偏光分离装置及其制造方法、投射型显示装置的制作方法

文档序号:7574356阅读:346来源:国知局
专利名称:偏光分离装置及其制造方法、投射型显示装置的制作方法
技术领域
本发明涉及一种偏光分离装置及其制造方法,以及使用该偏光分离装置的投射型显示装置。
图26是表示现有的偏光分光计的轴测图。它是在三角柱状的棱镜上蒸镀偏光分离膜与铝反射膜之后,进行粘接而形成的。即棱镜71、72、73、74是BK7材质的研磨品,四个一组重合成一单位而构成整体。在棱镜72与棱镜71的接触面形成蒸镀无机物薄膜方式所形成的偏光分离膜75,并且在棱镜73的同棱镜74接触的接触面上蒸镀着铝反射膜76,棱镜71、72、73、74之间分别以粘接剂交替粘合。光线77进入棱镜72之后,在偏光分离膜75,P偏光成份面对着光入射面作为透过光77通过棱镜71射向外面。另一方面,S偏光成份在偏光分离膜75反射后进入棱镜73,再经由反射膜76反射而作为S偏光光线78向外射出。如上所述,以前是利用具有偏光分离膜的棱镜与具有反射膜的棱镜重合粘接的结构,形成偏光分光计。
在现有的制造方法中,必须将三角棱镜一个一个研磨,然后蒸镀、粘接,所以不能将偏光分离膜与反射膜的重合构造细小化而得到整体薄化的构造。其原因在于,若要将重合结构变细,必须作成较细的棱镜,而因棱镜研磨的关系使棱镜缺少棱线,因而在该处光不透过,因此造成亮度低的问题。并且,为使棱镜高度一致,所以棱镜越薄其加工就越困难。而且,会产生在粘接时角度偏离、光的入射面与射出面凹凸不平而出现高度差的问题。因此,因高度差而使突出的棱线容易破损,并导致很难在光的出射、入射面上设置其它光学元件。并且,若粘接各棱镜时发生角度偏离,则由于棱镜而产生入射光与射出光的光轴改变的问题。本发明正是为解决上述问题而提出的解决对策。
为实现上述目的,根据本发明的第一种偏光分离装置的制造方法,其中所述偏光分离装置用于将具有散乱偏光方向的光分离成具有两种偏光成份的光,所述制造方法包括形成具有第一基板、偏光分离层、第二基板、反射层的重合结构的基板区块的工序;以及,按与所述基板表面的规定角度切割所述基板区块的工序。
根据上述方法,不需要分别研磨偏光分离膜与反射膜的各表面。并且,重复的偏光分离层与反射层的平行度比由各四面体棱镜粘接而成的结构造要高。而且,通过切出基板区块,可大量且容易地制造出相同结构、相同特性的偏光分离装置。
在上述第一种方法中,形成所述基板区块的工序包括在所述第一基板上形成所述偏光分离层的步骤;在所述第二基板上形成所述反射层的步骤;以及将已形成所述偏光分离层的所述第一基板和已形成所述反射层的所述第二基板交替叠合的步骤。这样可容易地形成基板区块。
在上述第一种方法中的将已形成所述偏光分离层的所述第一基板和已形成所述反射层的所述第二基板交替叠合的步骤中,是按切割所述基板区块的角度使端面错开地将所述第一基板和所述第二基板交替叠合。
若将基板的端面错开叠合,则在切割基板区块时,可减少基板的浪费。
并且,在上述第一种方法中,形成所述基板区块的工序包括在所述第一基板上形成所述偏光分离层的步骤;在所述第二基板上形成所述反射层的步骤;将一个形成有所述偏光分离层的所述第一基板和一个形成有所述反射层的所述第二基板叠合而形成基本区块的步骤;以及将多个所述基本区块叠合的步骤。这样,只要将多个基板区块重叠,即可容易地形成所期望尺寸的基板区块。
在将多个所述基本区块叠合的步骤中,是按切割所述基板区块的角度将端面错开而叠合。这样,在切割基板区块时可减少基板的浪费。
在按与所述基板表面的规定角度切割所述基板区块的步骤之后,还包括研磨所述切割面的步骤。这样,被研磨的两个切割面成为平坦的光入射面和光出射面。
再者,在上述第一种方法中,形成所述基板区块之后,还包括在构成所述基板区块两表面的所述基板中至少一个基板上叠合虚置基板的步骤。这样,由于防止最外部的破损,因此可减少通过最外部的光的损失。
并且,在上述第一种方法中,所述第一基板与所述第二基板是研磨玻璃板。而且,所述研磨玻璃板是白板玻璃或无碱玻璃。或者,所述第一基板和所述第二基板是浮法玻璃。若使用研磨玻璃板或浮法玻璃,可容易且低成本地提高偏光分离层与反射层的重复精度。
而且,在上述第一种方法中,所述第一基板和所述第二基板之中的一个是带颜色的透光性基板,另一个是无色透光性基板。这样,从两种基板颜色,可容易地区别偏光分离层与反射层的位置。
且,所述反射层是由铝薄膜构成,或者由铝薄膜和电介质薄膜构成,或是由电介质薄膜构成。
本发明的第一种偏光分离装置是由上述的偏光分离装置的制造方法中任一方法制成。根据这种偏光分离装置,可根据基板的厚度和数量设定偏光分离层与反射层的重复结构。能够以细小重复将许多重复结构形成在薄基板中。由于偏光分离层与反射层的平行度决定于基板的精度,所以可容易地得到高精准的平行度。也可以构成精度高且具规则的重复排列。光入射面与射出面也平整,所以可容易地进行粘接相位差板或形成反射防止膜等处理。
