用于支持无线设备的定位的方法、网络节点和无线设备与流程

文档序号:22557605发布日期:2020-10-17 02:42阅读:171来源:国知局
用于支持无线设备的定位的方法、网络节点和无线设备与流程

本公开总体涉及用于支持无线设备在无线网络中的定位的网络节点、无线设备及其方法。



背景技术:

在本公开中,术语“无线设备”用于表示能够通过发送和接收无线电信号来与无线网络进行无线电通信的诸如例如移动电话、平板电脑、膝上型计算机和机器对机器(m2m)设备(也被称为机器类型通信(mtc)设备)的任何通信实体。本领域中的另一常见的通用术语是“用户设备(ue)”,其在本文中经常被用作无线设备的同义词。

进一步地,术语“网络节点”在本文中用于表示可操作以处理如本文中所描述的定位活动的无线网络的任何节点。网络节点可以是被连接到无线网络中的多个基站或无线电节点的定位节点或位置服务器。本公开中的网络节点还可以指网络中的与无线设备传输无线电信号的无线电节点,并且取决于所使用的术语,这种无线电节点可以被称为基站、无线电节点、节点b(nodeb)、enodeb、基站收发台、接入点等。在本公开中,所描述的网络节点不限于上面的示例。

无线网络中无线设备的定位指的是设备的当前地点或位置的确定或估计,这通常是基于由无线设备和/或由网络的一个或多个无线电节点进行的测量来执行的。遍及本公开,术语“地点”和“位置”是可互换使用的同义词。

长期演进(lte)中的定位由图1中所图示的体系结构支持,其中无线设备(这里表示为ue)与位置服务器(e-smlc)之间经由lte定位协议(lpp)直接交互。此外,还存在在某种程度上由经由无线电资源控制(rrc)协议的enodeb与ue之间的交互所支持的经由lppa协议的位置服务器与enodeb之间的交互。在该图中指示了可以被用于如由第三代合作伙伴计划(3gpp)为lte定义的所示节点之间的通信的一些接口和协议。

lte中考虑了以下定位技术:

增强的小区id(ecid)。实质上,使用小区id信息来将ue关联到服务小区的服务区域,并且然后附加信息可以被使用以确定更精细粒度的位置,即,以更高的准确度来确定ue位置。

gnss(assistedglobalnavigationsatellitesystem,辅助全球导航卫星系统)。指示例如就坐标而言的“绝对”位置的gnss信息有时可以由ue检索,由从e-smlc提供给ue的辅助信息所支持。

otdoa(observedtimedifferenceofarrival,观察到的到达时间差)。ue估计来自不同的基站的参考信号的时间差,并将得到的otdoa发送到e-smlc,以通过多边法定位ue。

utdoa(uplinktdoa,上行链路tdoa)。ue被请求发送由多个位置测量单元(例如,enb)在已知位置处检测到的特定波形。这些测量被转发到e-smlc,以通过多边法定位ue。

携带无线设备的人和物体的定位被认为是蜂窝技术的基本用例之一。在3gpp中定义了各种技术来或多或少准确地估计无线设备的位置。类似地,涉及定位确定的用例可以从能够确定某人或某物是否已经移动到能够准确地确定移动的确切位置而变化。

为了满足不同的部署条件下的高定位精度要求,考虑对上面的定位技术中的两种或更多种进行组合的混合解决方案可能是有用的。在ue中进行的一些传感器测量可以提供关于可以由一些其它的定位方法提供的相对于参考位置的相对定位的有用信息。在3gpprel.14中,对气压传感器的支持为ue的垂直位置估计提供了解决方案。正在进行的3gpprel.15工作项目包括对无线设备中的由传感器进行的传感器测量的支持,这对于定位可能是有用的。

然而,使用诸如移动性状态和传感器测量的定位相关信息的定位技术要求无线设备生成并向网络报告这种信息,导致无线网络及其无线电资源上的负载增加。提供这种定位相关信息的报告还增加了无线设备中的功耗,并且可能太高了,尤其是在难以或者甚至不可能对设备的电池进行足够频繁地充电时。因此,可能必须在准确的位置确定与网络负载加上功耗之间进行权衡。



技术实现要素:

本文中描述的实施例的目的是解决以上概述的问题和议题中的至少一些。可以通过使用如在所附的独立权利要求中定义的网络节点、无线设备及其方法来实现该目的和其它目的。

根据一个方面,方法由网络节点执行,例如以支持无线设备在无线网络中的定位。在该方法中,网络节点在移动性标准被满足时请求或配置无线设备提供定位相关报告。网络节点进一步从无线设备接收所请求的定位相关报告,并且基于所接收的定位相关报告获取无线设备的位置或移动性状态。定位相关报告可以包含移动性状态和/或诸如运动和环境的测量的由无线设备进行的传感器测量。

根据另一方面,网络节点被布置为支持无线设备在无线网络中的定位。网络节点被配置为在移动性标准被满足时请求或配置无线设备提供定位相关报告。网络节点还被配置为从无线设备接收所请求的定位相关报告,并且基于所接收的定位相关报告获取无线设备的位置或移动性状态。

