用于通信系统的广播信道配置和广播信道传输和接收的方法和装置与流程

文档序号:19161009发布日期:2019-11-16 01:22阅读:167来源:国知局
用于通信系统的广播信道配置和广播信道传输和接收的方法和装置与流程
本公开涉及无线通信系统,更具体地,涉及用于配置广播信道,以及用于在新无线电(nr)系统中发送和接收广播信道的方法和装置。
背景技术
:国际电联(国际电信联盟)制定了imt(国际移动电信)框架和标准,最近通过一项名为“2020年及以后的imt”的计划讨论了第5代(5g)通信。为了满足“2020年及以后的imt”的要求,正在讨论使第三代合作伙伴计划(3gpp)新无线电(nr)系统能够通过考虑各种场景、各种服务要求、潜在的系统兼容性等来支持各种数字配置(numerologies)。然而,尚未具体确定在nr系统中配置广播信道以及发送和接收广播信道的方法。技术实现要素:技术问题本发明的目的是提供一种用于在nr系统中发送和接收广播信道的方法和装置。本发明的目的是提供一种装置,该装置可以通过广播信道显式地指示帧信息的一部分,并且隐式地指示该帧信息的剩余部分。本发明的目的是提供一种基站,该基站可以对在一段时间内的物理广播信道(pbch)执行第一加扰处理,并且可以在信道编码之后执行第二加扰处理。phch有效载荷和pbchdmrs可以提供要在加扰过程中使用的信息位。本领域技术人员将认识到,通过本发明可以实现的目的不限于上文已经具体描述的内容,并且通过下面结合附图进行详细描述,将可以更加清楚地理解本发明的上述和其他目的。解决方案根据本发明的一个方面,公开了一种加扰物理广播信道(pbch)的方法,所述方法包括:基于基站的小区标识符,初始化加扰序列生成器,以对八个连续无线帧中的每个pbch的一部分进行加扰,其中所述八个连续无线帧中的每个无线帧具有10ms的持续时间;确定所述八个连续无线电帧中的多个同步信号(ss)块,其中每个ss块包括pbch;生成加扰序列以加扰所述八个连续无线电帧内的每个pbch的一部分,其中所述加扰序列包括四个不同的序列部分;通过应用所述四个不同序列部分中的第一个,在所述八个连续无线电帧的第一20ms中加扰pbch;通过应用所述四个不同序列部分中的第二个,在所述八个连续无线电帧的第二20ms中加扰pbch;通过应用所述四个不同序列部分中的第三个,在所述八个连续无线电帧的第三20ms中加扰pbch;以及通过应用所述四个不同序列部分中的第四个,在所述八个连续无线电帧的第四20ms中加扰pbch。优选地,所述方法还包括:基于频率范围,确定与所述八个连续无线电帧相关联的ss块的最大数量。优选地,取决于所述频率范围,所述四个20ms之一内的ss块的最大数量是4、8或64。优选地,所述方法还包括:接收指示ss块索引的第二和第三最低有效位的pbch解调参考信号(dmrs)。优选地,所述方法还包括:基于所述ss块索引的第二和第三最低有效位,在第一20ms、第二20ms、第三20ms和第四20ms之一中对所述pbch执行第二加扰。根据本发明的一个方面,公开了一种发送物理广播信道(pbch)的方法,所述方法包括:基于基站的小区标识符,初始化加扰序列生成器,以对八个连续无线帧中的每个pbch的一部分进行加扰,其中所述八个连续无线帧中的每个无线帧具有10ms的持续时间;确定所述八个连续无线电帧中的多个同步信号(ss)块,其中每个ss块包括pbch;经由与pbch相关联的一个或多个系统帧号(sfn)字段,指示1024个无线电帧号中的至少一个;基于所述一个或多个sfn字段,指示所述八个连续无线电帧中的四个20ms持续时间;基于pbch有效载荷的5ms定时字段,指示所述八个连续无线电帧内的5ms传输持续时间;以及在所述八个连续无线电帧内的所述5ms传输持续时间中发送ss块。优选地,指示所述5ms传输持续时间包括:基于pbch解调参考信号(dmrs)序列生成,指示所述5ms定时字段。发明的有益效果本发明的示例性实施方式具有以下效果。根据本发明的实施方式,可以提供一种用于在nr系统中发送和接收广播信道的方法和装置。根据本发明的实施方式,可以提供一种用于通过广播信道显式地指示帧信息的一部分并且隐式地指示所述帧信息的剩余部分的方法和装置。本领域技术人员将理解,通过本发明可以实现的效果不限于以上已经具体描述的内容,并且从下面结合附图的详细描述中可以更清楚地理解本发明的其他优点。附图说明图1是示出了本公开适用的关于ss块、ss突发和ss突发集的配置的图;图2是示出了本公开适用的ss突发中的ss块的波束传输的示例的图;图3是示出了根据本公开的ss块传输结构的示例的图;图4和5是示出了根据本公开的时域中的ss块、ss突发,ss突发集和无线电帧的结构的图;图6是示出了根据本公开的信令过程的图;图7是示出了根据本公开的无线设备的配置的图;图8和图9是示出了根据本公开的在pbch调度周期中可应用于ss块中的pbch的加扰方案的示例的图;图10是示出了根据本公开的基于在pbch调度周期中的多达4个ss块索引的适用于pbch的加扰方案的示例的图;以及图11是示出了根据本公开的基于在pbch调度周期中的多达64个ss块索引的适用于pbch的加扰方案的示例的图。具体实施方式下面将参考附图更全面地描述本发明的示例性实施方式,附图中示出了本发明的示例性实施方式。在整个附图和详细描述中,除非另外描述,否则相同的附图标记应理解为表示相同的元件、特征和结构。在描述示例性实施方式时,为了清楚和简明,可以省略对已知配置或功能的详细描述。此外,这里可以使用诸如第一、第二、a、b、(a)、(b)等术语来描述本文描述中的元件。这些术语用于区分一个元件和另一个元件。因此,这些术语不限制元件、排列顺序、序列等。应当理解,当一个元件被称为“在......上”、“连接到”或“耦合到”另一个元件时,它可以直接在另一个元件上、连接或耦合到另一个元件,或者可以存在中间元件。相反,当元件被称为“直接在......上”、“直接连接到”或“直接耦合到”另一元件时,则不存在中间元件。在所描述的示例性系统中,尽管基于作为一系列步骤或块的流程图描述了方法,但本发明的各个方面不限于步骤的顺序,并且步骤可以不同的顺序执行,或者可以与另一步骤并行执行。另外,对于本领域技术人员显而易见的是,流程图中的步骤不是排他性的,可以包括另一步骤,或者可以省略流程图的一个或多个步骤而不影响本发明的范围。当实施方式体现为软件时,所描述的方案可以体现为执行所描述的功能的模块(过程、功能等)。该模块可以存储在存储器中,并且可以由处理器执行。所述存储器可以设置在所述处理器的内部或外部,并且可以通过各种公知的手段连接到所述处理器。此外,这里描述的描述涉及无线通信网络,并且在无线通信网络中执行的操作可以在通过控制无线网络的系统(例如基站)控制网络和发送数据的过程中执行,或者可以在连接到所述无线通信网络的用户设备中执行。在下文中,通过示出基于被称为“2020年及以后的imt”的第三代合作伙伴计划(3gpp)通信系统或第五代(5g)通信系统的示例性实施方式来进行描述。然而,这仅是示例,并且本发明可以应用于其他各种无线通信系统。显然,基站或除基站以外的其他网络节点可以执行各种操作,以与网络中的终端通信,所述网络包括包含所述基站的多个网络节点。“bs(基站)”可以用固定站、节点b、e节点b(enb)、g节点b(gnb)、ap(接入点)等术语代替。此外,“终端”可以用ue(用户设备)、ms(移动站)、mss(移动订户站)、ss(订户站)、非apsta(非ap站)等术语代替。在本公开中,发送或接收信道可以包括通过相应信道发送或接收信号或信息的含义。例如,发送控制信道可以指示通过控制信道发送控制信号或控制信息。类似地,发送数据信道可以指示通过数据信道发送数据信号或数据信息。在下文中,术语“nr系统”用于区分应用本公开的各种实施方式的系统与传统系统。然而,本公开的范围可以不受该术语的限制。此外,本说明书中的术语“nr系统”用作能够支持各种数字配置的无线通信系统的示例。然而,术语“nr系统”不限于支持多个scs的无线通信系统。首先,将描述nr系统考虑的数字配置。数字配置可以指示在时频域中生成用于设计nr系统的资源网格的基本元素或因子的数值。例如,作为3gpplte/lte-a系统的数字配置的示例,子载波间隔对应于15khz(或者在mbsfn(多播广播单频网络)的情况下为7.5khz)。在这种情况下,术语“数字配置”不限于子载波间隔,并且可以包括cp(循环前缀)的长度、tti(发送时间间隔)的长度、在预定时间间隔内的ofdm(正交频分复用)符号的数量、或单个ofdm符号的持续时间等等,其与子载波间隔相关联的参数配置(或者其基于子载波间隔而被确定)。