要接收来自不同波束方向的参考信号时,第二设备可以根据反映自身能力、需求的预设条件确定出发送给第一设备的数据的速率匹配方式,以便让第一设备能够明确需要优先数据还是优先接收参考信号,从而第二设备可以在需要第一设备优先接收数据时对数据采用对应的速率匹配方式进行速率匹配,在需要第一设备优先接收来自其他波束方向的参考信号时,可以对数据采用对应的速率匹配方式进行速率匹配,一定程度上实现了第一设备保证测量精度和数据接收这两方面的兼顾。

可选的,所述发送单元,还用于向所述第一设备发送时长信息,所述时长信息包括用以指示所述速率匹配方式生效的时间长度的信息。

可选的,所述预设条件包括所述数据的优先级程度或所述第二设备的功率消耗指示信息。

可选的,所述参考信号包括同步信号块或信道状态信息参考信号,所述数据包括控制信息和/或业务数据。

可选的,所述第一设备包括用户设备UE或中继设备,所述第二设备包括UE、基站或中继设备。

本实施例中特征说明请参见实施例四中的相关描述,这里不再赘述。

实施例八

图15为本申请实施例提供的一种数据传输系统的系统结构图,所述数据传输系统1500包括第一设备1501和第二设备1502:

第一设备1501,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;从第一波束方向获取数据,并根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠,所述第一波束方向为所述第二设备的发送波束的方向。

第二设备1502,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;根据所述指示信息确定对数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠;从第一波束方向对所述第一设备发送所述数据,所述数据采用所述速率匹配方式进行速率匹配。

实施例九

图16为本申请实施例提供的一种数据传输系统的系统结构图,所述数据传输系统1600包括第一设备1601和第二设备1602:

第一设备1601,用于向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备,所述第一设备可接收发波束数量为一个;从所述第二设备获取测量间隙的配置信息;在所述配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

第二设备1602,用于从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;若所述第二设备根据所述指示信息确定所述第一设备可接收波束数量为一个,所述第二设备为所述第一设备配置测量间隙的配置信息;所述第二设备从自身的波束方向对所述第一设备发送所述配置信息和参考信号,所述参考信号占用的传输资源为所述测量间隙对应的传输资源。

实施例十

图17为本申请实施例提供的一种数据传输系统的系统结构图,所述数据传输系统1700包括第一设备1701和第二设备1702:

第一设备1701,用于从第二设备获取指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

第二设备1702根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;向所述第一设备发送所述指示信息;对所述第一设备发送所述数据,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

实施例十一

参阅图18,图18为本申请实施例提供的一种第一设备的硬件结构示意图,所述第一设备1800包括存储器1801、接收器1802和发送器1803,以及分别与所述存储器1801、所述接收器1802和所述发送器1803连接的处理器1804,所述存储器1801用于存储一组程序指令,所述处理器1804用于调用所述存储器1801存储的程序指令执行如下操作:

触发所述发送器1803向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

触发所述接收器1802从第一波束方向获取数据,并根据所述第一设备可接收的波束数量确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠,所述第一波束方向为所述第二设备的发送波束的方向。

可选地,所述处理器1804可以为中央处理器(Central Processing Unit,CPU),所述存储器1801可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器,所述接收器1802和所述发送器1803可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或异步传输模式(Asynchronous Transfer Mode,ATM)接口。所述处理器1804、发送器1803、接收器1802和存储器1801可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。

参阅图19,图19为本申请实施例提供的一种第二设备的硬件结构示意图,所述第二设备1900包括存储器1901、接收器1902和发送器1903,以及分别与所述存储器1901、所述接收器1902和所述发送器1903连接的处理器1904,所述存储器1901用于存储一组程序指令,所述处理器1904用于调用所述存储器1901存储的程序指令执行如下操作:

触发所述接收器1902从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

根据所述指示信息确定对数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠;

触发所述发送器1903从第一波束方向对所述第一设备发送所述数据,所述数据采用所述速率匹配方式进行速率匹配。

可选地,所述处理器1904可以为CPU,所述存储器1901可以为RAM类型的内部存储器,所述接收器1902和所述发送器1903可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或ATM接口。所述处理器1904、发送器1903、接收器1902和存储器1901可以集成为一个或多个独立的电路或硬件,如:ASIC。

