一种CDMA2000基站电磁辐射预测方法与流程

文档序号:14943145发布日期:2018-07-13 21:36
本发明涉及一种CDMA2000基站电磁辐射预测方法。
背景技术
:目前针对通信基站周围的电磁辐射预测时,常运用训练好的预测模型进行预测。例如,申请号2018100095052公布了一种GSM基站电磁辐射预测方法,在基站电磁辐射的预测中,先对预测模型进行训练,然后使用训练好的模型进行预测,但在这种预测中,若进行长时间预测时,其预测精度会不断下降,基站电磁辐射变化与话务量的变化息息相关,目前在已公开的文献中,没有考虑通过话务量变化趋势与预测变化趋势的关系来提升预测效果。针对现有技术中存在的不足,本专利提出将训练数据通过预测模型进行训练来确定三个预测模型的参数,再将训练好的三个预测模型的预测值的变化趋势与对应时段话务量变化趋势进行相关性分析,得出相关系数,再根据相关系数确定三个预测模型的组合权重,得到权重系数,再用权重系数与三个预测模型相结合对CDMA2000基站电磁辐射做组合预测。通过实验表明,本专利提出的预测方法能准确有效的进行长时间的对CDMA2000基站电磁辐射进行预测。技术实现要素:为了解决上述技术问题,本发明提供一种CDMA2000基站电磁辐射预测方法,能准确有效的进行长时间的对CDMA2000基站电磁辐射进行预测。本发明解决上述技术问题的技术方案包括以下步骤:1)、取CDMA2000基站电磁辐射历史数据作为训练数据,将训练数据通过三个预测模型进行训练,三个预测模型分别为:A模型、P模型、M模型,并确定三个预测模型的参数,其中A模型表达式为:yA(t)=d1y(t-1)+d2y(t-2)+…+dny(t-n)(1)在上式(1)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数d1,d2,...,dn;P模型表达式为:在上式(2)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数ε,θ;M模型表达式为:在上式(3)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数c;2)、将预测时的输入数据,分别输入步骤1训练确定的A模型、P模型、M模型,获得预测值yA(t),yA(t+1),...,yA(t+k)、yP(t),yP(t+1),...,yP(t+k)、yM(t),yM(t+1),...,yM(t+k);3)、根据步骤2得到的单支预测值yA(t),yA(t+1),...,yA(t+k)、yP(t),yP(t+1),...,yP(t+k)、yM(t),yM(t+1),...,yM(t+k)的变化趋势分别与对应时段话务量变化趋势做相关性分析,求得三组预测模型的预测值变化趋势与对应时段话务量变化趋势的相关系数lA,lp,lM相关系数表达式为:其中,lA、lp、lM为A模型、P模型、M模型预测值的变化趋势与对应时段话务量变化趋势的相关系数,h(t+k)为预测点对应的话务量,k=0,1,…,n,单位为Erl,为n+1个预测点对应的话务量平均值,单位为Erl,yA(t+k)为通过A模型做的单支预测值,k=0,1,…,n,单位为V/m,为A模型所做n+1个预测值的平均值,单位为V/m,yp(t+k)为通过P模型做的单支预测值,k=0,1,…,n,单位为V/m,为P模型所做n+1个预测值的平均值,单位为V/m,yM(t+k)为通过M模型做的单支预测值,k=0,1,…,n,单位为V/m,为M模型所做n+1个预测值的平均值,单位为V/m;4)、根据步骤3得到相关系数求得A模型、P模型、M模型的权重系数QA,QP,QM,根据权重系数对A模型、P模型、M模型的预测值做组合预测,表达式为:y(ttk)=QAyA(t+k)+QPyP(t+k)+QMyM(t+k)(7)其中,y(t+k)为模型的组合预测值,k=0,1,…,n,单位为V/m。上述的一种CDMA2000基站电磁辐射预测方法,所述步骤4)中,其特征在于,A模型、P模型、M模型的权重系数QA,QP,QM的计算表达式为:其中,QA,QP,QM分别为A模型、P模型、M模型做组合预测的权重系数,lA、lp、lM为A模型、P模型、M模型预测值的变化趋势与对应时段话务量变化趋势的相关系数。