根据另一方面,方法由无线设备执行,例如以支持无线设备在无线网络中的定位。在该方法中,无线设备获取移动性标准,该移动性标准确定是否向网络节点提供定位相关报告,并且监测传感器测量以评估所获取的移动性标准。无线设备进一步在移动性标准被满足时向网络节点提供定位相关报告。

根据另一方面,无线设备被布置为支持无线设备在无线网络中的定位。无线设备被配置为获取移动性标准,移动性标准确定是否向网络节点提供定位相关报告,并且监测传感器测量以评估移动性标准。无线设备被进一步配置为在移动性标准被满足时向网络节点提供定位相关报告。

在使用上面的方法、网络节点和无线设备中的一个或多个时,有利的是,可以限制所报告的信息的量,以便不引起无线网络及其无线电资源上的过多的功耗和负载,并且仍然实现用于无线设备的准确定位的有用且有效的基础。例如,在移动性标准没有被由无线设备监测的传感器测量满足时,将避免从无线设备到网络的定位相关信息的汇编和报告。

上面的方法、网络节点和无线设备可以根据不同的可选实施例被配置和被实施,以确保上面的优点和/或以实现将在下面描述的进一步的特征和益处。

还提供了包括指令的计算机程序,当在上面的网络节点和无线设备中的任何一个中的至少一个处理器上执行指令时,指令使得该至少一个处理器执行以上描述的方法。还提供了包含上面的计算机程序的载体,其中,该载体是电信号、光信号、无线电信号和计算机可读存储介质中的一个。应注意的是,上面的处理器也可以被称为基本上是处理器的同义词的处理电路。遍及本说明书,术语处理器因此可以由“处理电路”代替。

附图说明

现在将通过示例性实施例并且参考附图来更详细地描述解决方案,在附图中:

图1是具有接口的网络体系结构的概观图示,该接口可以被用于根据基于lte的无线网络中的ue的定位。

图2是图示根据一些示例实施例的在解决方案被使用时的过程的示例的信令图。

图3是图示根据进一步的示例实施例的网络节点中的过程的流程图。

图4是图示根据进一步的示例实施例的无线设备中的过程的流程图。

图5是图示根据进一步的示例实施例的网络节点和无线设备可以如何被构造的框图。

图6是更详细地图示根据进一步的可能的实施例的网络节点可以如何操作的示例的流程图。

图7是更详细地图示根据进一步的可能的实施例的无线设备可以如何操作的示例的流程图。

具体实施方式

在下面的描述中,术语ue通常用于表示无线设备的简称。目前市场上的ue中的大多数配备有惯性测量单元(imu)。imu可以包含例如3轴陀螺仪和3轴加速计。imu的使用可以提高定位性能和精度,而imu还可以被用于减少在设备处进行测量的需要。由这些传感器进行的测量可以被融合以形成ue的位置的估计。然而,仅基于imu的定位系统基本上是相对定位系统,即,它可以估计ue的相对于已知的参考位置的位置。

也被称为惯性导航系统(ins)的imu基于诸如加速计的运动传感器、诸如陀螺仪的旋转传感器)和偶尔地诸如磁力计的磁传感器。这些传感器能够例如经由所谓的“航位推算”来连续地计算ue的位置、方位和包括移动的方向和速度的速率。该信息结合参考点报告可以帮助网络为移动的ue提供进一步改进的定位精度和跟踪能力。

其它类型的传感器信息在定位中也是有帮助的,并且以前,气压传感器已经被包括在lpp中。感兴趣的其它类型的传感器包括例如光传感器,其中最近的调查已经指示ue光传感器可以用于检测ue是否位于室内。例如,ue使用光传感器/照相机来测量用于区分ue是位于室内还是室外的环境光。传感器可以例如测量光强度,但是它也可以分析环境光的光谱特性,以识别灯泡、led、荧光灯、卤素灯或通常在室内发现的其它光源的特性。因此,可以使用光传感器来估计ue是否已经从室外移动到室内或从室内移动到室外的指示。

在室内定位中的3gpprel.15工作项目中,同意:

●指定对imu定位的支持:

o指定信令和过程以支持lpp上的imu定位和包括imu相关估计的混合定位。

因此,根据3gpprel.15操作的ue(被称为rel.15ue)将报告它们的传感器数据,主要用于实现网络处的相对位移估计。

然而,用于定位的现有的解决方案与各种问题相关联。在复杂的imu传感器被使用时,这可以帮助相对于参考位置和gps信号丢失的时间的位置估计。来自imu传感器的测量还可以补充和增强从诸如otdoa或ecid的其它定位方法获取的测量。因此,imu传感器可以在混合定位方法中被使用。

一些无线设备可以经由gnss来估计它们的位置,而其它设备不具有这种定位能力,或者它们可能过于受电池限制,使得gnss不能被激活,因为gnss消耗了太多的能量,耗尽了电池。rel-15中的传感器报告的支持只允许相对估计,即,相对于参考点的位置。仅支持传感器数据的ue将仅获取位置位移,而不获取绝对坐标中的定位(与例如gnss相比)。智能手机中的imu被认为是属于最低等级的惯性传感器(商业等级),并且可以表现出显著的偏差、比例因子、未对准和随机噪声误差。然而,仍然存在可以受益于imu测量报告的可用用例。这可能主要与ue已经改变它的移动行为的时间有关。