也就是说,可以通过子载波间隔、cp长度、tti长度、预定时间间隔内的ofdm符号的数量或单个ofdm符号的持续时间中的至少一个的差异来区分不同的数字配置。为了满足“2020年及以后的imt”的要求,当前的3gppnr系统通过考虑各种场景、各种服务要求、与潜在的新系统的兼容性等来考虑多个数字配置。更具体地,传统无线通信系统的数字配置难以支持“2020年及以后的imt”所需的高频带、快速移动速度、低延时等,因此,需要定义新的数字配置。例如,nr系统能够支持应用,例如embb(增强型移动宽带)、mmtc(大规模机器类型通信)/umtc(超机器类型通信)、urllc(超可靠和低延迟通信)等。特别是,与urllc和embb服务的用户平面延迟相关的要求在上行链路中为0.5ms,在上行链路和下行链路这两者中则为4ms,与10ms相比,这需要显著减少延迟,10ms是与3gpplte(长期演进)和lte-a(lte-高级)系统的延迟相关联的要求。此外,在nr系统中可能存在执行基于波束的传输和处理高频带(超过6ghz)中的信号衰减的要求。为了使单个nr系统能够满足各种场景和各种要求,nr系统需要支持各种数字配置。特别地,与基本上支持单个子载波间隔(scs)的传统lte/lte-a系统不同,nr系统需要支持多个scs。用于包括支持多个scs的nr系统的新数字配置可以通过假设在频率范围或载波(例如6ghz或40ghz)中操作的无线通信系统来确定,以克服宽带不能用于传统频率范围或载波(例如700mhz或2ghz)的问题。然而,本公开的范围可以不限于此。为了重新定义上述nr系统,优选地需要将同步方案定义为移动通信终端接入网络的初始步骤。然而,尚未具体定义以下方案:配置用于支持同步的同步信号的方案、将同步信号映射到时频资源上并对其进行发送的方案、以及接收映射到时频资源上的同步信号的方案。在下文中,描述了本公开的示例,该示例有关:一种由nr系统配置同步信号/广播信道的方法、以及一种指示与在同步过程期间需要提供给终端的帧定时(或帧边界)相关联的信息以及在时隙中复用同步信号的方案。图1是示出了本公开适用的关于ss块、ss突发和ss突发集的配置的图。可以在ss块内发送至少pss/sss和/或pbch。而且,其他信号可以另外在ss块中一起发送。例如,用于测量用于波束成形传输的信道质量的mrs(测量参考信号)、用于指示时域索引(例如,ss块索引等)的tss(临时同步信号)可以被复用并在ss块中传输。在单个ss块中,nr同步信号(nr-ss)、或广播信道等可以根据fdm(频分复用)、tdm(时分复用)或其组合而被分配给物理资源,并可以由基站发送到终端。在至少ss突发集周期内,可以将一个或多个不同波束用于至少ss突发集周期内的ss块,并且可以发送基于波束传输的ss块。特别地,基于波束传输的ss块传输可以用于补偿在高频带(例如,超过6ghz)中发生的信道衰减。或者,在除高频带之外的频带(例如,低于6ghz)中,单波束传输可以用于ss块。一个或多个ss块可以配置单个ss突发。包括在该单个ss突发中的ss块可以在时域或频域中被连续地或不连续地分配。一个或多个ss突发可以配置单个ss突发集。从终端的角度来看,可以预期每个ss突发集周期的周期性nr-ss/广播信道接收。在每个预定频带的至少初始小区接入期间,终端可以假设默认ss突发传输周期值。在rrc连接模式或rrc空闲模式中,终端可以从基站接收与ss突发集发送周期相关联的更新信息。在下文中,将描述nr系统中定义的pbch(nr-pbch)。用于pbch的scs可以与为每个频率范围类别定义的默认子载波间隔(默认scs)相同或不同。包括在单个ss块中的ofdm的数量(n)可以是2、3和4中的一个。可以基于默认scs来确定n。单个ss突发中的ss块的数量可以是7或14。单个ss突发集中的ss突发的数量可以是1、2或4等。在这种情况下,当在ss块中发送nr-pbch时,需要考虑与帧号的相关性。此外,需要针对默认ss突发集周期和针对rrc空闲/连接模式中的ss突发集周期来定义ss块中的nr-pbch传输。例如,在频率范围类别#1(例如,低于6ghz)中,scs值可以是15、30和60khz之一。最小nr载波带宽可以是5mhz、10mhz和20mhz之一。每个同步信号的传输带宽可以是大约1.08mhz、2.16mhz、4.32mhz和8.64mhz之一。此外,在频率范围类别#2(例如,超过6ghz)中,scs值可以是120khz和240khz之一。最小nr载波带宽可以是20mhz、40mhz和80mhz之一。每个同步信号的传输带宽可以是大约8.64mhz、17.28mhz、34.56mhz和69.12mhz之一。而且,可以根据tdm来复用单个ss块中的pss/sss分配。可以根据tdm、fdm或其组合将pbch复用到ss(即,pss/sss)。sfn(系统帧号)信息比特的至少一部分可以通过经由nr-pbch发送的控制信息而被显式指示,并且sfn信息比特的剩余部分可被隐式地指示。例如,可以经由pbch显式地发送8比特sfn信息和18比特hsfn(超sfn)信息,而可以根据所应用的方案而隐式地或显式地指示sfn信息比特的剩余部分。在下文中,将描述隐式地指示nr系统的剩余sfn信息的方案。在nr系统中,考虑将多波束传输应用于同步信号、随机接入信号和广播信道(例如,nr-pbch、nr-sib(系统信息块)),以便克服较差的信道环境,在这样的环境中,在高载波频率(例如,超过6ghz)上发生的高路径损耗、相位噪声、频率偏移等会增大。当角度区域(即,从方位角和仰角的角度来看的目标覆盖区域)(其中,单个trp(总辐射功率)需要覆盖不同波束成形样式的)非常大时,可以执行多波束传输。为了支持多波束传输,可以确定波束宽度、或波束数量等。可以根据存在trp的小区的环境(例如,目标覆盖区域、isd(站点间距离)、或载波频率等)来不同地确定这些值。因此,为了实施方式的自由度,需要定义物理资源(例如,ss块/ss突发/ss突发集)的最大数量、以及可以通过该物理资源发送的波束的最大数量。图2是示出了根据本公开的ss突发中的波束传输的示例的图。图2的部分(a)示出了一示例,其中对每个单个ss块应用单个波束,并且应用了正常的模拟波束成形方法。在这种情况下,可以基于射频(rf)链的数量来限制要应用的波束的数量。图2的部分(b)示出了一示例,其中针对每个单个ss块应用两个波束,并且应用了正常数字波束成形方法或混合波束成形方法。在这种情况下,可以使用波束扫描,其在短时间内覆盖目标覆盖区域。因此,所消耗的ss块资源的量可以小于图2的部分(a)中示出的示例的量,从而可以提高网络资源消耗的效率。ss块传输可能不总是考虑多波束传输,并且可以根据与多波束传输中相同的传输结构来传输nr-ss、pbch等信号,即使在低频带(例如,低于6ghz)中也是如此。如图1所示,在nr系统中,需要将一个或多个波束传输应用于同一ss块。因此,可以执行ss块传输(其中通过波束扫描对每个ss块应用不同波束样式)以满足目标覆盖区域。这里,为满足目标覆盖区域而执行的传输指示所述一个或多个波束传输中的每一个基于基站预期的波束宽度和/或方位角而被发送,并且所述一个或多个波束传输覆盖整个预定目标区域。此外,根据nr基站的确定,可以不在所有ss块中发送nr-ss、或pbch等信号。本公开描述了基于上述nr-ss块和ss突发结构对包括nr-pbch传输的ss块中的信道进行加扰的方案的示例,并且另外描述了基于此发送剩余sfn信息和/或5msss块发送间隔定时的方案的示例。图3是示出了根据本公开的ss块传输结构的示例的图。假设每个ss块的ofdm符号的数量(每个ss块的ofdm符号的数量)是n。可以根据同步信号(例如nr-pss/sss、nr-tss、nr-pbch、或mrs等)和广播信道之间的复用方法来确定i。例如,n可以是1、2和4。假设每个ss块的波束的数量(每个ss块的波束的数量)是m。m可以指示应用于单个ss块的波束的最大数量,并且可以由基站设置波束的数量和波束宽度。因此,基站可以发送在单个ss块中允许的最大数量的波束,或者可以通过一些波束发送ss。假设每个ss突发的ss块的数量(每个ss突发的ss块的数量)是i。每个ss突发中包括的ss块的数量可以是固定的i值,或者i可以根据固定的ss突发持续时间(t)和单个ss块中包括的ofdm符号(n)的数量而变化。假设ss突发持续时间的值是t,并且其单位可以是ms。可以基于子载波间隔(scs)、单个ss块中包括的ofdm符号的数量(i)以及单个ss突发中包括的ss块的固定数量(n)中的至少一个来确定t。例如,t可以是1ms、2ms、4ms......或类似值。假设ss突发周期是j,并且其单位可以是ms。