一种采用模拟前端的数字相位生成载波解调装置的制作方法

文档序号:11211641阅读:738来源:国知局
一种采用模拟前端的数字相位生成载波解调装置的制造方法

本实用新型属于相位生成载波解调领域。



背景技术:

干涉型光纤传感系统通过检测光纤中传播的光信号的相位变化测量被测对象,因此相位解调方法至关重要。目前常用的方法主要有主动零差解调法、合成外差解调法、伪外差解调法和相位生成载波(PGC)解调法。

相位生成载波(PGC)解调方法采用不平衡干涉仪,通过对光信号的频率进行高频调制,从而在干涉仪中引入远离被测信号频带的某一固定频率的大幅度相位调制信号,使被测信号成为调制信号的边带,然后利用相关检测和微分交叉相乘(DCM)算法分离干涉仪输出的被测信号和低频带外噪声,再通过积分器和高通滤波器得到稳定的被测信号。

目前,PGC解调方法可以分为模拟解调和数字解调。模拟解调使用模拟电路实现解调算法。具体的讲,就是通过运算放大器搭配不同的无源器件结构构成混频器、低通滤波器、微分器、乘法器、减法器、积分器、高通滤波器等解调单元,实现对干涉信号的相位解调。但是,PGC解调方法对模拟电路的对称性要求极高,否则干涉信号分别与一倍频载波和二倍频载波混频得到的两路信号会引入额外的相位噪声,影响解调精度。数字解调使用数字信号处理技术实现解调方法。首先通过数据采集卡将干涉信号和调制信号进行模数转换得到数字化信息,再通过解调方法实现的一系列数字解调单元,得到干涉信号的相位信息。数字解调虽然在体积、功耗、灵活性等方面都有模拟解调难以企及的优点,但是由于干涉信号的频带一般比较高,同时为了尽可能多的保留谐波信息,要求数据采集的采样率非常高,通常达到100MHz以上,由此带来的海量数据处理问题提高了解调复杂度,增加了解调响应时间。另外,要提高PGC解调方法的动态范围,就要提高调制信号频率,即载波频率。在数字解调方法中,需要相应的提高采样率,从而进一步恶化了复杂度和响应时间,并且动态范围受到数字解调方法本质的限制,不可能达到很高的水平。



技术实现要素:

本实用新型针对传统数字解调方法存在的响应时间长、动态范围低、算法复杂度高等问题,同时避免采用全模拟解调带来的额外噪声,提出一种采用模拟前端的数字相位生成载波(PGC)解调装置。

本实用新型的技术方案如下:一种采用模拟前端的数字相位生成载波解调装置,其特征在于所述装置由模拟解调、数字补偿和数字解调模块组成:

所述模拟解调模块是使用模拟电路实现干涉信号与一倍频载波和二倍频载波的混频,以及使用6阶贝塞尔低通滤波器,将高频干涉信号转换为滤除载波及高次谐波后的低频信号;

所述数字补偿模块是由数据采集卡、失调补偿单元和相位补偿单元组成,数据采集卡实现模拟解调输出的模数转换,得到2路低频数字信号;失调补偿单元调节2路数字信号的直流偏置量,消除模拟解调引入的失调量;相位补偿单元调节2路数字信号的相位,消除模拟解调引入的相位噪声;

所述数字解调模块是使用微分交叉相乘(DCM)单元、减法单元、积分单元和高通滤波单元,将2路低频信号解调为被测信号,实现数字相位生成载波解调。

进一步的技术方案是:

所述模拟解调模块包括双通道的混频器和6阶贝塞尔低通滤波器,每一个通道的混频器和6阶贝塞尔低通滤波器依次连接,模拟解调模块的输入包括干涉信号、一倍频载波和二倍频载波,模拟解调的输出连接到数字补偿的输入。

所述数字补偿模块包括数据采集卡、失调补偿单元和相位补偿单元,数据采集卡、失调补偿单元和相位补偿单元均是双通道,每个通道依次顺序连接,数字补偿的输入与模拟解调的输出连接,数字补偿的输出与数字解调的输入连接。