3gpp标准需要利用imu传感器的这些能力来确定ue的移动性,并且位置数据的报告应尽可能高效地被进行。例如,即使在位移没有变化时,方向(度/秒)、磁力计读数(磁场强度)或改变加速计读数(米/秒平方)的报告将产生过多的测量报告,而另一方面,在ue移动期间不报告这样的测量可能产生大的位置估计误差。当前的3gpp标准仅支持在小区改变时触发ue位置相关报告,并且在小区大小大时,例如在农村地区,基于小区改变的ue触发报告导致ue位置中的大的不确定性。

下面描述的示例和实施例使得无线网络能够基于某些移动性状态标准来配置位置报告触发标准,并且意味着ue将基于该标准的满足来提供位置信息报告,本文中也被称为定位相关报告。在本说明书中,该移动性状态标准通常将被简称为“移动性标准”,或者有时可替换地为“移动性状态改变标准”。进一步地,位置信息报告对应于本文中描述的定位相关报告。

在图2中图示了在其中采用了本文中的示例中的至少一些的通信场景,该通信场景涉及无线网络的网络节点200和由网络节点200服务的无线设备202,网络节点200和无线设备202可以通过无线通信链路彼此通信。网络节点可以是定位节点或诸如e-smlc的位置服务器,但不限于这些示例。

假设网络节点200可操作以确定或估计无线设备的当前位置,换句话说,如下执行无线设备202的定位。如以上所指示的,网络节点200可以是位置服务器等,或者它也可以是诸如基站的无线电节点。第一动作2:1图示了网络节点200向无线设备202发送对传感器能力的请求,使得适合设备的能力的移动性标准可以被选择并且被应用在定位中。在下个动作2:2中,无线设备202响应于前面的请求将它的传感器能力返回到网络节点200。

然后,在动作2:3中,网络节点200基于所接收的传感器能力来选择或配置设备202的移动性标准,并且在动作2:4中向无线设备202发送请求,以在移动性标准被满足时提供定位相关报告。该请求包括在动作2:3中选择或配置的移动性标准。可替代地,该请求可以仅包括对所选择的可以已经预先在设备202中预先配置的移动性标准的引用。

为了满足动作2:4的请求,在动作2:5中,无线设备202针对由传感器或多或少连续地执行的测量来监测设备202中的一个或多个传感器,并且针对所监测的传感器测量来评估所接收的移动性标准。

在进一步的动作2:6中,一旦移动性标准由所监测的传感器测量满足,无线设备202就从传感器测量汇编位置信息,并向网络节点200发送具有所需的定位相关报告的响应。定位相关报告因此包含由设备202汇编的位置信息。在最后示出的动作2:7中,网络节点200由此能够基于接收到的定位相关报告中的信息来获取无线设备202的位置或移动性状态。

可以如何根据由诸如网络节点200的网络节点执行的动作来运用解决方案的示例由图3中的流程图图示。尽管图3中的过程不限于图2的示例,但是现在将进一步参考图2来描述该图,图2可以用作说明性的通信场景。因此,图3图示了可以在网络节点200中执行的用于支持诸如无线设备202的无线设备在无线网络中的定位的过程。在该过程中可以被使用的一些可选的示例实施例也将被描述。

第一动作300图示了网络节点200在移动性标准被满足时请求或配置无线设备202提供定位相关报告。该动作可以通过向设备202发送对报告的单独的显式请求,或者通过将移动性标准作为注册过程等的一部分预先配置设备202来实现。移动性标准可以要求在与传感器测量相关的特定条件被满足时报告应被发送。动作300对应于图2中的动作2:4。

在下个动作302中,网络节点200从无线设备202接收所请求的定位相关报告,这对应于图2中的动作2:6。所接收的定位相关报告包含关于已在无线设备202中执行的传感器测量的信息。通过接收定位相关报告,网络节点200可以推断在无线设备202中移动性标准被满足以触发定位相关报告。最后,在进一步的动作304中,网络节点200基于所接收的定位相关报告获取(例如,识别、估计或计算)无线设备202的位置或移动性状态。动作304对应于图2中的动作2:7。

现在将描述可以在图3中的以上过程中采用的实施例的一些进一步的示例。在一个示例实施例中,移动性标准可以取决于无线设备的移动性行为,使得在无线设备202检测到移动或改变的位置时,定位相关报告是必需的,该移动或改变的位置可以由运动传感器检测,并且也可能由设备中的其它传感器检测。因此,该实施例有助于避免在设备202自前面的报告以来没有显著移动时,定位相关报告由设备202徒然地发送,这意味着设备202的最近获取的位置仍然被认为是有效的并且基本上是正确的。通过以这种方式避免不必要的报告,可以节省网络资源上的负载以及设备202中的能量消耗。