在所述第一种偏光分离装置中,在所述偏光分离装置的光出射面一端设置偏光转换器,所述偏光变换器用于将被所述偏光分离层分离的具有两种偏光成份的光转换成具有一种偏光成份的光。所以,入射具有二种偏光成份的光后,射出具有一种偏光成份的光。
所述偏光转换器是与由所述第一基板形成的光出射面和由所述第二基板形成的光出射面中任一面相对应而设置的λ/2相位差板。这样,可以射出一种直线偏光。
在上述第一种偏光分离装置中,在光入射面和所述光出射面的至少一侧设置反射防止膜。所以在表面上因反射而出射的光的损失会减少。
本发明的第一种投射型显示装置包括光源;复合光学系统,由第一透镜板与第二透镜板构成,用于将来自所述光源的光分割成多个中间光束;上述的任一偏光转换装置;调制器,对来自所述偏光转换装置的出射光进行调制;以及投射光学系统,投射由所述调制器所调制的光。
本发明的第二种投射型显示装置包括光源;复合光学系统,由第一透镜板与第二透镜板构成,用于将来自所述光源的光分割成多个中间光束;如权利要求16-18所述的偏光转换装置;色分离光学系统,将来自所述偏光转换装置的出射光分离成多种颜色的光;多个调制器,分别调制由所述色分离光学系统分离的多种颜色的光;合成光学系统,合成由所述调制器调制的光;以及投射光学系统,投射由所述合成光学系统合成的光。
且,所述偏光分离层的透过率特性被调整为,当与入射到所述偏光分离层的光的光谱的各色光的峰值相对应的波长的光,以规定范围内的入射角之差入射时,具有与所述各色光的峰值对应的波长的光的透过率之差在约5%以内。
本发明的第二种偏光分离装置,它包括基板区块,包含光入射面、与所述光入射面大致平行的光出射面、在与所述光入射面和所述光出射面成规定角度的多个界面上依次粘接的多个透光性基板、以及在所述多个界面上交替设置的多个偏光分离层与多个反射层;位置识别部,设置于所述基板区块侧面中的与所述多个界面大致垂直地形成的两个侧面中至少一方,可在对所述偏光分离装置进行定位时使用。
根据上述第二种偏光分离装置,由于在偏光分离装置的侧面设有位置识别部,因此在将偏光分离装置使用到其它装置中时,可比较准确地进行定位。
在上述第二种偏光分离装置中,所述位置识别部设置在,和邻接于具有所述位置识别部的所述两个侧面的另两个侧面的距离大致相等的位置。这样,可提高光学元件中部的定位精度。
或者,所述位置识别部设置在,和邻接于具有所述位置识别部的所述两个侧面的另两个侧面的距离不等的位置。所以可从位置识别部来判断偏光分离装置的方向。
并且,所述位置识别部可以是设置在所述侧面上的突出部。而且,所述位置识别部也可以是设置在所述侧面上的凹部。或者,所述位置识别部也可以是所述侧面上具有其它不同的特定颜色的部分。
本发明的第二种偏光分离装置的制造方法,包括形成复合板材的工序,通过交替粘接多个透光性基板的多个界面,而形成在所述多个界面上具有交替设置的多个偏光分离层与多个反射层的复合板材;生成基板区块的工序,通过按与所述多个界面的规定角度切割所述复合板材,而生成具有相互大致平行的光入射面与光出射面的基板区块;研磨所述基板区块的所述光入射面与所述光出射面;所述形成复合板材的工序还包括形成位置识别部的步骤,所述位置识别部设置在所述基板区块侧面中的与所述多个界面大致垂直地形成的两个侧面之中至少一个上,可在对所述偏光分离装置定位时使用。可利用第二种方法制造上述第二种偏光分离装置。
在上述第二种制造方法中,还包括研磨所述基板区块的所述光入射面与所述光出射面的工序。根据上述方法,可容易地研磨成为偏光分离装置的基板区块的光入射面与出射出面,所以可容易地制造偏光分离装置。
在上述第二种制造方法中,所述形成复合板材的工序还包括通过将所述多个透光性基板的至少一部分从其它透光性基板错开而形成作为所述位置识别部的突出部的步骤。这样,可容易且高精度地形成作为位置识别部的突出部。
本发明的偏光转换装置,使用了上述第二种制造方法所制成的任一偏光分离装置,并且,在所述偏光分离装置的所述光出射面一侧设置偏光转换器,所述偏光转换器用于将由所述偏光分离层分离的具有两种偏光成份的光转换成具有一种偏光成份的光。
所述偏光转换器是与所述基板构成的所述光出射面中的、由每隔一个的基板构成的所述光出射面相对应而设置的λ/2相位差板。并且,在所述光入射面与所述光出射面中至少一侧设置反射防止膜。
本发明的第三种投射型显示装置,包括光源;复合光学系统,由第一透镜板和第二透镜板构成,将来自所述光源的光分割成多个中间光束;本发明的第二种偏光转换装置;调制器,对来自所述偏光转换装置的出射光进行调制;以及投射光学系统,投射由所述调制器调制的光。
本发明的第四种投射型显示装置,包括光源;复光学系统,由第一透镜板和第二透镜板构成,将来自所述光源的光分割成多个中间光束;本发明的第二种偏光转换装置;色分离光学系统,将来自所述偏光转换装置的出射光分离成多种颜色的光;多个调制器,分别对由所述色分离光学系统分离的多种颜色的光进行调制;合成光学系统,合成来自所述调制器所调制的光;以及投射光学系统,投射由所述所合成光学系统所合成的光。