ss突发可以具有预定的周期,并且可以基于与同步时间等相关联的要求来确定该周期。例如,j可以是5ms,并且可以不限于此。可以根据scs值、或ss传输结构等为每个scs不同地设置j。假设每个ss突发集的ss突发数量(每个ss突发集的ss突发数量)是k。k可以设置为固定值,或者可以由基站通过高层信令等设置。而且,可以定义ss突发集周期。从终端的角度来看,当针对至少初始接入成功检测到一个ss块时,可以假设与检测到的ss块的波束样式相同的波束样式所被发送的周期作为ss突发集周期。在下文中,基于上述ss块传输结构,将描述经由nr同步信号和广播信道向终端提供所需信息的方案。当包括在单个ss块中的ofdm符号的数量是1时,可以根据fdm复用nr-ss和nr-pbch。当包括在单个ss块中的ofdm符号的数量多于一个(例如,n=2、3或4)时,可以通过tdm、fdm或其组合来复用nr-ss和nr-pbch。假设子帧具有1ms的时间间隔。也就是说,即使scs彼此不同,也可以将子帧定义为具有固定的预定时间间隔的时间基准。可以基于scs不同地设置一个时隙的持续时间。例如,该持续时间可以在下面提供的表1中列出。在表1中,例如,在15khzscs的情况下,一个时隙具有7个ofdm符号,但是在其他scs的情况下,一个时隙可以包括7或14个符号。【表1】根据scs值,一个子帧(1ms)中的时隙数可以不同。参考表1,当scs是15khz时,单个时隙中的符号数可以是7,并且每个子帧的时隙数可以是2。在30khzscs的情况下,如果单个时隙中的符号数是7,则每个子帧中的时隙数可以是4。在60khzscs的情况下,如果单个时隙中的符号数是7,则每个子帧中的时隙数可以是8。因此,当确定至少一个ss突发时间间隔具有预定长度时,可以基于此定义ss块的数量。这里,可以基于时隙单元、子帧单元或时间单元(例如,ms)来定义ss突发时间间隔。例如,在15khzscs(子载波间隔)的情况下,ss突发间隔可以被定义为1ms(子帧)。如果在一个或两个ofdm符号上分配一个ss块,则可以在每个ss突发中包括14或7个ss块(n=14或7)。或者,一个ss突发中包括的ss块的数量可以总是固定为14,并且取决于scs值或单个ss块中包括的ofdm符号的数量,ss突发间隔可以大于或小于1ms。尽管描述了每个ss突发的ss块的数量是7或14,但是根据scs(子载波间隔)、波束扫描时间、或ss块结构等,可以将ss块的数量设置为28、48......等。可以基于ss块的时间间隔的长度(例如,1、2或4个符号)来确定ss突发间隔中包括的ss块的数量。当终端接收ss块时,终端可以根据预定的ss块结构(该预定的ss块结构包括针对每个ss块的预定数量的ofdm符号)识别至少ofdm符号定时边界。然而,即使终端接收到ss块,终端也可能不识别与ss块索引或相应符号定时的符号索引相关联的信息,并且还可能不识别与帧定时相关联的信息。此外,在将一个或多个波束应用于ss传输的情况下,可能需要与应用于ss块的波束数量相关联的信息以进行初始同步、rrm测量、或随机接入等,因此,也可能需要波束资源索引信息。终端需要执行初始小区接入过程(其包括同步、或系统信息获取等),以便接入nr系统。如上所述,在nr系统中,基站向终端发送同步信号和广播信道,以便使用ss块、ss突发和ss突发集结构提供同步和系统信息。在该过程期间,终端可以获得帧边界定时信息。终端可以至少基于默认子载波间隔值来监视ss块以至少用于初始接入。这里,默认子载波间隔可以对应于终端至少是为了初始小区接入的目的而针对每个频带假设的数字配置值。通过该值,终端可以预先假设用于接收ss块中的nr-ss和pbch的时域资源结构(例如,ofdm符号长度、时隙结构、子帧结构、或无线电帧结构等)。例如,在低于6ghz的频带中,15khz、30khz和60khzscs中的一个可以用作默认子载波间隔值。在超过6ghz(或6到52.6ghz)的频带中,120khz和240khzscs中的一个可被确定为默认子载波间隔值。在下文中,基于上述nr-ss块/ss突发/ss突发集结构,将描述用于为可在单个ss块中发送的nr-pbch提供小区间干扰随机化的加扰方案、指示5ms定时的方案、以及隐式地指示剩余sfn值的方案。例如,尽管sfn信息具有10比特,但是可以经由nr-pbch向终端显式指示8比特的sfn信息,并且剩余sfn信息(即,剩余2比特)对应于可以在物理层中隐式提供的值。或者,尽管sfn信息具有18比特,但是可以经由nr-pbch向终端显式指示16比特的sfn信息,并且剩余2比特对应于在物理层中隐式地提供的值。剩余sfn信息比特被称为剩余sfn值。在下文中,将描述在nr系统中向终端隐式地指示剩余sfn信息的方法。所述剩余sfn值与在其中发送单个nr-bch(对应于nr逻辑信道的nr广播信道)的物理时间间隔相关联。也就是说,可假设剩余sfn信息是在物理时间间隔(其中,包括在nr-bch中的单片mib(主信息块)信息在不改变的情况下在nr-pbch中被传输)中存在的无线电帧(=系统帧)的数量。与对应无线电帧相关联的sfn信息的一部分可以被称为剩余sfn。例如,当物理时间间隔(其中,包含在pbch中的mib信息在没有改变的情况下被发送)是80ms时,在相应的时间间隔中可以存在八个无线电帧(假设单个无线电帧是10ms)。因此,八个无线电帧可以对应于0到7个系统帧,即3个比特作为剩余sfn信息。因此,当假设在nr系统中sfn信息比特字段是10比特时,基站发送的pbch中包括的mib可以显式地指示7比特(即,10-k比特),并且可以根据本公开提出的方法隐式地指示与剩余sfn信息相关联的比特信息(k比特)。因此,终端可以最终导出并获得整个sfn信息。以相同的方式,当sfn值是18比特时,根据显式方法经由mib发送15比特,并且根据所提出的隐式方法由基站向终端指示剩余3比特。每个频带范围的ss块时间位置可以被定义为一组。可以在ss突发集单元或无线电帧单元下定义这种ss块时间位置(使用l个ss块),并且ss块基于该单元以预定时间间隔而存在于时间轴上。例如,ss块的时间位置是基于ss突发集单元或无线电帧单元确定的,并且可以在时域中按每个ss突发集单元或无线电帧单元重复所述ss块时间位置的候选。例如,在3ghz以下的频带中,可以为每个ss突发集定义最多1到4个ss块。在3ghz到6ghz范围内的频带中,可以为每个ss突发集定义最多4或8个ss块。在范围从6ghz到52.6ghz的频带中,可以为每个ss突发集定义最多64个ss块。如上所述定义的所有ss块可能需要在有限的5ms传输时间期间被定位和执行,以便最小化接收ss块所消耗的功率量。因此,在80ms期间,一个无线电帧(10ms)内可能存在两种类型的ss块传输窗口(5ms),终端需要与ss块传输窗口相关联的附加信息。因此,除了80ms内的剩余sfn信息之外,基站还需要向终端指示ss块传输窗口定时(即,5ms)。图4和5是示出了时域中的ss块、ss突发、ss突发集和无线电帧的结构的图。例如,参考图4,在单个ss突发集中存在两个ss突发。这里,尽管描述了ss突发集存在于其中的时间单元与无线电帧(例如,10ms)相同,但是可以在一个无线电帧中定义多个ss突发集或者可以使用其他组合。因此,本公开可以不限于上述示例。例如,参考图8,一个ss突发集周期可以具有20ms的时间间隔,并且ss突发集可以包括一个或多个ss突发并且对应于两个无线电帧(每个无线电帧10ms)。因此,在对应于3比特剩余sfn时间间隔(k=3)的“80mspbch调度周期”期间,可能存在四个ss突发集周期。图8假设ss突发集包括两个ss突发,并且每个ss突发包括两个ss块。当然,ss突发集周期中的ss突发的数量和ss块的数量可以随着l值的范围(即,ss突发集中的ss块候选的最大数量)而不同地改变。在本公开中,可以根据第一nrpbch加扰方法来执行加扰,并且另外,可以在对应于剩余sfnk比特的时间间隔期间针对每个ss块不同地执行加扰。可以在对应于剩余sfnk比特(例如,k=3,80ms,8无线电帧)的时间间隔的开始处,基于至少小区id值来初始化加扰序列。在信道编码之前执行第一nr-pbch加扰,并且可以在执行加扰之后附加crc。作为另一示例,根据下面提出的方法,可以通过使用除了小区id之外的至少一个值在对应于剩余sfnk比特(例如,k=3,80ms,8无线电帧)的时间间隔的开始处初始化加扰序列,所述至少一个值包括ss突发索引、ss块索引、ss突发集索引。例如,当剩余sfnk比特是2比特时,可以如图4所示每四个无线电帧初始化加扰序列。