在另一示例实施例中,移动性标准可以基于无线设备202中的一个或多个传感器的能力被选择或被定义。上面描述了基于在动作2:2中提供的无线设备202的传感器能力在动作2:3中选择移动性标准。

在另一示例实施例中,传感器能力可以与传感器精度和采样频率中的至少一个相关。传感器能力可以进一步地与传感器可以进行的测量的类型相关,例如与运动、速度、光、温度、无线电信号的接收等相关的测量。

在另一示例实施例中,网络节点200可以通过向无线设备202发送移动性标准来在动作300中执行该请求。可替代地,移动性标准可以已经在无线设备202中被预先配置,例如在注册过程等中。在无线设备202具有预先配置的移动性标准时,网络节点200可以在动作300中向无线设备202发送更新的移动性标准以替换预先配置的移动性标准也是可能的。

在另一示例实施例中,在动作302中从设备202接收的定位相关报告可以包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。稍后将在下面描述移动性状态的一些示例。

在另一示例实施例中,在动作302中接收的定位相关报告可以进一步包括由无线设备202自身计算的估计位置。因此,无线设备能够基于诸如上述技术otdoa和gnss中的任何一种中的测量的各种测量来估计无线设备的位置是可能的。

在进一步的示例实施例中,移动性标准可以包括可以与以下各项中的任一项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。例如,在这些实施例中,移动性标准可以要求上面的示例测量和参数中的一个或多个满足相应的阈值。

在一些进一步的示例实施例中,该传感器测量可以与方位、磁场强度、加速度和位移中的任何一个或多个相关。在本文中,术语磁场强度可以指磁场的强度(strength)或烈度(intensity),或者指可以以牛顿米/安培(nm/a)测量的磁通量密度b(也被称为特斯拉(t))。

可以如何根据由诸如无线设备202的无线设备执行的动作来运用解决方案的另一示例由图4中的流程图进一步地图示。尽管图4中的过程不限于图2的示例,但是现在将进一步参考图2来同样地描述该图。因此,图4图示了可以在无线设备202中执行的用于支持无线设备在无线网络中的定位的过程。在该过程中可以被使用的一些可选的示例实施例也将被描述。

第一动作400图示了无线设备202获取移动性标准,移动性标准确定是否向网络节点200提供定位相关报告,第一动作400对应于上面的动作2:4和300。在下个动作402中,无线设备202监测传感器测量,并且在另一动作404中基于所监测的传感器测量来评估所获取的移动性标准。动作402和404对应于动作2:5。

在最后的动作406中,无线设备202在移动性标准被满足时向网络节点200提供定位相关报告。提供定位相关报告可以涉及诸如根据可能已经在一个或多个预定义的时间窗上进行的若干测量来计算代表性的测量值的测量结果的一些汇编。

现在将描述可以在图4中的以上过程中采用的实施例的一些进一步的示例。在一个示例实施例中,移动性标准可以取决于无线设备的移动性行为,使得在无线设备检测到移动或改变的位置时,定位相关报告是必需的。

在另一示例实施例中,无线设备202可以向网络节点200提供一个或多个传感器的能力,如在上面的动作2:2中,这些能力可以由网络节点200用作用于选择移动性标准的基础。

在进一步的示例实施例中,传感器能力可以与传感器精度和采样频率中的至少一个相关。

在另一示例实施例中,动作400中的移动性标准可以在用于提供定位相关报告的请求中从网络节点200接收,如以上针对动作2:4所描述的。

在进一步的示例实施例中,在动作406中提供的定位相关报告可以包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。

在另一示例实施例中,在动作406中提供的定位相关报告可以进一步包括由无线设备计算的估计位置,这也已经在上面针对动作302进行了描述。

在进一步的示例实施例中,移动性标准可以包括与以下各项中的任何一项或多项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。如上面也提到过的,移动性标准可以要求上面的示例测量和参数中的一个或多个满足相应的阈值。

在一些进一步的示例实施例中,该传感器测量可以与方位、磁场强度、加速度和位移中的任何一个或多个相关。上面提到,磁场强度指示磁通量密度或磁场的强度或烈度。

图5中的框图图示了如何分别构造网络节点500和无线设备502以实现以上描述的解决方案及其实施例的详细但非限制性的示例。在该图中,网络节点500和无线设备502,或其中的相应处理电路,可以被配置为在适当的情况下根据采用本文中所描述的解决方案的示例和实施例中的任何一个来操作。具有用于以本文中描述的方式发送和接收消息和信息的适当的设备的网络节点500和无线设备502中的每一个被示为包括处理器“p”、存储器“m”和通信电路“c”。如以上所提到的,处理器p还可以被表示为处理电路。

因此,网络节点500和无线设备502中的每一个中的通信电路c包括被配置为根据实施方式使用用于通信的适当的协议来彼此通信的设备。然而,该解决方案不限于任何特定类型的消息或协议。

网络节点500例如通过单元、模块等被配置或被布置为执行图3中的流程图的动作中的至少一些,并且如下所示。进一步地,无线设备502例如通过单元、模块等被配置或被布置为执行图4中的流程图的动作中的至少一些,并且如下所示。