为使本发明的上述和其它目的、特征、和优点能更明显易懂,下面特例举最佳实施例,并配合附图进行详细说明。
附图的简要说明

图1是表示本发明第一实施例的偏光分光计的制造方法的立体图;图2(A)是图1中的基板区块的平面图;图2(B)是图1中的基板区块的正面图;图3(A)是本发明第一实施例的偏光分光计的立体图;图3(B)是本发明第一实施例的偏光分光计的截面图;图4是本发明第一实施例的偏光分光计与使用该偏光分光计的偏光转换装置的一实施例的截面图;图5是在图4所示的偏光分光计上粘接λ/2相位差板的立体图;图6是本发明第二实施例的偏光分光计的制造方法的立体图;图7(A)是图6中的玻璃板区块的平面图;图7(B)是图6中的玻璃板区块的正面图;图8(A)、8(B)、8(C)是表示利用沿图7(A)的84a、84b切割面切出的区块制造液晶投影机用偏光分离装置的工序说明图;图9是本发明第二实施例的偏光分光计的立体图;图10是本发明第三实施例的偏光分光计的制造方法的立体图;图11(A)是图7(A)和7(B)中的玻璃板区块的平面图;图11(B)是图7(A)和7(B)中的玻璃板区块的正面图;图12(A)、12(B)、12(C)是表示利用沿图8(A)的328a、328b切割面所切出的区块制造液晶投影机用偏光分离装置的工序说明图;图13是本发明第三实施例的偏光分光计的立体图;图14(A)、14(B)、14(C)是虚置玻璃324的效果示意图;图15是表示本发明第四实施例的偏光分光计的制造方法的立体图;图16(A)是图15玻璃板区块的平面图;图16(B)是图15玻璃板区块的正面图;图17是本发明第四实施例的偏光分光计的立体图;图18(A)、18(B)、18(C)是表示偏光分光计的光入射面与反射面错误所产生不当结果的说明图;图19是配置有本实施例的偏光分光计阵列的偏光照明装置的主要部分的概略结构平面图;图20是具有偏光照明装置500的投射型显示装置800的主要部分的概略结构示意图;图21是本发明的投射型显示装置另一实施例的立体图;图22是本发明的偏光分光计的实施例的立体图;图23是表示射入偏光分离膜的光入射角的说明图;图24是表示与入射光谱和入射角度对应的偏光分离膜的透过率特性的曲线图;图25是表示与入射光谱和入射角度对应的另一偏光分离膜的透过率特性的曲线图;图26是现有偏光分光计的立体图。
下面说明本发明的偏光分离装置(也称为光学元件)的制造方法及其构造的实施例。
图1是表示本发明第一实施例的偏光分光计的制造方法的立体图。在蓝浮法玻璃板1上蒸镀由无机物质形成的多层薄膜结构的偏光分离膜2。并且,在蓝浮法玻璃板4上蒸镀铝反射膜。所述铝反射膜5通过在与蓝浮法玻璃板4之间蒸镀一层以上的无机质薄膜而提高反射率。通过利用粘接剂3将两片蓝浮法玻璃板1、4粘合,而形成基本构成玻璃体7,同样地形成基本构成玻璃体8、9,并使其端面错开用粘接剂6加以粘合,这样将多个基本构成玻璃体粘合而成的称为玻璃板区块19(glass block)。在玻璃板区块19的两面分别设置着后述的虚置玻璃(dummy glass)。
在本说明书中,将玻璃板和虚置玻璃等这样的板状透光性构件称为“透光性基板”或简称为“基板”。而且,将由玻璃板和虚置玻璃粘接所形成的玻璃板区块19和由此切得的区块也称为“基板区块”。
图2(A)、2(B)是图1所示的基板区块的平面图与正面图。所示玻璃板区块是由切割机沿切割面14、15、16切割而得的。在图2中省略了粘接剂层3、偏光分离膜2与反射膜5。由图1可知,本实施例的切割面14、15、16与偏光分离膜2、反射膜5成45°切割。最后,通过将切割面进行研磨,可得到偏光分光计。图3(A)是这样而得到的偏光分光计20的立体图,图3(B)是其平面图。若将偏光分光计20的两端部切割,形成近似成长方体形状,则在组装进投射型显示装置的光学装置时方便。
在所示偏光分光计20之中偏光分离面和反射面与切割面14、15成45°角地并列。根据该结构,偏光分离膜2与铝反射膜5的间隔是由蓝浮法玻璃板1、4的厚度决定。即,通过使用薄板可形成间距非常小的偏光分光计。这是利用现有的三角棱镜粘接法所无法达到的。而且,在本实施例中的切割面在最后工序中被研磨,所以可确保光入射面与射出面的高平面性。即,在粘接三角棱镜时发生相互偏离、在作为切割面14、15、16的光出射入射面上产生凹凸、粘接剂漏出而污染光入射面等问题都可获得解决。其结果,当光线从与切割面14、15、16垂直的方向入射进偏光分光计20时,光轴可保持非常直,不会发生光的散射。另外,使用蓝浮法玻璃板基材时,偏光分离膜2与铝反射膜5的间隔可由玻璃的厚度来控制,因此若用相同尺寸的浮法玻璃制作玻璃板区块19,则能够使偏光分离膜与铝反射膜之间的间隔均等。因此,若如后述地在液晶投影机(projector)等投射型显示装置中采用本实施例的偏光分光计,则偏光分离膜与反射膜的重复位置精密度高,平行性也好,所以可提高光的偏光分离效率。