因此,逐位加扰操作可相对于针对以下生成的序列而被执行:基于对应于k比特(例如,k=2比特,4个无线电帧)的无线电帧的数量的每个间隔、该每一间隔中的一个无线电帧中的每个ss块、以及用于pbch传输的比特(例如,信息比特)。因此,在k=2比特的情况下,可以基于至少小区id值每四个无线电帧生成加扰序列,并且可以对应于pbch信息比特执行每个ss块中的pbch的加扰(480)。尽管如图中的450所示,在ss块中不存在pbch传输,但是可以认为与ss块中的pbch信息比特对应的加扰序列的一部分如图中的480所示。换句话说,尽管在ss块中不存在pbch传输,但是加扰序列应用与pbch信息比特相对应的偏移值,其考虑没有pbch传输的ss块用于后续pbch加扰。这是为了使用与实际pbch传输相关联的加扰序列的一部分,用于在实际存在后续pbch传输时进行加扰。从终端的角度来看,终端可能不会在时域中的一组ss块中预先识别出由基站实际进行pbch传输的ss块,该ss块是针对每个频带定义的(例如,时间轴上的ss块位置,图4的ss块0、1、2和3)。也就是说,包括pbch传输的ss块并不会在ss块时间位置中被预先确定,而是可以根据基站的设置或实施方式来确定。根据本公开的加扰方案,基于与剩余sfn对应的无线电帧中的ss块索引、ss突发索引或ss突发集索引,使用一个加扰序列的不同部分来执行用于pbch传输的加扰。另外,为了指示剩余sfn值,可以使用存在于每个无线电帧中的ss块索引480、ss突发索引490或ss突发集索引495。例如,如图4和8所示,可以在对应于剩余sfnk比特(例如,k=3,80ms,8无线电帧)的每个时间间隔初始化加扰序列,并且基于以下生成加扰序列(c(i)):s,其是对应于剩余sfnk比特的时间间隔中的无线电帧的数量、潜在ss块的数量、ss突发的数量、ss突发集的数量、或时隙的数量;在一个所述时间间隔中的潜在可传输ss块的数量(sss_block);以及包括在一个ss块中的用于pbch传输的信息比特的数量(kbit)。当考虑用于pbch传输的频带低于6ghz(l=4或l=8)时,可以从用于第一pbch加扰的pbch信息比特(kbit)中排除5ms定时信息(1比特)和20mssfn边界(第2/第3sfn2比特)信息。当频带超过6ghz并且l=64时,可以从用于第一pbch加扰的pbch信息比特(kbit)中排除5ms定时信息(1比特)、20mssfn(第2/第3sfn2比特)信息和ss块索引的3比特msb。因此,加扰序列c(i)的长度可以是s*sss_block*kbit=mbit。例如,加扰序列可被生成为具有值(s*sss_block*kbit=mbit)的长度,该值通过将s(其是对应于剩余sfnk比特的时间间隔(80ms)中的可能ss块的数量、ss突发的数量、ss突发集的数量、时隙的数量或无线电帧的数量)乘以一个pbch传输的编码比特的数量(kbit)而被获得,并且对应于包括pbch传输的ss块(其可来自可能可发送的ss块)的加扰序列部分(例如,图8的每个ss块480的序列部分b、d、...m、p等)和pbch信息比特(b(i))可以如等式1中给出的那样被加扰。这里,当基于s(s是ss突发的数量、ss突发集的数量、时隙数量或无线电帧数量(即,不对应于ss块的数量))以及如上所述的pbch信息比特数kbit生成加扰序列时,加扰序列的相同部分可被应用于可以在时间间隔中在可能可发送的ss块中的pbch,所述时间间隔对应于所述ss突发的数量、所述ss突发集的数量、所述时隙数量或所述无线电帧数量(例如,图4或图8的490或495)。与基于ss块单元生成加扰序列的方法不同,当基于ss突发单元、ss突发集单元、一个或多个时隙或一个或多个无线电帧生成加扰序列时(例如,如490和495所示),在相应的时间单位期间,加扰序列的相同部分被应用于所有ss块中的pbch。即使基于不同的时间单位生成加扰序列,该加扰序列的长度mbit也是相同的。包括在一个ss块中的pbch传输的信息比特数可以是大约kbit=768比特(例如,24个prb、2个ofdm符号、每个ofdm符号4个dmrsre),并且加扰序列长度mbit可以根据对应于任意时间间隔的s和sss_block来确定。因此,终端可以执行解扰过程以识别用于pbch的加扰序列部分,并且可以在剩余sfn信息中导出相关联的无线电帧,以便识别sfn。在上述提出的方法中,基于ss块索引的方法将描述如下。如上所述,可以以相同的方式应用基于ss突发索引或ss突发集索引的方法。下面提供的等式1示出了对应于剩余sfnk比特的每个时间间隔利用加扰序列(mbit)和整个pbch信息比特(b(i))执行加扰。这里,与其中未发送pbch的ss块相关联的加扰序列(c(i))可能实际上不用于后续pbch传输。【等式1】基于cinit=nidcell,在满足nfmod2k=0并且nf=的每个无线电帧的开始处初始化加扰序列(c(i))。或者,如上所述,基于cinit=nidcell,可以在满足nfmod2k=0的每个无线电帧的开始处初始化加扰序列(c(i))(例如,当k=3时,每八个无线电帧初始化一次)。这里,j可以被定义为每个无线电帧的ss块的数量。此外,该值基于终端为每个频带假定的用于时域中的初始小区接入的一组ss块而被确定。在上面的示例中,j是4。时域中单个无线电帧中的ss块的数量是4。所述pbch加扰序列c(i)可使用例如基于长度为31的金序列的两个多项式x31+x3+1和x31+x3+x2+1+1。作为所述多项式的初始值,固定的“000...001”值(长度为31)用于所述第一多项式,小区id(cellid)和/或不同的时间信息(ss块索引2到3和/或ofdm符号索引)可用于所述第二多项式。如上所述生成的序列(c(i))可以用于加扰pbch数据(b(i))。具有用于容纳更大数量的初始值的不同长度的gold序列或通过应用不同的多项式生成的gold序列可以用于由本公开提出的指示定时边界(例如,sfn,5ms定时和ss块索引)的目的。此外,nss-block是在由2k确定的剩余sfn中分配的ss块的索引。ss块索引的范围可以通过使用剩余sfn中的ss突发和ss块索引的组合或者ss突发集的组合来确定。在上面的例子中,四个无线电帧对应于剩余sfn,并且ss块索引nss-block的范围是在四个无线电帧中存在的ss块(即,16个ss块)的总数内的0到15。下面提供的表2示出了对剩余无线电帧中的每个ss块执行加扰的示例。表3示出了对剩余无线电帧中的每个ss突发执行加扰的示例。如表2所示,描述了该方法对每个ss突发集中的每个ss块索引执行加扰。另外,如表3所示,该方法可以应用于对ss突发集中的每个ss突发中的ss块(即pbch)执行加扰的示例。也就是说,基站对与剩余sfn相对应的无线电帧中的每个ss突发索引/ss突发集索引中的ss块(即pbch)进行加扰,并发送它。终端可以基于检测到的ss突发索引/ss突发集索引与对应于剩余sfn的无线电帧之间的关系来识别无线电帧索引值。【表2】【表3】参考图5的示例,针对每个ss块、ss块突发或ss突发集初始化加扰序列,并且向终端隐式地指示剩余sfn值。在下文中,描述一种为每个ss块索引或每个ss块突发初始化加扰序列的方法。至少ss块索引(图5中的504、505、506和507)和与帧边界相关联的信息可以通过ss块内的信号(例如,nr-ss、tss、nr-pbch等)获得。该方法可以使用与剩余sfn信息(例如,k=2比特,4无线电帧)对应的无线电帧中的小区id,初始化pbch加扰的加扰序列,所述加扰序列对应于每个ss块索引、每个ss突发索引或每个ss突发集。通过以上,终端可以获得pbch的干扰随机化效果。为了指示与剩余sfn信息中的每个帧相对应的索引值,基站考虑nfmod2k执行加扰,并且将ss块中的pbch发送到终端。终端通过解扰接收的pbch来执行盲解码。这里,终端可以通过执行解扰和crc(循环冗余校验)检查来容易地获得相应的剩余sfn值。下面提供的等式2示出了对在一个ss块中的pbch中发送的数量mbit的信息比特(b(i))执行加扰。这里,用于其中未发送pbch的ss块的加扰序列(c(i))可能实际上不用于后续pbch传输。mbit对应于加扰序列和pbch信息比特的长度。【等式2】基于cinit=(nfmod2k)29+nidcell,为每个ss块初始化所述加扰序列c(i)。终端从先前确定的ss块的时间位置中导出ss块的索引,并且可以在给定的ss突发集中识别检测到的ss块的时间位置。这里,假设ss突发集和无线电帧之间的关系已经预先确定。例如,如上述示例所示,ss突发集可以具有10ms的周期,并且包括总共4个ss块。可以为每个无线电帧定义ss突发集的配置。