网络节点500被布置为支持无线设备502在无线网络中的定位。网络节点500被配置为在移动性标准被满足时请求或配置无线设备提供定位相关报告。该操作可以由网络节点500中的请求/配置模块500a执行,如动作300中所图示的。

网络节点500还被配置为从无线设备接收所请求的定位相关报告。该操作可以由网络节点500中的接收模块500b执行,如动作302中所图示的。

网络节点500被进一步配置为基于所接收的定位相关报告获取无线设备的位置或移动性状态。该操作可以由网络节点500中的获取模块500c执行,如动作304中所图示的。

无线设备502被布置为支持无线设备在无线网络中的定位。无线设备502被配置为获取移动性标准,移动性标准确定是否向网络节点提供定位相关报告。该操作可以由无线设备502中的获取模块502a执行,如动作400中所图示的。

无线设备502还被配置为监测传感器测量以评估移动性标准。该操作可以由无线设备502中的监测模块502b执行,如动作402中所图示的。可替代地,监测模块502a可以被称为评估模块。

无线设备502被进一步配置为在移动性标准被满足时向网络节点提供定位相关报告。该操作可以由无线设备502中的提供模块502c执行,如动作406中所图示的。可替代地,提供模块502c可以被称为发送模块。

关于以上提到的模块,网络节点500可以被描述为包括请求或配置模块500a,该请求或配置模块500a被配置为在移动性标准被满足时请求或配置无线设备提供定位相关报告。网络节点500进一步包括被配置为从无线设备接收所请求的定位相关报告的接收模块500b,和被配置为基于所接收的定位相关报告获取无线设备的位置或移动性状态的获取模块500c。

以类似的方式,无线设备502可以被描述为包括被配置为获取移动性标准的获取模块502a,该移动性标准确定是否向网络节点500提供定位相关报告。无线设备502进一步包括被配置为监测传感器测量以评估移动性标准的监测模块502b,和被配置为在移动性标准被满足时向网络节点提供定位相关报告的提供模块502c。

应注意的是,图5分别图示了网络节点500和无线设备502中的各种功能模块,并且本领域技术人员实际上能够使用适当的软件和硬件设备来实现这些功能模块。因此,该解决方案通常不限于所示出的网络节点500和无线设备502的结构,并且其中的功能模块可以被配置为在适当的情况下根据本公开中描述的特征、示例和实施例中的任何一个来操作。

以上描述的功能模块500a-c和502a-c可以分别在网络节点500和无线设备502中通过相应的计算机程序的程序模块来实现,计算机程序包括代码装置,在由处理器p运行该代码装置时,该代码装置使网络节点500和无线设备502执行以上描述的动作和过程。每个处理器p可以包括单个中央处理单元(cpu),或者可以包括两个或多个处理单元。例如,每个处理器p可以包括通用的微处理器、指令集处理器和/或相关的芯片组和/或诸如专用集成电路(asic)的专用微处理器。每个处理器p可以还包括用于高速缓存目的的储存器。

每个计算机程序可以由网络节点500和无线设备502中的每一个中的计算机程序产品以具有计算机可读介质并且被连接到处理器p的存储器的形式来承载。网络节点500和无线设备502中的每一个中的计算机程序产品或存储器m因此包括计算机可读介质,计算机程序例如以计算机程序模块等的形式被存储在该计算机可读介质上。例如,每个节点中的存储器m可以是闪存、随机存取存储器(ram)、只读存储器(rom)或电可擦可编程rom(eeprom),并且在替代实施例中,程序模块可以分布在各个网络节点500和无线设备502内的存储器形式的不同的计算机程序产品上。

本文中描述的解决方案可以通过计算机程序在网络节点500和无线设备502中的每一个中实施,该计算机程序包括指令,当在至少一个处理器上执行该指令时,该指令使得该至少一个处理器在适当的情况下执行根据上面的实施例和示例中的任何一个的动作。该解决方案还可以在网络节点500和无线设备502中的每一个处在包含上面的计算机程序的载体中实施,其中,该载体是电信号、光信号、无线电信号和计算机可读存储介质中的一个。

现在将描述一些进一步的示例和特征。

图6中示出了从网络节点的角度来看的过程,该过程包括由诸如以上描述的网络节点200和/或500的网络节点执行的步骤。在第一步骤600中,网络节点(通常是位置服务器)可以可选地请求接收ue的传感器能力,这可以简单到向网络提供移动行为改变。在下个可选的步骤602中,网络节点可以接收从ue返回的包含关于ue的传感器能力的信息的能力请求响应。在进一步的步骤604中,网络节点基于移动性状态指示来配置一个或多个位置信息报告触发条件。在另一步骤606中,网络节点从无线设备接收由该触发条件触发的位置信息报告。在最后的步骤608中,网络节点可能结合诸如otoda的其它定位方法、基于包含在所接收的位置信息报告中的传感器测量来估计或计算ue的相对位置或绝对位置。