并且,在本实施例中用粘接剂11、13粘接着用于防止破损的虚置玻璃10、12,是以。所示虚置玻璃10、12用于防止在切割玻璃板区块19时切得的板状偏光分光计的玻璃的锐角部发生破损。即,通过虚置玻璃的破损来防止蓝浮法玻璃板的破损。
而且,根据本实施例的制造方法,能够以相同的结构造同时制造许多具有相同精度的偏光分光计。即,通过用切割机器沿切割面14、15、16将玻璃板区块19切割,可得到具有同样结构、相同精度的偏光分光计。若这样地使用根据本实施例的制造方法,可大量地生产均质的偏光分光计。粘接的棱镜越细,玻璃板的粘接数越多,则以上的效果越有效。在本实施例中,虽然切割面14、15、16与偏光分离膜2、反射膜5成45°角进行切割,该角度并不限定于45°。
此外,在本实施例中使用蓝浮法玻璃板,因此不须研磨蒸镀面。这是因为直接使用元件而能达到精度。与现有的三面研磨的三角棱镜粘接的制造方法相比较,本实施例可减低成本。并且,在切割与研磨时玻璃的破损也只发生在最外围,所以具有使光损失变小的优点。而且,蒸镀多层薄膜时选用大尺寸玻璃进行蒸镀,因此安装在装置上和检查等变得容易,从而可得到品质较佳的蒸镀层。若使用研磨玻璃板代替蓝浮法玻璃板,则可进一步提高精度。
在本实施例中,先通过两片玻璃板进行粘接而得到基本构成玻璃体7、8、9,因此可得到品质良好的偏光分光计。这是因为可以用目视的方式查看有无气泡,或者可将粘接剂均匀硬化。通过所示基本构成玻璃体的光是主要的,而在邻接的基本构成玻璃体之间所反射的光原本就是无用的。基本构成玻璃体与基本构成玻璃体之间的接合,有时也会由于存在多层铝反射膜而无法确认是否有气泡,粘接时也会产生斑点。但是,即使在此处有气泡17和斑点18也可,只要接合着即可。即,根据本实施例的制造方法,可确保基本构成玻璃体内的接合质量,所以偏光特性极佳。
反射膜5虽可以只使用铝膜来形成,但如本实施例所示地使用铝膜和电介质多层膜(电介质薄膜)来形成反射膜5,能够提高其反射率约3%至5%的目的。这样,在提高光利用效率的同时,降低反射膜5的光吸收率,从而抑制偏光分光计的发热并提高可靠性。
图4是本发明的偏光分光计的另一实施例和使用该偏光分光计的偏光转换装置的截面图。在图3所示的偏光分光计中使用的是蓝浮法玻璃板1、4,但本实施例是采用白玻璃板22与蓝玻璃板24。23是偏光分离膜,是将两种不同的无机质在白玻璃板22上蒸镀若干层而形成的。25是铝反射膜,蒸镀在蓝玻璃板24上。这些被用粘接剂35而粘接着。蒸镀有偏光分离膜23的白板板璃22与蒸镀有铝反射膜25的蓝玻璃板24依次由粘接剂21进行粘接而构成整体的偏光分光计36。如上所述,所述偏光分光计36的制造方法,是将具有偏光分离膜23的大尺寸平板状白玻璃板22和具有铝反射膜25的大尺寸平板状蓝玻璃板24相互粘接后,再斜对着所述粘接面斜方向进行切割而制成板状区块,再将切割面研磨。因此,本实施例的偏光分光计36的特征是在白玻璃板22与蓝玻璃板24的切割面上没有高度差地连接着形成一体。精度虽然取决于白玻璃板22与蓝玻璃板24,但可实现极高的精度。通常是玻璃板厚度越薄则厚度的精度也越高,所以偏光分离膜23与铝反射膜25的间隔越小,偏光分光计36的厚度越薄,则精度越高。即能够得到薄且精度高的偏光分光计。
31、32是为防止光在表面反射而由无机物质薄膜在低温下形成的反射防止膜。通过将反射防止膜31、32分别低温形成在偏光分光计36的光入射面与光出射面上,从而防止在形成薄膜时粘接剂21、35的粘接力变弱而导致玻璃板之间的剥落或偏离。因反射防止膜31、32是在低温下形成的,所以可实现在表面上没有光损失的结构。在构成偏光分光计36的蓝玻璃板下表面(光出射面)上设有λ/2相位差板26。低温生产的反射防止膜32是在蓝玻璃板24上粘接所述λ/2相位差板26后形成的。
由偏光分光计36、选择性地设置的λ/2相位差板26、以及矩形状透镜组33,构成将具有散乱偏光轴的光线(以下称为“散乱偏光”)转换成具有一个方向偏光轴的光线的偏光转换装置。对该系统进行说明。透镜组33是距白玻璃板22与蓝玻璃板24一个一个地粘接成的区块研磨面有相同间隔的透镜的组合。当光入射到透镜组33中时,产生折射而如光27那样在白玻璃板22的研磨面上聚集,由于在所述研磨面上有反射防止膜31,所以在此光线没有损失,几乎所有的光入射到白玻璃板22内。然后由偏光分离膜23将光分离成P偏光29与S偏光28。S偏光28被铝反射膜25反射后通过反射防止膜32射出。λ/2相位差板26的光轴设定成与P偏光的偏光轴成45°角。所以,P偏光29的偏光轴在λ/2相位差板26转90度而成为具有与S偏光28相同光轴的S偏光30。如上所述,根据本实施例可以由散乱的偏光27得到偏光轴一致的偏光28、30。如上所述地,在本实施例中,将偏光分光计36与透镜组33及λ/2相位差板26相组合,或在表面上设置低温形成的反射防止膜31、32,从而实现由散乱的偏光有效地获得一种偏光的偏光转换装置。