在上述示例中,ss突发集的时间间隔和无线电帧的时间间隔是相同的,因此,可以认识到它们是1:1的关系。当两个ss突发集位于一个无线电帧中时,无线电帧与ss突发集之间的关系可以是1:2关系。如上所述,当预先确定无线电帧与至少一个ss突发集之间的关系时,终端可以基于所接收的ss块索引信息导出无线电帧与接收的ss块之间的关系,并且可以通过用于解码接收到的ss块中的pbch的解扰操作,识别剩余sfn信息中的相应无线电帧。另外,可以通过上面的nr-pbch的crc掩蔽和pbch加扰的组合来指示剩余sfn值。在nr系统中,dmrs(解调rs)、nr-sss和nr-tss中的至少一个rs可以用于至少对pbch进行解码。与lte系统一样,nr系统需要支持空间分集。为此,终端需要至少知道rs的天线端口的数量,以对相应的pbch进行解码。在lte系统中,基于crs对pbch进行解码。在存在多个crs天线端口的情况下,基站使用不同的加扰序列对pbch中的crc执行加扰或掩蔽,并将其发送到终端。终端可以通过对crc中的加扰信息执行盲解码来识别crc天线端口的数量。在nr系统中,用于解码pbch的天线端口的数量可以是固定值。因此,通过crc掩蔽而不是加扰来指示至少剩余sfn值,然而,可以执行加扰以便在接收到pbch时提供小区间干扰随机化效果。将长度为16的crc比特添加到在单个pbch中发送的信息比特a0,a1,a2,a3,...aa-1。在这种情况下,表4中的pbchcrc掩码值可以用crc比特加扰,并且可以被发送以指示剩余sfn值。取决于剩余sfn值的范围,可以不同地定义“剩余sfn”的范围,并且相关联的rbchcrc掩码比特可以相应地定义为彼此正交的序列。下面提供的表4示出了用于通过pbch通知剩余sfn值的crc掩蔽的示例。【等式3】ck=ak对于k=0,1,2,…,a-1ck=(pk-a+xant,k-a)mod2对于k=a,a+1,a+2,...,a+15【表4】从终端的角度来看,如上所述,当在ss块的预定时间位置中接收到对应于预定时间索引的ss块时,终端可以通过接收ss块中的信号(例如,pss、sss、tss、或pbch等)来导出相应的ss块索引。导出的ss块索引可以提供与sst突发集或无线电帧中的物理时间位置相关联的信息,并且可以通过执行pbchcrc掩蔽信息的盲解码来获得剩余sfn值。另外,可以通过所提出的pbchcrc掩码来指示所述剩余sfn值的一部分,并且可以通过上述加扰来指示所述剩余sfn值中的其他部分。这被视为上述方案的组合。图6是示出了根据本公开的信令过程的图。基站基于ss突发/ss突发集配置识别ss突发集内或ss突发内的ss块索引。基站在操作(600)中为每个ss块准备至少nr-ss/nr-pbch传输。基站另外在ss块内准备与nr-ss一起的pbch传输,其被确定用于基站的ss块传输。在操作(601)中,基站准备pbch传输,针对该pbch传输,应用所提出的针对所述pbch传输的的剩余sfn指示和/或pbch加扰过程或pbch掩蔽过程。在操作(602)中,基站在预定时间位置发送准备好的ss块。这里,ss块可以包括nr-ss/nr-pbch。用于测量信道的mrs(测量rs)和用于指示ss块索引的tss(三元ss)可以选择性地被发送或者与ss块中的nr-ss和nr-pbch一起发送。在操作603中,终端通过接收的ss块中的nr-ss/tss/pbch导出ss块索引,并通过ss块索引值和该ss块索引值的预定物理位置导出物理时间位置。在操作604中,终端可以通过在接收的ss块中的pbch中执行所提出的pbch解扰过程或crc解掩蔽过程来导出剩余sfn信息。在操作605中,终端可以获得已经通过包括在接收的pbch中的有效载荷显式提供的sfn比特,并且可以获得根据上述提出的隐式方法提供的剩余sfn信息,从而获得nr系统的整个sfn信息(即,10比特)。如果针对nr不考虑针对剩余sfn的所提出的隐式指示方法,则应当通过pbch有效载荷(即,pbch信息比特)显式指示包括nr系统的剩余sfn的所有sfn信息(10比特)。在这种情况下,所提出的加扰方法只能提供干扰随机化效应,以便在终端侧获得更好的pbch检测性能。随后,终端可以在操作(606)中基于接收到的nr系统的无线电帧信息(即,sfn)来执行数据传输和接收过程。图7是示出了根据本公开的无线电设备的配置的图。图7示出了用于发送同步信号和广播信道信号的基站设备700,以及用于接收同步信号和广播信道信号的终端设备750。所述基站设备700可以包括处理器710、天线单元720、收发器730和存储器740。所述处理器710可以执行基带相关信号处理,并且可以包括较高层处理单元711和物理层处理单元712。较高层处理单元711可以处理mac层、rrc层或较高层的操作。物理层处理单元712可以处理phy层的操作(例如,下行链路传输信号处理和上行链路接收信号处理)。除了执行基带相关信号处理之外,处理器710还可以控制基站设备700的操作。天线单元720可以包括一个或多个物理天线,并且可以在包括多个天线时支持mimo发送和接收。收发器730可以包括rf发射器和rf接收器。存储器740可以存储处理器710的处理信息、与基站设备700的操作相关联的软件、操作系统、或应用程序等,并且可以包括缓冲器等元件。基站设备700的处理器710可以被配置为实施在本公开的实施方式中描述的基站的操作。处理器710的较高层处理单元711可以包括ss块配置单元713。ss块配置单元713可以从无线电帧与ss块/ss突发/ss突发集配置、默认scs、默认ss突发集周期、或默认时隙结构等之间的物理资源的角度确定关系,其是针对每个频带预先确定的,并且可以通过较高层信令等向终端设备750提供该关系。此外,ss块配置单元713可以确定在ss块中发送的nr-ss/nr-pbch等之中要显式地用信号通知整个sfn信息中的多少比特(即,隐式地指示了多少比特是剩余sfn信息),并且可以确定应用于在所述ss块中发送的所述nr-pbch的加扰方案或crc掩码方案。基站设备的处理器710中的物理层处理单元712可以包括ss块发送单元714。ss块发送单元714可以基于由ss块配置单元713设置的配置信息来配置ss块,并且可以发送该ss块。因此,可以通过ss块的nr-ss/nr-pbch向终端设备750显式指示sfn信息的一部分。此外,ss块发送单元714可以通过应用与ss块传输相关联的pbch加扰方案或crc掩蔽方案来隐式地向终端750指示sfn信息的剩余部分。所述终端750可以包括处理器760、天线单元770、收发器770和存储器790。所述处理器760可以执行基带相关信号处理,并且可以包括较高层处理单元761和物理层处理单元762。较高层处理单元761可以处理mac(媒体接入控制)层、rrc(无线电资源控制)或较高层的操作。物理层处理单元762可以处理物理(phy)层的操作(例如,上行链路传输信号处理和下行链路接收信号处理)。除了执行基带相关信号处理之外,处理器760还可以控制终端设备750的操作。天线单元770可以包括一个或多个物理天线,并且可以在包括多个天线时支持mimo(多输入多输出)发送和接收。收发器770可以包括射频(rf)发射器和rf接收器。存储器790可以存储处理器760的处理信息、与终端设备750的操作相关联的软件、操作系统、或应用程序等,并且可以包括缓冲器等元件。终端设备750的处理器760可以被配置为实施本公开的实施方式中描述的终端设备的操作。处理器760的较高层处理单元760可以包括ss块配置确定单元763。ss块配置确定单元763可以从无线电帧与ss块/ss突发/ss突发集配置、默认scs、默认ss突发集周期、或默认时隙结构等之间的物理资源的角度确定关系,其是针对每个频带预先确定的,并且可以将该信息提供给物理层处理单元762,由此物理层处理单元762可以检测ss块。此外,ss块配置确定单元863可以确定在ss块中发送的nr-ss/nr-pbch等之中要显式地用信号通知整个sfn信息中的多少比特(即,隐式地指示了多少比特是剩余sfn信息),可以确定应用于在ss块中发送的nr-pbch的加扰方案或crc掩蔽方案,并且可以将其发送到物理层处理单元762。终端设备的处理器760中的物理层处理单元762可以包括ss块接收单元764。ss块接收单元764可以基于由ss块配置确定单元763提供的信息来尝试接收ss块。终端设备750可以通过ss块的nr-ss/nr-pbch显式地确定sfn信息的一部分。此外,ss块接收单元764可以通过识别与ss块传输相关联的pbch加扰方案或crc掩蔽方案来隐式地确定sfn信息的剩余部分。