图7中示出了从目标设备的角度来看的过程,该过程包括由目标设备执行的步骤,该步骤可以结合以上描述的由图6中的网络节点执行的步骤来执行,如以下所指示的。术语“目标设备”在本领域中通常用于表示要被定位的无线设备。该示例中的目标设备对应于以上描述的无线设备202和/或502。在第一步骤700中,目标设备可以可选地从网络节点接收对传感器能力的请求,这对应于上面的步骤600。传感器能力可以包括与基于移动性状态指示触发的位置信息报告相关联的一部分。

在下个可选的步骤702中,目标设备可选地向网络节点提供目标设备的传感器能力,这对应于上面的步骤602。在另一步骤704中,目标设备从网络节点接收用于发布位置信息报告的触发条件,其中,触发条件基于移动性状态指示,这对应于上面的步骤604。

在另一步骤706中,目标设备监测传感器测量并且(例如,重复地或定期地)基于所监测的传感器测量来评估报告触发标准,例如以满足某些触发延迟。在另一步骤708中,如果触发条件被满足,则设备将汇编位置信息并且生成包括与所配置的定位方法相关联的该位置信息的位置信息报告。

在步骤710中,具有汇编的位置信息的触发的位置信息报告被最终发送到网络节点,这对应于上面的步骤606。由此,网络节点能够使用接收到的位置信息报告作为用于确定目标设备的位置的基础,如针对上面的步骤608所描述的。

在替代实施例中,设备可以在触发条件时代替步骤708和710被配置为在触发条件时记录位置信息。在日志由于日志大小或日志时间而被认为完成时,或者在从网络节点接收到请求时,位置信息的汇编的日志可以被批量地发送到网络节点。

在使用本文中的示例时可以获得的一些优点如下。

imu传感器测量可以被集成以报告位置测量。传感器具有检测移动性的能力,这可以有助于定位估计。包括传感器触发的报告作为定位的基础提供了更有效的定位,因为当设备正在移动(改变位置)时报告被发送,但是当设备保持在相同的位置时报告不被发送。各种阈值可以由网络配置,以实现频繁的位置估计与报告开销之间的适当的权衡。使用所配置的阈值,设备可以检查其测量是否满足标准,并且因此触发位置报告。类似地,ue还可以检查在持续时间期间测量中的变化,并且在大的变化的情况下可以触发位置报告。

有一些用例主要涉及需要运动检测和相对位移的估计的资产跟踪。例如,在从商店的一个部分移动到商店的另一个部分时,跟踪库存中存储的资产。在这种情况下,代替周期性地使用昂贵的gps或计算量大的otdoa方法,imu传感器可以被使用以触发gps或otdoa方法。而且,它可以被使用以触发简单的基于imu传感器的定位方法。

现在将更详细地描述可以如何进行和使用以上提到的传感器测量的一些示例。

如以上所描述的,imu传感器可以用于寻找方位、速度估计和所谓的行人航位推算(pdr)。imu传感器能够以高采样率提供原始的测量。

鉴于以上,可以进行以下定义:

原始的imu测量——在ue绑定的坐标系中直接从imu获取的测量,其可以具有若干个100hz的采样率。

处理的imu测量——原始的imu测量的任何处理,以过滤、下采样和提取原始的测量的统计特性,仍然与ue坐标系相关。

变换的imu测量——原始的imu测量的任何处理,以与地球有界坐标系融合和对准。

相同的分类也可以用于诸如气压传感器、光传感器、湿度传感器等的其它类型的传感器。

在一般意义上,在特定时间t对传感器i的传感器测量被表示为yit。根据该测量,可以确定在诸如来自集合sτ:{τ使得t-t≤τ≤t}的所有时间的时间窗t上的若干个传感器测量的统计特性。

典型的相关统计特性包括平均和方差(或标准偏差),但是也可以考虑其它的统计特性。

例如,n个最近的值的平均值可以被确定为:

并且,方差(无偏估计)可以被确定为:

以上描述的移动性标准中的触发条件可以基于传感器测量的特定统计特性或者基于传感器测量的特定统计特性的两个连续的实例之间的相对差来制定。

示例:

大于阈值的平均值

○可以用触发时间来增强,意味着触发条件对于所配置的时间窗上的平均的连续的实例必须被满足

○还可以用离开条件以或者暂停用触发条件启动的周期性报告,或者仅仅发信号通知触发条件不再被简单地满足

大于阈值的方差值可以类似于上面的平均值

大于阈值的相对平均

○可以用触发时间来增强,其中将长期平均与最近的值进行比较。

其中,t0大于t,并且另外,对于连续的t需要满足该标准。

○可以通过如上面的具有滞后的离开条件来扩展。

现在将更详细地描述可以如何确定和使用上面提到的移动性状态的一些示例。

如以上所描述的,ue可以具有可以提供指示ue是否已经改变其移动性状态的信息的某些传感器。移动性状态的改变可以例如包括:

-从稳定模式变为移动模式,并相反(即,反之亦然)。

-从非常低的速度模式变为非常高的稳定模式,并相反(反之亦然)。

-以一定(例如,90、180、…)程度的方向差改变方向。

可以进一步存在或者由网络节点定义或者在ue处已知的特定标准,以定义每个移动性状态改变。这样的标准对应于以上提到的移动性标准,以下其将被称为“移动性状态改变标准”。