本实施例的偏光分光计36是在一侧的玻璃板上蒸镀由无机物质所形成的偏光分离膜并在另一侧玻璃板上蒸镀铝反射膜,然后进行切割与研磨,因此可根据玻璃板的厚度直至形成薄板状结构。偏光分离膜23产生的反射光所通过的光路径长的玻璃板采用白玻璃板22,从而可达到在此处抑制光吸收的效果。虽然其它玻璃板采用蓝玻璃板24,但白玻璃板22与蓝玻璃板24是容易区分的。因此,通过使位于左右最外部的玻璃板分别采用白玻璃板与蓝玻璃板,从而可容易地区分偏光分离膜与反射膜的位置。因而,当在铝反射膜25与白玻璃板22之间设置无机物质构成的薄膜用以进一步提高反射率时,可以避免将偏光分离膜和反射膜的反射面的配置颠倒而失去其原有效果。
在本实施例中,是通过粘接玻璃板后进行切割研磨而制造偏光转换装置,因此可提供间隔小的小型偏光转换装置。而且,如图5所示,当重复间隔变小时,只要使λ/2相位差板38开有长条状窗口,并将其设置在偏光分光计37光出射面侧即可。
根据如上所述的制造方法,通过以相对于粘合面的一定角度,切割由在其表面具有无机物质的多层薄膜等构成的偏光分离膜的玻璃板和在表面具有反射膜的玻璃板相互粘接而形成的玻璃板区块,从而可根据玻璃板的厚度和数量设定偏光分光计中的偏光分离膜与反射面的重复结构。即,能够通过重复多次地形成小间隔而在薄板中形成偏光分光计,并且由于各表面的平行性由玻璃板的精度所决定,所以很容易得到高平行度,同时偏光分离面与反射面的重复间隔精度也能到达很高。再者,由于光的入射面与射出面是均匀的,因此容易进行粘接相位差板、形成反射防止膜等处理。
另外,本制造方法的优点是,各偏光分离膜与反射膜不需研磨,重复形成的偏光分离膜与反射膜的平行度高于分别粘接四面体棱镜而形成的结构,偏光分离面与反射面不会破损,并且,可通过切割玻璃板而容易地做出大量的具有相同结构与相同特性的偏光分光计。再者,偏光分离膜与反射膜的蒸镀是直接在玻璃板上进行的,因此不须特殊的蒸镀方法,且容易进行膜的检测。若容易检测,则容易地检测出特性,生产也变得稳定。
并且,通过粘接一片具有偏光分离膜的玻璃板和一片具有反射膜的玻璃板而做出基本构成玻璃体,因此可减少有效光通过的、粘接中产生的气泡与粘合不均等。
而且,玻璃板采用浮法玻璃,从而能够容易且低成本地提高偏光分离膜与反射膜的重复精度。
且,通过在偏光分光计的光出射面设置统一偏光状态的偏光变换器,能够形成将散乱的偏光转换成具有相同偏光状态的偏光的偏光转换装置。若将上述的偏光转换装置应用于液晶投影机等投射型显示装置,则能够将从光源射出的光几乎完全而利用成照明光线,所以能够明显地提高其投射的画面亮度。在以上所述的例子中,是在偏光分光计的光出射面上选择性设置λ/2相位差板,但作为实现偏光转换的方法,并不限定于该方法。
再者,通过在偏光分光计的表面低温形成由无机物质薄膜构成的反射防止膜,从而能够不考虑在偏光分光计内使用的粘接剂而实现防止在表面上的光损失的结构。特别是在表面设置所述偏光转换器并粘接λ/2相位差板之后再低温形成反射防止膜,则效果更佳。
通过在两端粘接防止破损的虚置玻璃,可防止位于两端的偏光分离膜的破损。即,通过此处的光线不会成为无效。在上述的例子中是在两端设置虚置玻璃,也可以只在一侧设置。
蒸镀着偏光分离膜的玻璃板和蒸镀着反射膜的玻璃板中,其中一个采用白玻璃板或无碱玻璃,另一个则采用是有色玻璃板,从而可明确偏光分离面与反射面的位置,所以容易区分里外侧。
作为反射膜可以使用铝膜之外的材质,例如可使用电介质多层膜。若使用铝制反射膜,则于反射率部取决于光的入射角,所以从偏光分光计射出的光很难产生色斑。此外,若使用电介质多层膜(电介质薄膜)构成的反射膜,则能够提高反射率。
由光源、多个矩形透镜构成的第一透镜板、与构成所述第一透镜的多个矩形透镜板相同数量的凸透镜所形成的第二透镜板,构成复合(integrator)照明系统,通过与所述偏光转换装置组合,能够得到将从光源射出的散乱的偏光转换成具有相同偏光状态的偏光的偏光照明装置。在现有的投射型显示装置中,P偏光束或S偏光束中的任一个被设置于液晶嵌板(panel)等调制元件上的偏光板所吸收,但若使用所述偏光照明装置,则不会发生光的吸收。因此可得到光利用效率高且亮度高的投射型显示装置。
若将所述偏光转换装置与复合照明系统组合而形成液晶型投影机等投射型显示装置,可以得到没有亮斑的画面。为了进一步增加照明的均匀性和亮度,要想增加构成复合照明系统的透镜板的透镜分割数,若使用所述偏光照明装置,可容易地据此增加偏光分光计的偏光分离膜数目。即,将粘接玻璃板的厚度变薄、增加数量即可。并且,越增加偏光分离膜数目,偏光分光计自身的尺寸也越变薄,所以可更容易地配置在光学系统中。因此,若使用所述偏光转换装置,可以提供没有照明斑点且亮度高的投射型显示装置。