本发明的有益效果在于:通过CDMA2000基站电磁辐射训练数据,对预测模型进行训练来确定三个预测模型的参数,再将训练好的三个预测模型的预测值的变化趋势与对应时段话务量变化趋势进行相关性分析,得出相关系数,再根据相关系数确定三个预测模型的组合权重,得到权重系数,再用权重系数与三个预测模型相结合对CDMA2000基站电磁辐射做组合预测。所建立的模型能准确有效的进行长时间的对CDMA2000基站电磁辐射进行预测。该方法对基站建设和环境保护有极较大的参考价值,具有一定的社会效益。附图说明图1为本发明的流程图。具体实施方式本实施例在以本
发明内容为前提下进行,给出了详细的实施步骤,但本发明的保护范围不限于下述的实施例。本次实施的实验地在空旷平坦的区域,实施对象为校教学楼屋顶基站,实验仪器为频谱分析仪AT6030D,测量对象为CDMA2000基站。下面结合附图和实施例对本发明做进一步的说明。图1为本发明技术方案的框图,具体步骤为:步骤一:取CDMA2000基站电磁辐射历史数据作为训练数据,将训练数据通过三个预测模型进行训练,三个预测模型分别为:A模型、P模型、M模型,并确定三个预测模型的参数,其中A模型表达式为:yA(t)=d1y(t-1)+d2y(t-2)+…+dny(t-n)(11)在上式(11)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数d1,d2,...,dn;P模型表达式为:在上式(12)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数ε,θ;M模型表达式为:在上式(13)中,将历史数据输入预测模型进行训练,获得最佳预测模型参数c。在本次实施例中,用CDMA2000的历史数据对A模型进行训练,在模型中n取值为9,用历史数据A1,f=[0.1292,0.1325,0.1362,0.1388,0.1365,0.1314,0.1267,0.1292,0.1295],A2,f=[0.1325,0.1362,0.1388,0.1365,0.1314,0.1267,0.1292,0.1295,0.1304],...,A9,f=[0.1295,0.1304,0.1358,0.1279,0.1311,0.1264,0.1278,0.1235,0.1268],f=1,2,...,9,作为输入,a1=[0.1304],a2=[0.1358],...,a9=[0.1302],作为对应的输出,对模型A进行训练,获得d1,d2,...,d9的值,其中d1=0.1357,d2=0.0985,d3=0.1217,d4=0.1112,d5=0.1001,d6=0.0963,d7=0.1537,d8=0.1221,d9=0.08751;用CDMA2000的历史数据对P模型进行训练,在模型中n取值为8,用历史数据P1,9=[0.1292,0.1304,0.1358,0.1279,0.1311,0.1264,0.1278,0.1235,0.1268],P2,9=[0.1295,0.1304,0.1358,0.1279,0.1311,0.1264,0.1278,0.1235,0.1268],作为输入,p1=[0.1235],p2=[0.1302],作为对应的输出,对模型P进行训练,获得ε,θ的值,其中ε=6.091,θ=0.10889;用CDMA2000的历史数据对M模型进行训练,在模型中n取值为9,用历史数据M1,9=[0.1292,0.1304,0.1358,0.1279,0.1311,0.1264,0.1278,0.1235,0.1268],M2,9=[0.1295,0.1304,0.1358,0.1279,0.1311,0.1264,0.1278,0.1235,0.1268],作为输入,m1=[0.1235],m2=[0.1302],作为对应的输出,对模型M进行训练,获得c的值,其中c=970.8180414。步骤二:将预测时的输入数据,分别输入步骤1训练确定的A模型、P模型、M模型,获得预测值yA(t),yA(t+1),...,yA(t+k)、yP(t),yP(t+1),...,yP(t+k)、yM(t),yM(t+1),...,yM(t+k)。