作为另外的实施方式,当假设剩余sfn值对应于k=3比特(即,八个无线电帧(无线电子帧0到7)),并且ss突发集是20ms时,则在80ms(=8无线电帧)期间可以存在四个ss突发集。如上所述,针对每个频带,每个ss突发集的ss块的最大数量可以被定义为l。对于80ms内的一个或多个时隙、每个ss块、ss突发、或ss突发集,基站可以以与图4和8的方案相同的方式执行加扰,以便隐式地指示剩余sfn值(如果应用的话)并向终端提供干扰随机化效果。如上所述,加扰序列c(i)的长度可以是(s*sss_block*kbit=mbit)。对于每八个无线电帧(即,k=3),基于等式1中给出的cinit=nidcell,可以在满足nfmod2k=0的无线电帧处初始化加扰序列(c(i))。如图4和8所示,当基于ss突发集单元执行加扰时,与基于ss块/ss突发单元执行加扰时相比,可以减少终端的解扰操作的复杂度。因此,当基于ss突发集单元执行加扰时,可以在80ms期间的每20ms(=ss突发集周期)中利用加扰序列的不同部分来执行加扰。因此,加扰序列长度mbit可以每80ms应用于ss块中的pbch。基站700还可以经由pbch有效载荷发送指示所述半无线电帧索引的1比特信息。例如,如果该1比特信息为零,则它可以指示无线电帧的开始5ms。如果1比特信息是1,则它可以指示所述无线电帧的后5ms。基站700可以经由pbchdmrs序列向终端750发送关于所述半无线电帧索引的信息。例如,所述半无线电帧索引的所述1比特信息(除了小区id和ss块索引的第2和第3lsb之外)可以用于gold序列的初始化值以生成pbchdmrs序列。可以经由dmrs序列的初始化将ss块索引的第二和第三lsb发送到终端750。可以在每个ss块时机的开始处执行所述dmrs序列的初始化。可以执行上述第二pbch加扰以增强加扰性能。因为在四个20ms持续时间之一内应用相同的加扰序列部分,所以可以在所述四个20ms持续时间的每一个中执行附加的第二pbch加扰。例如,通过pbchdmrs,可以获得2比特(l=4)或3比特(l=8或64)ss块索引,并且可以使用该2比特或3比特ss块索引来确定四个20ms之一内的不同ss块的不同加扰序列部分。图10示出了当l=4时,第二pbch加扰的示例。图11示出了当l=64时,第二pbch加扰的示例。当l=64时,所述3比特ss块索引只有八个不同的值。为了在四个20ms持续时间之一内为64个ss块应用不同的第二加扰序列部分,由所述3比特ss块索引指示的八个值可以被重复8次,如下面的表8所示。在其内ss块的最大数量为l的ss突发周期中,可以在每个ss突发集中的每个ss块或第一ss块的开始处初始化所述第二加扰序列。该第二加扰序列的初始化可以基于基站700的小区id。基站700可以基于基站的小区标识符来初始化加扰序列生成器,以对八个连续无线电帧中的每个pbch的一部分进行加扰,其中八个连续无线电帧中的每个无线电帧具有10ms的持续时间。基站700可以确定八个连续无线电帧中的多个同步信号(ss)块(其中每个ss块包括pbch),并且生成加扰序列以加扰八个连续无线电帧内的每个pbch的一部分,其中该加扰序列包括四个不同的序列部分。基站700可以通过应用四个不同序列部分中的第一个,在八个连续无线电帧的第一20ms中对pbch进行加扰;通过应用四个不同序列部分中的第二个,在八个连续无线电帧的第二个20ms内对pbch进行加扰;通过应用四个不同序列部分中的第三个,在八个连续无线电帧的第三个20ms中对pbch进行加扰;以及通过应用四个不同序列部分中的第四个,在八个连续无线电帧的第四个20ms中对pbch进行加扰。基站可以基于频率范围确定与八个连续无线电帧相关联的ss块的最大数量。根据频率范围,四个20ms中的一个中的ss块的最大数量是4、8或64。基站700可以接收pbch解调参考信号(dmrs),其指示ss块索引的第二和第三最低有效位。基站700可以基于ss块索引的第二和第三最低有效位,在第一20ms、第二20ms、第三20ms和第四20ms之一中对pbch执行第二加扰。基站700可以经由与pbch相关联的一个或多个系统帧号(sfn)字段指示1024个无线电帧号中的至少一个。基站700可以基于所述一个或多个sfn字段指示八个连续无线电帧中的四个20ms持续时间。基站700可以基于pbch有效载荷的5ms定时字段指示八个连续无线电帧内的5ms传输持续时间。基站700可以在八个连续无线电帧内的5ms传输持续时间中发送ss块。基站700可以基于pbch解调参考信号(dmrs)序列生成来指示所述5ms定时字段。终端识别上述加扰方案(作为示例,在80ms的时间间隔中对于每个ss突发集周期20ms应用加扰序列的不同部分(以与图4和图8的操作495相同的方式,对每个ss突发集应用加扰序列的不同部分(例如,a、b、c或d),并且以与图9相同的方式,对每个ss突发集应用加扰序列的不同部分)。此外,如果应用了所提出的隐式剩余sfn指示,则基于加扰信息,终端检测ss块中的pbch,并且获得与在80ms内的四个20ms时间间隔(例如,a、b、c和d时间间隔)中存在pbch的时间间隔相关联的信息。如图9所示,例如,当分别应用于20ms的时间间隔的加扰序列的部分被称为a、b、c和d时,终端可以通过解码处理从a、b、c和d时间间隔中识别存在通过解扰处理检测到的pbch的时间间隔。每个时间间隔是20ms,并且从通过pbch解码处理获得的ss块索引导出20ms时间间隔中的剩余sfn(0或1)信息,由此终端可以识别对应的sfn。例如,如图9所示,当剩余sfn对应于sfn(3比特)(即,八个sfn(0到7))时,间隔a和对应于(0或1)的sfn相对应,间隔b和对应于(2或3)的sfn相对应,间隔c和对应于(4或5)的sfn相对应,并且间隔d和对应于(6或7)的sfn相对应。终端可以获取与a、b、c或d对应的时间间隔信息,其中根据上述提出的加扰方法,a、b、c和d时间间隔分别与加扰序列的不同部分相关,并且基于通过pbch解码过程获得的ss块索引信息,从每20ms存在的两个sfn(无线电帧)中识别对应的sfn,从而导出3比特的剩余sfn值。两个无线电帧(20ms)具有与ss突发集周期相同的周期,因此,终端可以基于检测到的每个ss突发集周期中的ss块索引(处于范围0到l中的一个)从每个间隔中的两个无线电帧中获得与相应无线电帧相关联的信息。在这种情况下,预先确定与两个无线电帧的时间间隔相对应的ss突发集周期内的ss块的物理时间位置。在上面的示例中,尽管描述了在每个ss突发集中使用不同的加扰序列来执行加扰,但是还可以基于ss块单元或基于ss突发单元来执行加扰,如图4所示(当然,如等式1中给出的,对每八个无线电帧(k=3)执行初始化)。终端识别所提出的加扰方法和ss块索引,以便获得剩余sfn值(例如,sfn的3lsb)。在这种情况下,识别加扰方法的操作和识别ss块索引的操作的顺序可以是可置换的。作为另一示例,与上述方法不同,代替加扰方法,或者与该加扰方法一起,可以通过如表5和等式3中所示的crc掩蔽方法来指示如图9中的a、b、c和d间隔。在这种情况下,当一起使用所提出的加扰方法时,下面提出的crc掩蔽方法可以是附加检查点,从而大大降低了获得错误的ss突发集边界的错误的概率。也就是说,每个crc掩码值指示a、b、c和d间隔,并且可以如上面提出的方法一样,通过ss块索引值导出所指示的间隔中的两个sfn(无线电帧)中的一个。将长度为16的crc比特a0,a1,a2,a3,...aa-1加到在单个pbch中发送的信息比特中。在这种情况下,表5的pbchcrc掩码值可以用crc比特加扰,并且可以被发送以指示剩余sfn值。取决于剩余sfn值的范围,可以不同地定义表5中的“nr-pbch调度周期内的ss突发集周期部分”值的范围,并且可以将关联的rbchcrc掩码比特定义为彼此正交的序列。在下面提供的表5中示出了用于在pbch中通知剩余sfn的crc掩蔽的示例。【表5】作为另一示例,可以通过使用在pbch信道编码期间应用的不同冗余版本(rv=0,2,1,3)来指示所述a、b、c和d间隔。在这种情况下,当一起使用所提出的加扰方法时,下面提出的rv方法可以是附加检查点,并且可以降低获得错误的ss突发集边界的错误的概率。也就是说,每个rv值可以指示a、b、c或d间隔,并且所指示的间隔中的无线电帧值可以通过ss块索引值导出最终剩余sfn值。例如,当通过成功解码获得rv=0时,终端假设相关联的间隔是间隔a。当通过成功解码获得rv=2时,终端假设相关联的间隔是间隔b。当通过成功解码获得rv=1时,终端假设相关联的间隔是间隔c。当终端假设通过成功解码获得rv=3时,终端假设相关联的间隔是间隔d。