图6是第二实施例的偏光分光计的制造中所使用的玻璃板区块的立体图。图7(A)是其平面图,图7(B)是正面图。图6所示的玻璃板区块包括互相粘接的6个80、81和粘接在所述基本构成玻璃体两端的虚置玻璃82、84。各基本构成玻璃体80、81具有与图1所示的第一实施例的基本构成玻璃体系统的结构,所以是利用相同的制造方法制造的。
由图6和图7(B)可知,在6个基本构成玻璃体80、81中,右边第三个基本构成玻璃体在其高度方向比其它基本构成玻璃体80突出HO的高度。突出高度HO的值最好是玻璃板区块高度H(本实施例为70mm)的约3%(即本实施例为2mm)左右。
如图7(B)所示,在该玻璃板区块的上端面只有一个基本构成玻璃体81突出而形成凸部,所以在基本构成玻璃体81的下端面形成凹部。因此,在由该玻璃板区块所切得的偏光分光计中,可通过所示凸部与凹部而容易地判断其上下部。
图6与图7(A)中,在向上突出的基本构成玻璃体81的上面加上斜线,只是为了更容易看懂图。实际上,不需要添加用于与其它基本构成玻璃体易区别的特殊颜色。
通过沿切割面84a、84b切割所述玻璃板区块,能够切出一个作为偏光分光计使用的基板区块(透光性区块)。
图8是表示利用由图7(A)的切割面84a、84b所切得的基板区块制造用于液晶投影机的偏光分离装置的工序的说明图。首先,如图8(A)所示,通过将切得的基板区块的两端同光入射面85与光出射面86大致垂直地切割,而得到大致成长方体的偏光分光计89(图8(B)所示)。此时,虚置玻璃82、84的一部分被切掉,成为一部分残留在光出射面86的状态。在图8中,偏光分离膜87以实线表示,反射膜88以虚线表示。将切割后的偏光分光计89的光入射面85和光出射面86分别研磨使其光滑。图9是这样做成的偏光分光计89的立体图。
在图8(A)所述的切割中,可高精度地切割以使偏光分光计89的尺寸成为预定的设定值。此时,可以将在上方突出的基本构成玻璃体81的突出部(突起部)当作决定切割面时的基准位置。例如如图8(A)所示,可以以突出部的右端为基准,切割成其左右长度分别为为L1、L2。这样的话,所述两个长度尺寸可高精度地符合设定值。
突出的基本构成玻璃体81与其左侧的基本构成玻璃体80的界面位于偏光分光计89纵向的大致中央。若以所述突出部为基准进行切割,则可准确地进行切割,以使这些基本构成玻璃体81、80的界面处于偏光分光计89中央的预定位置。
普通光源的中心的照度较高,所以通过偏光分光计89中央的光通量最大。因此,偏光分光计的中央部分的偏光分离膜和反射膜的位置精密度对偏光分光计的转换效率的影响非常大。所以,如上所述,若以大致位于中央的突出部为切割基准而切割偏光分光计的两端,则能够提高偏光分光计中央的偏光分离膜与反射膜的位置精度,并且能够提高偏光分光计的转换效率。
在图8(B)所示的工序中,是在偏光分光计89的光出射面86上粘贴选择相位差板380。选择相位差板380是将λ/2相位差板381和无色透明的部分,交替设置在构成偏光分光计89的多个玻璃板的光出射面上的板状体。
图8(C)所示的工序中,在偏光分光计89的光入射面上粘接着凸透镜组310。凸透镜组310是由许多略成矩形的凸透镜311排列成矩阵(matrix)状而得的。凸透镜组310也设有突出部313(用斜线表示的部分)。在粘接凸透镜组310与偏光分光计89时,在粘接用的工具(图未显示)上设置着分别与凸透镜组310与偏光分光计89的突出部吻合的凹部,分别将偏光分光计89的突出部与凸透镜组310的突出部嵌入该凹部中。这样,可决定偏光分光计89与凸透镜组310相互之间的位置的高精确度。
如图8(A)中所述,偏光分光计89是以上方突出部或下方的凹部为基准按高精度的尺寸切割的。这样,由于偏光分光计89自身尺寸的精度相当高,所以在与凸透镜组310粘接时,也可以以偏光分光计89的外形(不含突出部的形状和尺寸)为基准而决定凸透镜组310和其它结构要素之间的位置。
如上所述地,使构成偏光分光计89的多个基本构成玻璃体其中至少一部分,从其它基本构成玻璃体中错开而突出,则可以提高偏光分光计89的尺寸精度。再者,当偏光分光计89与其它偏光分离装置和其它机器进行组合时,可以提高偏光分光计89的定位精度。
图10是表示本发明第三实施例的偏光分光计的制造方法的立体图。图11(A)是其平面图,而图11(B)是正面图。如图10和图11(B)所示,在所示构成所示玻璃板区块的多个玻璃板中,在大约中央处设置的两片玻璃板321、322比其它的玻璃板323高并上下突出。在玻璃板区块的右端粘接着虚置玻璃324,在左端则没设置虚置玻璃324。在本实施例的结构与前述的第一实施例和第二实施例的结构不同,不需要基本构成玻璃体。若不使用基本构成玻璃体80、81而是将玻璃板一片一片的错开,则能够减少从玻璃板区块切出偏光分光计时的玻璃的浪费。
图10与图11(A)中,在两片玻璃板321、322上面加上斜线,只是为梗容易地看懂图。实际上,不需要为了与其它玻璃板323区别而使用特殊颜色。