所述数字解调模块包括微分交叉相乘单元、减法单元、积分单元和高通滤波单元,微分交叉相乘单元是双通道,其输入即为数字解调的输入,微分交叉相乘单元的2路输出连接减法单元的两路输入,减法单元的输出为单路;减法单元、积分单元和高通滤波单元均是单通道,依次顺序连接。

本实用新型技术方案带来的有益效果如下:

1、本实用新型采用模拟解调实现干涉信号与一倍频载波和二倍频载波的混频,以及混频后的低通滤波。数字补偿的数据采集卡只需要采集滤除载波及高次谐波后的低频信号,采样率可以降低为现有数字解调方法的1%,与现有数字解调方法相比,可以显著减少解调响应时间。

2、本实用新型采用模拟解调实现干涉信号与一倍频载波和二倍频载波的混频,以及混频后的低通滤波。去除了现有数字解调中的混频算法和低通滤波算法,降低了算法复杂度。

3、本实用新型涉及的数字补偿消除了模拟解调引入的相位噪声和失调量,与现有模拟解调方法相比,提高了解调精度。

4、本实用新型采用的模拟解调与数字解调相结合的方式,使得载波频率不再受到采样率的限制,解决了动态范围受到现有数字解调方法限制的问题。

附图说明

图1是本实用新型结构方框原理图。

图2是本实用新型失调补偿单元结构方框原理图。

图3是本实用新型相位补偿单元结构图方框原理。

具体实施方式

下面结合附图与实施例,对本实用新型做进一步说明。

如图1所示,一种采用模拟前端的数字相位生成载波(PGC)解调装置,由模拟解调、数字补偿和数字解调模块组成。

模拟解调模块包括双通道的混频器和6阶贝塞尔低通滤波器,每一个通道的混频器和6阶贝塞尔低通滤波器依次连接。模拟解调的输入包括干涉信号、一倍频载波和二倍频载波,模拟解调模块的输出连接到数字补偿的输入。

数字补偿模块的失调补偿单元用于调节2路数字信号的直流偏置量,消除模拟解调引入的失调量;如图2所示,失调补偿单元包括2个加法器、2个低通滤波器和1个控制器,2个加法器的输入连接前级数据采集卡的2路输出;2个加法器的输出连接2个低通滤波器的输入,同时作为失调补偿单元的输出;2个低通滤波器的输出连接控制器;控制器的输出连接2个加法器,对加法器变量进行设置;如图3所示,所述相位补偿单元包括2个延迟器、1个乘法器、1个低通滤波器和1个控制器,2个延迟器的输入分别连接前级失调补偿单元的2路输出;2个延迟器的输出连接到乘法器的输入,同时作为相位补偿单元的输出;乘法器、低通滤波器和控制器依次顺序连接;控制器的输出连接到2个延迟器。

数字解调模块的微分交叉相乘单元由2个微分单元和2个乘法单元组成,通道1的输入同时连接第一个微分单元和第二个乘法单元,通道2的输入同时连接第二个微分单元和第一个乘法单元,2个乘法单元的输出作为微分交叉相乘单元的输出;所述减法单元用于配合微分交叉相乘单元,消除随机相位衰落现象,使信号中只包含被测信号的微分形式;所述积分单元用于将被测信号的微分形式进行积分,还原被测信号;所述高通滤波单元用于消除外界环境影响产生的相位差、初始相位差和其他因素产生的相位差之和,以及调制光源产生的相位差,从而得到被测信号。

本实用新型所述装置工作时包括以下步骤:

第1步:干涉信号分别与一倍频载波信号和二倍频载波信号混频并进行低通滤波;

其中,I表示干涉信号的光强;A是直流项,为常数;B是交流项幅度,为常数;Ccos(ωCt)是相位调制信号,C和ωC分别是调制信号的幅度和频率,均为常数,t表示时间;是被测信号作用在干涉仪上产生的相位差;φ0表示外界环境影响产生的相位差、初始相位差以及其他因素产生的相位差之和;

一倍频载波信号和二倍频载波信号分别为Gcos(ωCt)和Hcos(2ωCt),其中,G和H是倍频信号的幅度,为常数;

混频并进行低通滤波后信号为:

其中,I1表示干涉信号与一倍频载波信号混频并进行低通滤波后的信号(第一路信号);I2表示干涉信号与二倍频载波信号混频并进行低通滤波后的信号(第二路信号);J1(C)和J2(C)是贝塞尔函数展开式的系数,为常数;k1和k2表示模拟解调引入的失调电压,均为常数;和表示模拟解调引入的相位噪声,均为常数。

第2步:数字补偿

本实用新型涉及的数字补偿通过失调补偿单元和相位补偿单元对由模拟解调造成的失调量和相位噪声进行补偿,得到

其中,IO1表示第一路信号消除模拟解调引入的失调量和相位噪声后的信号;IO2表示第二路信号消除模拟解调引入的失调量和相位噪声后的信号。

第3步:消除随机相位衰落

式(4)和式(5)经过微分交叉相乘,得到

其中,IDCM1表示第一路信号经过微分交叉相乘后的信号;IDCM2表示第二路信号经过微分交叉相乘后的信号;表示的微分;

式(7)-式(6),得到

其中,V′表示两路微分交叉相乘后的信号相减的结果。

第4步:被测信号还原

对式(8)进行积分,得到

其中,V表示对相减后信号积分的结果;M为积分常数;

对式(9)进行高通滤波,得到被测信号

其中,S表示高通滤波后得到的最终解调信号。

所述失调补偿单元,具体的实现方法为:

过程1:使用幅度为1V、频率在被测信号频率范围内的单频余弦信号代替干涉信号输入到模拟解调,该信号可以表示为:

I=cos(ωt) (11)

其中,I表示模拟的干涉信号;ω表示信号角频率,可选取为被测信号频率范围内的任意数值;t表示时间;

幅度为1V的一倍频载波信号和二倍频载波信号同时输入到模拟解调,信号分别表示为cos(ωct)和cos(2ωct),ωc是载波频率,为常数;

经过模拟解调后信号变为

其中,I1表示第一路模拟解调后的信号;I2表示第二路模拟解调后的信号;k1、k2表示模拟解调引入的失调电压,均为常数;表示模拟解调引入的相位噪声,均为常数。

过程2:首先设置失调补偿单元的2个加法器的变量为a1、a2,则式(12)、(13)变为

其中,I1′表示第一路模拟解调后经过加法器的信号;I2′表示第二路模拟解调后经过加法器的信号。

过程3:经过低通滤波后,式(14)、(15)变为

I1″=k1+a1 (16)

I2″=k2+a2 (17)

其中,I1″表示第一路经过低通滤波的信号;I2″表示第二路经过低通滤波的信号。

过程4:控制器根据低通滤波后的数值,调节2个加法器的变量,直到使式(16)、(17)为0。

过程5:保持加法器数值不变,接入干涉信号和载波信号到模拟解调,对被测信号进行相位解调,此时失调补偿单位消除了前级模拟解调引入的失调量。

所述相位补偿单元,具体实现方法为:

过程1:使用幅度为1V、频率在被测信号频率范围内的单频余弦信号代替干涉信号输入到模拟解调,该信号可以用式(11)表示,

幅度为1V的一倍频载波信号和二倍频载波信号同时输入到模拟解调,经过模拟解调后变为式(12)、(13);

经过失调补偿单元后信号变为

其中,I1OS表示第一路失调补偿后的信号;I2OS表示第二路失调补偿后的信号。

过程2:设置相位补偿单元的2个延迟器的变量为τ1、τ2,则式(18)、(19)变为:

其中,I1OS′表示第一路经过延迟器的信号;I2OS′表示第二路经过延迟器的信号。

过程3:经过乘法器,变为

其中,Imul表示两路经过延迟器的信号相乘的结果。

过程4:经过低通滤波,变为

其中,Imul′表示Imul经过低通滤波后的信号。

过程5:控制器根据低通滤波后的数值,调节2个延迟器的变量,直到使式(23)为0。

过程6:保持延迟器数值不变,接入干涉信号和载波信号到模拟解调,对被测信号进行相位解调,此时相位补偿单位消除了前级模拟解调引入的相位噪声。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1