因此,ue可以具有感测或“读取”各种条件的传感器,这些条件以某种方式指示位置的改变,这基本上取决于移动性状态改变标准是否被满足。例如,移动性状态改变准则可以基于与各种阈值相关的以下标准中的一个或多个:

方位方差>方位阈值

磁场强度方差>磁场强度阈值

加速度方差>加速度阈值

位移方差>位移阈值

平均方位>平均方位阈值

平均磁场强度>平均磁场强度阈值

平均加速度>平均加速度阈值

平均位移>平均位移阈值

可以在某个时间窗t期间测量上面的传感器读数,可以从例如位置服务器的网络节点向无线设备发信号通知该时间窗。进一步地,时间窗可以被定义为utc持续时间,或者一定数量的lte子帧,或者一定数量的传感器样本。在另一实施例中,该标准应该针对多于n个时间窗被满足。

在ue报告其传感器能力的情况下(如在动作2:2和702中),移动性状态改变标准可以基于所接收的能力。传感器能力可以例如包括每个传感器的精度,并且网络基于所接收的能力来调谐例如变化阈值。该能力还可以包括每个传感器的采样频率,这可以被用于选择时间窗t。

在一个示例中,可以说,一旦移动性状态改变标准被满足,ue就可以基于诸如a-gnss、otdoa或ecid的任何定位方法来报告位置。定位报告可以进一步附加有诸如位移和加速度的测量的imu结果。

在另一示例中,一旦移动性状态改变标准被满足,ue可以仅基于诸如位移和加速度的测量的imu结果来报告位置。

现在将概述可以如何在信令方案中支持上面的特征。

在一种可能性中,可以说,用于位置报告的新的触发已经根据3gpp36.355(基于v14.4.0)被定义如下。在3gpp36.355(基于v14.4.0)的以下摘录中,对实现本文中的实施例中的至少一些有用的部分加下划线。

commoniesrequestlocationinformation

commoniesrequestlocationinformation携带用于请求位置信息lpp消息类型(requestlocationinformationlppmessagetype)的公共ie。

每个定位方法具有特定触发条件的细节将被包括在特定的请求位置信息(requestlocationinformation)信息元素中的单独部分中。例如,对于具有公共的移动性状态改变标准(mobilitystatuschangecriterion)的传感器。另一种选择是针对每种传感器类型的特定标准。

-传感器-请求位置信息(sensor-requestlocationinformation)

ie传感器-请求位置信息(sensor-requestlocationinformation)由位置服务器使用以从目标设备请求用于基于传感器的方法的位置信息。

还可以针对其它定位方法,例如gnss,定义相应的移动性状态改变标准。

-a-gnss-请求位置信息(a-gnss-requestlocationinformation)

iea-gnss-请求位置信息(a-gnss-requestlocationinformation)由位置服务器使用以使用gnss从目标设备请求位置信息。

其中,设备可以被配置为如果该设备已经基于gnss定位估计移动得足够多,则触发位置信息报告。

虽然已经参考具体的示例性实施例描述了解决方案,但是该描述通常仅旨在说明本发明的构思,而不应被认为是限制该解决方案的范围。例如,术语“网络节点”、“无线设备”、“定位相关报告”、“移动性标准”、“传感器能力”和“传感器测量”已经遍及本公开被使用,尽管也可以使用具有本文描述的特征和特性的任何其它对应的实体、功能和/或参数。该解决方案可以根据所附权利要求来实施。

现在将概述解决方案的一些编号的示例实施例,作为可以如何配置装置以分别实施以上描述的网络节点和无线设备的进一步的建议。

实施例1:一种网络节点(500),被布置为支持无线设备(202)在无线网络中的定位,网络节点(500)包括处理电路,处理电路被配置为:

-在移动性标准被满足时,请求或配置(500a)无线设备提供定位相关报告;

-从无线设备接收(500b)所请求的定位相关报告;并且

-基于所接收的定位相关报告获取(500c)无线设备的位置或移动性状态。

实施例2:根据实施例1所述的网络节点(500),其中,移动性标准取决于无线设备的移动性行为,使得在无线设备检测到移动或改变的位置时,定位相关报告是必需的。

实施例3:根据实施例1或2所述的网络节点(500),其中,网络节点(500)中的处理电路被配置为基于无线设备中的一个或多个传感器的能力来选择或定义移动性标准。

实施例4:根据实施例3所述的网络节点(500),其中,传感器能力与传感器精度和采样频率中的至少一个相关。

实施例5:根据实施例1至4中的任一项所述的网络节点(500),其中,网络节点(500)中的处理电路被配置为通过向无线设备发送移动性标准来请求或配置无线设备提供定位相关报告。

实施例6:根据实施例1至5中的任一项所述的网络节点(500),其中,定位相关报告包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。

实施例7:根据实施例1至6中的任一项所述的网络节点(500),其中,定位相关报告包括由无线设备计算的估计位置。

实施例8:根据实施例1至7中的任一项所述的网络节点(500),其中,移动性标准包括与以下各项中的任一项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。