随后,终端基于ss块索引导出两个sfn中的一个,从而确定剩余sfn值。如上所述,80ms的时间间隔可以由mib中的7比特的sfn字段指示。然而,可以根据下面提出的方法指示对应于剩余3比特sfn信息的80ms内的20ms、10ms或5ms的各种类型的定时信息。表6示出了根据在pbchtti(调度周期)80ms内指示20ms/10ms/5ms定时的方法的本公开的实施方式。【表6】根据实施方式#1,作为附加实施方式,通过mib中的sfn字段(10比特)提供与整个1024个无线电帧相对应的定时信息,并且可以使用在mib中定义的5ms定时字段(1比特)来指示剩余5ms定时。或者,在5ms定时的情况下,基站可以基于dmrs映射顺序或dmrs序列初始化向终端指示其对应于1比特的信息,而不使用mib中的信息。根据基于dmrs映射顺序的指示方法,终端可以根据预定规则从无线电帧定时(10ms)中包括的两个5ms定时间隔中确定相应的5ms定时间隔。当从低频索引(即,资源元素,re)到高频索引的顺序映射pbchdmrs序列时,终端将第一个5ms定时间隔确定为相应的定时间隔。当以相反顺序映射pbchdmrs序列时,终端确定第二个5ms定时间隔作为相应定时间隔。当然,当从高频索引到低频索引按顺序映射pbchdmrs序列时,终端可以将第一个5ms定时间隔确定为相应的5ms定时间隔,当pbchdmrs序列以相反的顺序被映射时,可以将第二个5ms定时间隔确定为相应的5ms定时间隔。终端可以根据预定规则确定对应的5ms定时间隔。作为通过pbchdmrs在无线电帧中指示5-ms定时间隔的另一种方法,终端可以通过使用dmrs序列初始化来获得与1比特信息相对应的两个盲解码候选中的5-ms定时间隔信息(即,无线电帧中的第一和第二5ms定时)。此外,所述5-ms定时间隔可以由pbchdmrs序列指示,而不是如上所述使用pbchdmrs映射顺序。考虑用于生成所述pbchdmrs序列的pn序列(伪随机序列)c(i)可以使用基于长度为31的gold序列的两个多项式,如下所述。第一多项式可以是x31+x3+1,第二多项式可以是x31+x3+x2+1+1。如下面提供的等式中给出的,作为初始值cinit,固定值可用于第一多项式,第二多项式可通过使用小区id或小区id和根据bpsk或qpsk调制方案的不同时间信息(ss块索引2到3比特和5ms定时)而被生成。【等式4】c(n)=(x1(n+nc)+x2(n+nc))mod2x1(n+31)=(x1(n+3)+x1(n))mod2x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2nc=1600,并且可以用x1(0)=1,x1(n)=0,n=1,2,...30作为固定值来初始化第一m序列。第二m序列可以确定为下面提出的cinit值可以将第二m序列的初始值确定为:1.在每个ss块的开始处初始化pbchdmrs序列,以便在具有2或3比特的ss块索引之上指示5ms定时的情况pn序列(伪随机序列)生成器可以使用以下之一:和需要ss突发集中每个ss块开始处使用cinit值来执行初始化。-nssblock:ss块索引,范围为0到3(2比特)或范围为0到7(3比特)-ncellid:nr小区id值,范围为0到1007(10比特)-nssblock5ms:与ss块传输间隔(5ms)定时相关联的信息,并且具有0到1的范围2.在每个ss块中的每个ofdm符号的开始处初始化pbchdmrs序列,以便指示5ms定时的情况pn序列(伪随机序列)生成器可以使用和中的一个。需要在ss突发集中的每个ss块中的每个ofdm符号的开始处使用cinit值来执行初始化。-nssblock:ss块索引,范围为0到3(2比特)或范围为0到7(3比特)-ncellid:nr小区id值,范围为0到1007(10比特)-l':用于ss块中的pbchdmrs传输的ofdm符号索引,并且具有0到1的范围或0到13的范围-nssblock5ms:与ss块传输间隔(5ms)定时相关联的信息,并且具有0到1的范围所提出的cinit的等式中的nssblock假定考虑具有3比特的ss块索引信息,但是也可以考虑具有2比特的ss块索引信息,这取决于频率范围中的ss块候选的最大数量(例如,低于3ghz时,l=4)。在这种情况下,可以基于nssblock是对应于2比特的信息这一事实来改变所述等式。根据实施方式#2,终端识别以上所提出的加扰方案(作为示例,在80ms的时间间隔中对于每个ss突发集周期20ms应用加扰序列的不同部分(以与图4和图8的操作495相同的方式,对每个ss突发集应用加扰序列的不同部分(例如,a、b、c和d),并且以与图9相同的方式,对每个ss突发集应用加扰序列的不同部分))。此外,基于加扰信息,终端检测ss块中的pbch,并且获得80ms内的20ms的四个时间间隔(例如,a、b、c和d时间间隔)中与检测到pbch的时间间隔相关联的信息。如图9所示,例如,当分别应用于20ms的时间间隔的加扰序列的部分被称为a、b、c和d时,终端可以通过解码处理识别从a、b、c和d时间间隔中存在通过解扰处理检测到的pbch的时间间隔。可以通过不同的pbch数据加扰来指示pbch调度周期(80ms)内的20ms(默认ss突发集合周期)-间隔(即,a、b、c和d)的边界。随后,可以通过pbch传送的1比特信息(mib)指示20ms间隔中的无线电帧定时(=10ms)。以与实施方式#1相同的方式,可以使用mib中的5ms定时指示字段、物理资源上的pbchdmrs序列分配顺序或pbchdmrs序列来指示在所指示的无线电帧定时(10ms)内的ss块传输窗口(5ms)。根据实施方式#3,如图9所示,如上述实施方式和方法中所述,可以通过不同的pbch数据加扰来指示pbch调度周期(80ms)内的20ms(默认ss突发集周期)-间隔(即,a、b、c和d)的边界。随后,可以通过pbch传送的2比特信息(mib)显式地指示在20ms间隔内的ss块传输窗口(5ms)定时(关于20ms间隔内的四个5ms间隔的指示)。在这种情况下,可以通过关于20ms周期内的ss块传输窗口(5ms)的指示来导出对应于10ms定时的无线电帧。因此,可能不需要通过mib指示10ms定时。作为实施方式#4,如上所述,与上述提议的加扰一起,通过加扰信息,终端可以检测ss块中的pbch,并获得与在80ms内的八个10ms时间间隔(例如,a、b、c、d、e、f、g或h时间间隔,如图8的图490所示)中存在所述pbch的时间间隔相关联的信息。如图8所示,例如,当应用于各个10ms时间间隔的加扰序列的部分被称为a、b、c、d、e、f、g和h时,终端可以通过解码过程识别通过解扰过程检测到a、b、c、d、e、f、g和h时间间隔中的存在所述pbch的时间间隔。根据图8,可以通过不同的pbch数据加扰来指示pbch调度周期(80ms)内的10ms间隔(无线电帧)(例如,a、b、c、d、e、f、g和h)的边界。随后,10ms内的ss块传输窗口(5ms)定时可以由pbchdmrs序列映射顺序或pbchdmrs序列指示,或者可以由pbch传送的一比特信息(mib)指示,如上述实施方式提出的一样。根据实施方式#5,可以使用mib中的5ms定时字段(4比特)向终端指示80ms时间间隔中的定时。在这种情况下,mib中的sfn字段具有7比特,而5ms的定时字段具有4比特。基站可以使用该4比特向终端提供sfn值/无线电帧定时和5ms定时。还可以考虑与所提出的指示时间间隔的定时的方法的其他组合相关联的实施方式。例如,20ms定时可以由mib中的sfn字段指示,并且对应于所述20ms定时中的10/5ms定时的信息可以由所述mib中的5ms定时字段(2比特)指示。因此,本公开不将方法限制于所提出的实施方式,并且还可以包括利用指示时间间隔的方法的组合的实施方式。一种生成和应用第二pbch加扰序列的方法:终端在解码pbch之前检测用于解码pbch的pbchdmrs。通过该dmrs,终端可以在解码pbch之前检测用于pbch解码的信道估计信息以及一部分或全部的ss块(2或3比特)索引信息。如下所述,根据频带范围定义ss块的最大数量(l)和相应的子载波间隔。因此,如与cinit(其用于pbchdmrs序列生成以指示5ms定时)相关联的等式所示,在检测到pbch之前,可以通过pbchdmrs序列向终端指示对应于最多2或3比特信息的ss块索引(nssblock)。作为通过dmrs的指示方法,可以通过考虑相应的ss块索引信息来生成dmrs序列,并且可以发送该dmrs序列。