如图11(B)所示,位于两片玻璃板321、322的中间的边界面(界面),大约是玻璃板区块的长轴方向的中央位置。这些玻璃板区块的上方突出高度H1和下方突出高度H2,可以设成相同值,也可以设成不同值。突出高度H1、H2的值最好是玻璃板区块的高度H(本实施例为70mm)的约3%(即本实施例中约为2mm)左右。若将上下部的突出高度设成不同值,则可以很容易地判断从玻璃板区块所切得的偏光分光计的上下端。
通过将该玻璃板区块沿切割面328a、328b进行切割,能够切出一个作为偏光分光计使用的基板区块。
图12是表示利用沿图11(B)的切割面328a、328b切得的基板区块,制造用于液晶投影机的偏光分离装置的制造工序说明图。首先,如图12(A)所示,将切得的基板区块的两端与光入射面327、光出射面326大致垂直地进行切割,得到大致成长方体的偏光分光计320(图12(B))。此时,虚置玻璃324的一部分被切割,而在光出射面326上残留着一部分。且,在图12中,偏光分离膜331是以实线表示的,而反射膜332是以虚线来表示。将切割后的偏光分光计320的光入射面327和光出射面326分别研磨而使其光滑。图13是表示这样制出的偏光分光计320的立体图。
在图12(A)所示的切割过程最好是高精度地切割,以使偏光分光计320的尺寸是预定的设定值。此时,在上下部突出的玻璃板321、322的突出部(突起部),可作为决定切割面时的基准位置。例如,如图12(A)所示,可以将突出部的右端作为基准进行切割,并使其左右侧的长度分别为W1、W2。若如此,则能够使所述两个长度值高精度地符合设定值。
如上所述,突出的玻璃板321、322大约位于偏光分光计320的长轴方向的中央。若以所述突出部为基准进行切割,则能够精确地切割以使所述玻璃板321、322的界面位于偏光分光计320中央的预定位置。
但是,如前所述地,由于普通光源中心的照度较高,因此通过偏光分光计320中央的光通量最大。因此,偏光分光计中央部的偏光分离膜与反射膜的位置精度,对偏光分光计的转换效率有较大影响。所以,如上所述地,若将位于大致中央的突出部作为基准而切割偏光分光计的两端,则能提高偏光分光计中央部的偏光分离膜和反射膜的位置精度,并能提高偏光分光计的转换效率。
在图12(B)所示的工序中,在偏光分光计320的光出射面粘接选择相位差板380。选择相位差板380是将λ/2相位差板381与无色透明部分交替地设置于构成偏光分光计320的多个玻璃板的光出射面上的板状体。
在图8(C)所示的工序中,在偏光分光计320的光入射面粘接着凸透镜组310。凸透镜组310是将许多略成矩形的凸透镜311排列成矩阵状而成的。凸透镜组310上也设置着突出部313(用斜线表示的部分)。当粘合凸透镜组310与偏光分光计320时,在粘接用的工具上(图中未表示)会设置着分别与凸透镜组310和偏光分光计320的突出部吻合的凹部,分别将偏光分光计320的突出部与凸透镜组310的突出部嵌入该凹部。如此,可高精度地决定偏光分光计320与凸透镜组310的相互位置。
如图12(A)所述,将偏光分光计320以中央突出部为基准而切得高精准度的尺寸。即,由于偏光分光计320自身尺寸的精度较高,所以当和凸透镜组310粘接时,也可以以偏光分光计320的外形(不含突出部形状、尺寸)为基准进行凸透镜组310和其它结构要素之间的定位。
在偏光分光计320的端部设置的虚置玻璃324,如下所述地具有不易使选择相位差板380脱落的作用。图14(A)、14(B)、14(C)是表示虚置玻璃324的效果的说明图。图14(A)表示选择相位差板380粘贴在正常位置上的状态,图14(B)、(C)表示选择相位差板380位于图14(A)所示的位置稍下方的状态。但是在图14(B)的结构中,虚置玻璃324设在下端,图14(C)表示省略虚置玻璃324的情况。若如图14(C)所示地没设置虚置玻璃,则在选择相位差板380偏离正确的位置一定距离时,选择相位差板380的端部会从偏光分光计320的端部向外突出。其结果导致选择相位差板380易脱落。相反,当如图14(B)所示地在偏光分光计320的端部设置虚置玻璃324时,选择相位差板380的端部贴附在虚置玻璃324上。因此,具有选择相位差板380不易脱落的优点。
如上所述地,在与偏光分光计320的光入射面及反射面邻接的4个侧面中,与偏光分离膜和反射面等(即多个玻璃板的界面)大致垂直的两个侧面上,若突出若干个玻璃板,则能够提高偏光分光计320尺寸精度。再者,将偏光分光计320和其它偏光分离装置及其它机器组合时,可提高偏光分光计320的定位精度。
突出的部分不限于一处,也可以使其在多处突出。在一处突出部突出的玻璃板数目不限两片,可以突出一片以上的任意数量的玻璃板。