实施例9:根据实施例8所述的网络节点(500),其中,该传感器测量与方位、磁场强度、加速度和位移中的任何一个相关。

实施例10:一种无线设备(502),被布置为支持无线设备在无线网络中的定位,无线设备(502)包括处理电路,处理电路被配置为:

获取(502a)确定是否向网络节点提供定位相关报告的移动性标准;

-监测(502b)传感器测量以评估移动性标准;并且

-在移动性标准被满足时,向网络节点提供(502c)定位相关报告。

实施例11:根据实施例10所述的无线设备(502),其中,移动性标准取决于无线设备的移动性行为,使得在无线设备检测到移动或改变的位置时,定位相关报告是必需的。

实施例12:根据实施例10或11所述的无线设备(502),其中,无线设备(502)中的处理电路被配置为向网络节点提供无线设备中的一个或多个传感器的能力。

实施例13:根据实施例12所述的无线设备(502),其中,传感器能力与传感器精度和采样频率中的至少一个相关。

实施例14:根据实施例10至13中的任一项所述的无线设备(502),其中,无线设备(502)中的处理电路被配置为在用于提供定位相关报告的请求中从网络节点接收移动性标准。

实施例15:根据实施例10至14中的任一项所述的无线设备(502),其中,定位相关报告包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。

实施例16:根据实施例10至15中的任一项所述的无线设备(502),其中,定位相关报告包括由无线设备计算的估计位置。

实施例17:根据实施例10至16中的任一项所述的无线设备(502),其中,移动性标准包括与以下各项中的任一项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。

实施例18:根据实施例17所述的无线设备(502),其中,该传感器测量与方位、磁场强度、加速度和位移中的任何一个相关。

实施例19:一种网络节点(500),被布置为支持无线设备(202)在无线网络中的定位,网络节点(500)包括:

-请求或配置模块(500a),被配置为在移动性标准被满足时,请求或配置无线设备提供定位相关报告;

-接收模块(500b),被配置为从无线设备接收所请求的定位相关报告;和

-获取模块(500c),被配置为基于所接收的定位相关报告获取无线设备的位置或移动性状态。

实施例20:根据实施例19所述的网络节点(500),其中,移动性标准取决于无线设备的移动性行为,使得在无线设备检测到移动或改变的位置时,定位相关报告是必需的。

实施例21:根据实施例19或20所述的网络节点(500),其中,网络节点(500)被配置为基于无线设备中的一个或多个传感器的能力来选择或定义移动性标准。

实施例22:根据实施例21所述的网络节点(500),其中,传感器能力与传感器精度和采样频率中的至少一个相关。

实施例23:根据实施例19至22中的任一项所述的网络节点(500),其中,网络节点(500)被配置为通过向无线设备发送移动性标准来请求或配置无线设备提供定位相关报告。

实施例24:根据实施例19至23中的任一项所述的网络节点(500),其中,定位相关报告包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。

实施例25:根据实施例19至24中的任一项所述的网络节点(500),其中,定位相关报告包括由无线设备计算的估计位置。

实施例26:根据实施例19至25中的任一项所述的网络节点(500),其中,移动性标准包括与以下各项中的任一项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。

实施例27:根据实施例26所述的网络节点(500),其中,该传感器测量与方位、磁场强度、加速度和位移中的任何一个相关。

实施例28:一种无线设备(502),被布置为支持无线设备在无线网络中的定位,无线设备(502)包括:

-获取模块(502a),被配置为获取确定是否向网络节点提供定位相关报告的移动性标准;

-监测模块(502b),被配置为监测传感器测量以评估移动性标准;和

-提供模块(502c),被配置为在移动性标准被满足时,向网络节点提供定位相关报告。

实施例29:根据实施例28所述的无线设备(502),其中,移动性标准取决于无线设备的移动性行为,使得在无线设备检测到移动或改变的位置时,定位相关报告是必需的。

实施例30:根据实施例28或29所述的无线设备(502),其中,无线设备(502)被配置为向网络节点提供无线设备中的一个或多个传感器的能力。

实施例31:根据实施例30所述的无线设备(502),其中,传感器能力与传感器精度和采样频率中的至少一个相关。

实施例32:根据实施例28至31中的任一项所述的无线设备(502),其中,无线设备(502)被配置为在用于提供定位相关报告的请求中从网络节点接收移动性标准。

实施例33:根据实施例28至32中的任一项所述的无线设备(502),其中,定位相关报告包括无线设备的移动性状态和/或诸如传感器测量和/或对接收的信号的测量的由无线设备执行的测量。

实施例34:根据实施例28至33中的任一项所述的无线设备(502),其中,定位相关报告包括由无线设备计算的估计位置。

实施例35:根据实施例28至34中的任一项所述的无线设备(502),其中,移动性标准包括与以下各项中的任一项相关的一个或多个阈值:检测到的移动的大小、在多个时间窗上执行的传感器测量的方差和/或平均值、自先前的定位相关报告以来的持续时间和在特定时间段期间的先前的定位相关报告的数目。

实施例36:根据实施例35所述的无线设备(502),其中,该传感器测量与方位、磁场强度、加速度和位移中的任何一个相关。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1