由于在6ghz以上的频带中存在64个ss块,因此,6比特ss块索引信息可以作为pbchdmrs和pbch中的信息比特的组合而被指示给终端。【表7】频率范围所支持的scs(khz)ss块的最大数量(l)~3ghz15或3043~6ghz15或3086~52.6ghz120或24064表7显示了每个频率范围的所支持的scs和最大ss块数量。因此,为了执行第二pbch加扰方案,除了小区id之外,还可以使用在接收pbchdmrs时检测到的ss块索引信息。在信道编码处理之后执行该第二pbch加扰。也就是说,以与第一pbch加扰方案相同的方式,加扰序列在每个ss块的开始处或在每个ss突发集周期(例如,20ms)的开始时基于小区id被初始化,并且可以将其用于第二pbch加扰。当ss块索引信息另外用于生成pbch加扰序列时,终端可以在通过其发送ss块的5ms传输窗口中获得附加的时间分集增益,并且变得非常鲁棒以抵抗在20ms的时间间隔内的来自相邻小区的干扰。该方法的最大益处是可以在不增加额外pbch解码的复杂性的情况下提高性能。参考图10,例如,假设在pbch调度周期(80ms)内存在四个ss突发集,并且在单个ss突发集(20ms)内存在最多4个ss块(l=4)。此外,期望在5msss块定时窗口内发送和接收单个ss突发集合中的所有ss块,以便最小化终端和基站处的功耗量。作为另一示例,在pbch调度周期(80ms)内的八个时间间隔上应用不同pbch加扰的情况也是适用的。然而,本公开描述了针对每个描述通过不同pbch加扰在80ms内指示四个20ms时间间隔的示例。当上述pbch加扰序列(第一加扰)的四个不同加扰序列部分被分别应用于pbch调度周期(80ms)内的每个ss突发集周期(20ms)时,如图8和9所示,相同加扰序列的一部分可以应用于ss突发集周期20ms内的所有ss块中的pbch。因此,在这种情况下,当在20ms内执行pbch组合时,不能获得通过干扰随机化获得的分集增益和性能增益,这是一个缺点。然而,根据所提出的实施方式,对于ss突发集周期20ms内的附加pbch加扰,可以在解码pbch数据之前利用通过接收pbchdmrs检测到的ss块索引信息(2或3比特),因此,终端可以检测应用了附加pbch加扰(第二加扰)的pbch。例如,当终端通过盲检测pbchdmrs序列来检测ss块索引1时,假设对应于第二pbch加扰序列c(i)(a1,a2,...d4)中的“a2、b2、c2、d2”之一的pbch加扰序列部分被应用于使用相同pbch加扰序列部分(a2=b2=c2=d2)的每个20ms时间间隔,如图10所示。因此,例如,pbch检测可以通过对应于a1、a2、a3和a4的加扰序列的四个不同部分来执行,这些部分分别与第一ss突发集周期(例如,20ms)中的四个ss块索引相关联。以相同的方式,第二pbch加扰可以通过利用四个不同加扰序列部分来执行,所述四个不同加扰序列部分对应于分别与第二个20ms间隔(b)中的四个ss块索引相关联的b1、b2、b3和b4;分别与第三20毫秒间隔(c)中的四个ss块索引相关联的c1、c2、c3和c4;以及分别与第四20毫秒间隔(d)中的四个ss块索引相关联的d1、d2、d3和d4。在该示例中,当从与pbch加扰序列“b2”部分对应的部分成功检测到pbch时,终端可以确定检测到存在于与80ms内的第二20ms间隔(第二ss突发集周期)相对应的间隔中的ss块。此外,根据上述提出的方法,10ms定时(无线电帧定时)和5ms定时(ss块窗口定时)可以由终端导出,并且可以由基站指示。对于整个pbch加扰,可以将不同pbch加扰部分应用于pbch调度周期内的ss块,其中所述不同pbch加扰部分的数量对应于通过将以下两者相乘而获得的值:在pbch调度周期(3比特,80ms)内应用第一pbch加扰的10-ms或20-ms定时的数量(c)、以及由pbchdmrs指示的并且对其应用第二pbch加扰的ss块索引的数量(s)(2或3比特,4或8)。在上面的示例中,可以认为pbch加扰被应用的次数等于通过经由pbchdmrs将四个20ms定时(c=4)和四个ss块索引(s=4)相乘所获得的值。根据所提出的方法,可以获得对在所有ss块中发送的每个pbch传输应用不同的加扰序列部分的效果,并且终端的解扰的复杂性可能不会显著增加。此外,当ss块候选的最大数量是64时,例如频带超过6ghz的情况,不能通过pbchdmrs序列初始化(通过pbchdmrs最多3比特)指示所有ss块索引。因此,可以将用于第二pbch加扰的不同加扰序列部分应用于pbch编码比特(pbch数据),该不同加扰序列部分的数量对应于ss块索引的数量(最多八个ss块索引),其可以通过80ms内的每10ms或20ms的pbchdmrs来指示。例如,当在20ms定时中假设3比特ss块索引的数量(八个ss块索引)时,长度为pbch传输比特长度的8倍的pbch加扰序列可被生成,并且可以在20ms内被重复应用于多达64个ss块。这里,如下面提供的表中所示,假设对应于一个(或每个)pbch加扰序列索引的加扰序列/数据的长度与对应于一个pbch传输的编码比特的数量相同。如下面提供的表中所示,八个重复加扰序列被应用于20ms定时边界内的64个ss块中的pbch数据,从而可以通过在20ms内根据所提出的第二pbch加扰在20ms内执行附加pbch组合来改善pbch检测性能。对于64个ss块,将参考下面提供的表8描述基于pbch加扰的3比特pbchdmrsss块指示。【表8】图11示出了在表8的示例中的第一20ms时间间隔(第一20ms)中执行的pbch加扰过程。pbch加扰序列索引的数量(由pbchdmrs指示的ss块的数量)取决于pbchdmrs在预定的10毫秒时间间隔或20毫秒时间间隔内传输的信息比特数量。当假设使用3比特时,可以针对(在64个ss块中的)每个pbch传输重复应用最多八个不同的加扰序列部分。参考图11和表8,当加扰序列针对每个20ms而被初始化时,可以生成第二pbch加扰序列,其对应于加扰序列索引(0,1,...7),所述加扰序列索引分别与可以通过dmrs针对每20ms获得的最多八个ss块索引相关联。终端可以基于0到7个ss块索引信息(其对应于3个比特并且通过pbchdmrs检测而被获得),识别应用于给定20ms时间间隔的pbch加扰序列。基于该信息,终端可以执行pbch解扰,并执行pbch数据解码。在与20ms时间间隔相关联的定时的情况下,终端可以通过先前提出的方法(通过隐式或显式方式的sfn指示方法)识别80ms时间间隔内的相应20ms时间间隔。因此,终端执行pbch解扰而无需进一步盲解码。然而,基站利用由pbchdmrs传送的最大3比特ss块索引信息,在10毫秒或20毫秒边界内执行附加pbch数据加扰,并发送该信息。上述传输方法可以向终端提供更可靠的pbch数据解码,从而可以提高系统的性能。上述示例仅是示例,并且所提出的方法可以应用于使用pbch加扰在pbch调度周期(80ms)内指示10ms或5ms边界的情况。在上述示例性系统中,过程被描述为基于流程图的一系列步骤或块,本发明的各方面不限于所示的顺序或序列。一些步骤可以以不同的顺序被处理或者可以基本上同时被处理。此外,应当理解,流程图中所示的步骤不一定排除其他步骤,可以包括其他步骤,并且可以省略流程图中的一个或多个步骤而不脱离本发明的精神和范围。以上描述是为了解释本发明的示例性实施方式的多个技术方面,并且对于本领域技术人员显而易见的是,在不脱离本发明的精神和范围的情况下,可以进行各种修改和变化。因此,本发明旨在覆盖落入所附权利要求及其等同物的范围内的本发明的修改和变化。所述处理器可以包括专用集成电路(asic)、另一芯片组、逻辑电路和/或数据处理设备。所述存储器可以包括只读存储器(rom)、随机存取存储器(ram)、闪存、存储卡、存储介质和/或其他存储设备。所述rf单元可以包括用于处理无线信号的基带电路。当实施方式体现为软件时,所描述的方案可以体现为执行所描述的功能的模块(过程或功能等)。所述模块可以存储在存储器中,并且可以由处理器执行。所述存储器可以设置在所述处理器的内部或外部,并且可以通过各种公知的手段连接到所述处理器。在所描述的示例性系统中,尽管基于作为一系列步骤或块的流程图描述了方法,但本发明的各个方面不限于步骤的顺序,并且步骤可以不同的顺序执行,或者可以与另一步骤并行执行。另外,对于本领域技术人员显而易见的是,流程图中的步骤不是排他性的,可以包括另一步骤,或者可以省略流程图的一个或多个步骤而不影响本发明的范围。工业实用性本发明可被应用于其他系统的方法及装置。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1