在本次实施例中,将预测点前的历史数据作为模型预测时的输入数据,分别输入步骤1)中训练好的A模型,P模型,M模型进行预测获得预测值,然后再以上一次的预测值与之前的历史数据作为输入,获得下一次的预测值,以此循环获得后续14个时间点的预测值,yA(t),yA(t+1),...,yA(t+13)、yP(t),yP(t+1),...,yP(t+13)、yM(t),yM(t+1),...,yM(t+13),其中预测值如下表所示:表1单支预测值步骤三:根据步骤2得到的单支预测值yA(t),yA(t+1),...,yA(t+k)、yP(t),yP(t+1),...,yP(t+k)、yM(t),yM(t+1),...,yM(t+k)的变化趋势分别与对应时段话务量变化趋势做相关性分析,求得三组预测模型的预测值变化趋势与对应时段话务量变化趋势的相关系数lA,lp,lM相关系数表达式为:其中,lA、lp、lM为A模型、P模型、M模型预测值的变化趋势与对应时段话务量变化趋势的相关系数,h(t+k)为预测点对应的话务量,k=0,1,…,n,单位为Erl,为n+1个预测点对应的话务量平均值,单位为Erl,yA(t+k)为通过A模型做的单支预测值,k=0,1,…,n,单位为V/m,为A模型所做n+1个预测值的平均值,单位为V/m,yP(t+k)为通过P模型做的单支预测值,k=0,1,…,n,单位为V/m,为P模型所做n+1个预测值的平均值,单位为V/m,yM(t+k)为通过M模型做的单支预测值,k=0,1,…,n,单位为V/m,为M模型所做n+1个预测值的平均值,单位为V/m。在本次实施例中,将单支预测值yA(t+k),yP(t+k),yM(t+k)与对应时段话务量的值h(t+k),输入上式获得相关系数lA,lp,lM其中对应时段的话务量的值如下表所示;表二对应时段的话务量k012345678910111213h(t+k)6.012366.1102056.176646.315576.164826.006786.0495756.1864356.2391756.153425.961875.905896.011256.0548最终求得A模型、P模型、M模型预测值的变化趋势与对应时段话务量变化趋势的相关系数lA=0.8325,lp=0.8266,lM=0.7811。步骤四:根据步骤3得到相关系数求得A模型、P模型、M模型的权重系数QA,QP,QM,根据权重系数对A模型、P模型、M模型的预测值做组合预测,表达式为:y(t+k)=QAyA(t+k)+QPyP(t+k)+QMyM(t+k)(17)其中,y(t+k)为模型的组合预测值,k=0,1,…,n,单位为V/m。在本次实施例中,先将步骤三求得的相关系数lA,lp,lM代入QA,QP,QM的计算表达式求得三个模型的组合权重:其中,QA,QP,QM分别为A模型、P模型、M模型做组合预测的权重系数,lA、lp、lM为A模型、P模型、M模型预测值的变化趋势与对应时段话务量变化趋势的相关系数,最终求得组合权重QA=0.3412,QP=0.3387,QM=0.3201,再将求得的组合权重对三个预测模型做组合预测,其中预测值如下表所示:表3预测值y(t+k)与测量值的展示K012345678910111213y(t+k)0.1335570.1357350.1372330.1403890.1369840.1334480.1343790.1373280.1385580.1367510.1325470.13130.1335530.13452测量值0.133860.13510.1372750.1399350.137180.1339950.1344250.137090.1381750.1363150.132850.1312450.133960.13513从实验结果可以看出,预测值与测量值在预测时间k不断增加时,预测值与测量值的都比较相近,说明利用此方法能准确有效的进行长时间的对CDMA2000基站电磁辐射进行预测,同时实验结果验证了本发明所使用方法的有效性。当前第1页1 2 3 
再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1