实施例十二

参阅图20,图20为本申请实施例提供的一种第一设备的硬件结构示意图,所述第一设备2000包括存储器2001、接收器2002和发送器2003,以及分别与所述存储器2001、所述接收器2002和所述发送器2003连接的处理器2004,所述存储器2001用于存储一组程序指令,所述处理器2004用于调用所述存储器2001存储的程序指令执行如下操作:

触发所述发送器2003向第二设备发送所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备,所述第一设备可接收发波束数量为一个;从所述第二设备获取测量间隙的配置信息;

触发所述接收器2002在所述配置信息所指示的传输资源上从多个波束方向获取用于测量的参考信号。

可选地,所述处理器2004可以为CPU,所述存储器2001可以为RAM类型的内部存储器,所述接收器2002和所述发送器2003可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或ATM接口。所述处理器2004、发送器2003、接收器2002和存储器2001可以集成为一个或多个独立的电路或硬件,如:ASIC。

参阅图21,图21为本申请实施例提供的一种第二设备的硬件结构示意图,所述第二设备2100包括存储器2101、接收器2102和发送器2103,以及分别与所述存储器2101、所述接收器2102和所述发送器2103连接的处理器2104,所述存储器2101用于存储一组程序指令,所述处理器2104用于调用所述存储器2101存储的程序指令执行如下操作:

触发所述接收器2102从第一设备获取所述第一设备可接收波束数量的指示信息,所述第二设备为向所述第一设备发送所述数据的设备;

若所述第二设备根据所述指示信息确定所述第一设备可接收波束数量为一个,所述第二设备为所述第一设备配置测量间隙的配置信息;

触发所述发送器2103从自身的波束方向对所述第一设备发送所述配置信息和参考信号,所述参考信号占用的传输资源为所述测量间隙对应的传输资源。

可选地,所述处理器2104可以为CPU,所述存储器2101可以为RAM类型的内部存储器,所述接收器2102和所述发送器2103可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或ATM接口。所述处理器2104、发送器2103、接收器2102和存储器2101可以集成为一个或多个独立的电路或硬件,如:ASIC。

实施例十三

参阅图22,图22为本申请实施例提供的一种第一设备的硬件结构示意图,所述第一设备2200包括存储器2201、接收器2202,以及分别与所述存储器2201、所述接收器2202连接的处理器2204,所述存储器2201用于存储一组程序指令,所述处理器2204用于调用所述存储器2201存储的程序指令执行如下操作:

触发所述接收器2202从第二设备获取指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;从所述第二设备获取所述数据,并根据所述指示信息确定所述数据的速率匹配方式,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可选地,所述处理器2204可以为CPU,所述存储器2201可以为RAM类型的内部存储器,所述接收器2202可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或ATM接口。所述处理器2204、接收器2202和存储器2201可以集成为一个或多个独立的电路或硬件,如:ASIC。

参阅图23,图23为本申请实施例提供的一种第二设备的硬件结构示意图,所述第二设备2300包括存储器2301和发送器2303,以及分别与所述存储器2301、所述发送器2303连接的处理器2304,所述存储器2301用于存储一组程序指令,所述处理器2304用于调用所述存储器2301存储的程序指令执行如下操作:

根据预设条件确定指示信息,所述指示信息用于指示所述第二设备发送的数据所采用的速率匹配方式,所述第二设备为向所述第一设备发送所述数据的设备;

触发所述发送器2303向所述第一设备发送所述指示信息;对所述第一设备发送所述数据,其中参考信号的传输资源与所述数据在根据所述速率匹配方式做速率匹配之前的传输资源有重叠。

可选地,所述处理器2304可以为CPU,所述存储器2301可以为RAM类型的内部存储器,所述发送器2303可以包含普通物理接口,所述物理接口可以为以太(Ethernet)接口或ATM接口。所述处理器2304、发送器2303、存储器2301可以集成为一个或多个独立的电路或硬件,如:ASIC。

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。

所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1