也可以设置能够用于进行偏光分光计的定位的其它种类的位置识别部,以代替上述的突出部。作为位置识别部可考虑凹部、端面的颜色与其它部分不同的玻璃区、或刻印特定标记的玻璃区等。而刻印也是广义的凹部之一。作为两种玻璃板321、322可以使用蓝色浮法玻璃。此时,由于浮法玻璃表面光洁度高,所以不需研磨表面。而且,若两种玻璃板321、322中的一种使用蓝玻璃板,另一种使用白玻璃板,则根据这些颜色,可以容易得区别偏光分离膜331和反射膜332的位置。
图15是表示本发明第四实施例的偏光分光计的制造方法的立体图。图16(A)是其平面图,而图16(B)是正面图。图17是表示沿图16(A)的切割面328a、328b切割后将其两端如图12(A)地切下而制成的偏光分光计320a的立体图。如图15与图16(B)所示,在构成该玻璃板区块的多个玻璃板中,有两片玻璃板321a、322a比其它玻璃板323突出在上方。但是与第三实施例不同,所述玻璃板321a、322b并不突出在下方,其下表面与其它的玻璃板323形成同一平面。换言之,在从该玻璃板区块切得的偏光分光计中,在与偏光分离膜与反射面大约成平行的两个侧面的其中一个侧面上,突出着玻璃板。像这样只在一个侧面设置突出部,因此具有容易区别偏光分光计的上下部的优点。
与第三实施例不同之处还在于,所述两个玻璃板321a、322b,并不沿长轴方向设置在中央,而位于一侧稍偏位置。如上所述地,由于突出部偏离光分光计的长轴方向的中央,因此具有可从突出部区别偏光分光计的光入射面与反射面的优点。并且,突出部偏离长轴方向的中央的距离,最好是两片玻璃板的宽度。
但是,如果将偏光分光计的光入射面与反射面弄错,则会产生如所述不当的结果,图18是表示将偏光分光计的光入射面与反射面弄错而产生不当结果的说明图。图18(A)表示偏光分光计的单体功能。若散乱的偏光方向的光往光向分光计入射时。首先,偏光分离膜331会将P偏光成份与S偏光成份的光加以分离,例如p偏极成份会透过偏光分离膜331,而s偏极成份会往略成垂直的方向反射,s偏极成份将藉由反射膜332的反射之后再射出。
图18(B)表示在该偏光分光计320的光出射面上粘接选择相位差板380,并在光入射面的前面设置遮光板340,从而可从散乱偏光得到P偏光的偏光转换元件。所述遮光板340是由遮断光的遮光部341和使光透过的透光部324交替组合而成。因此,遮光板340具有根据遮光板340上的位置控制透过的光束的功能。但是,当使用偏光分光计320而构成所谓的积分器光学系统时,在偏光分光计320的光入射侧设置矩阵状地排列着多个小透镜的透镜板,并且在光射出侧设置凸透镜。遮光部341与透光部342的配置方法是使由所述小透镜成的像只形成在偏光分光计320的偏光分离面上。作为遮光板340,可如本设施例地使用在平板状透明体(例如玻璃板)上的部分区域形成遮光性的薄膜(例如铬膜或铝膜)而成的遮光板,或是使用在例如铝板等遮光性平板上设置开口部而制成的遮光板。特别是利用遮光性的薄膜形成遮光面时,即使直接将遮光性的薄膜形成在凸透镜组和偏光分光计320上,也可以发挥同样的功能。
通过透光部342的光,在偏光分离膜331分离成P偏光成份与S偏光成份,P偏光成份直接透过偏光分离膜331而射出。另一方面,被偏光分离膜331反射的S偏光成份在被反射膜332反射之后,再由λ/2相位差板381转换成P偏光而射出。所以,从所述偏光转换元件只射出P偏光。
图18(C)表示偏光分光计320的里外侧反过来的状态。遮光板340被定位于出射光的光量最大的位置。如图18(C)所示地若将偏光分光计320的里外侧反过来,会使出射光的偏光成份成为相反。这不利于将所述偏光分光计320组装到后述的投射型显示装置上(如图20)。即,图20所示的投射型显示装置中的偏光分光计,通过与λ/2相位差板组合,而用于将来自光源100的光线转换成一种偏光光束(P偏光束或S偏光束)。另一方面,在作为对从具有偏光分光计与λ/2相位差板的光学部件300射出的光进行调制的装置而设置的液晶嵌板803、805、811的光入射面上,为提高对比度而通常设有只使P偏光束或S偏光束之一选择透过的偏光板。因此,当出射的偏光成份相反时,光会被形成于液晶嵌板803、805、811的入射面侧的偏光板吸收掉,恐怕无法构成投射型显示装置。
而且,当图18(C)的情况下,与图18(B)相比,在从光入射到射出的过程中通过粘接剂层325的次数增加。由于粘接剂层325会吸收光,所以会造成偏光转换元件的效率低下的缺点。
综上所述,当偏光分光计的内外相反时,会产生各种不当情况。所以,根据如图15与图16所示的方法,若在一侧侧面且偏离中间的位置上设置具有突出部(位置识别部)的偏光分光计,则可以很容易区别内外,而具有可防止所述不当情况发生的优点。再者,在第四实施例中,通过设置突出部而具有提高偏光分光计的尺寸精度的优点,着优点与第三实施例的相同。而且,在偏光分光计和其它偏光分离装置及其它仪器组合时,具有可提高偏光分光计的定位精度的优点。
图19是配置有本实施例的偏光分光计组的偏光照明装置500的主要部分的平面概略结构图。所述偏光照明装置500包括光源部100和偏光发生装置400。光源部100放射出包含S偏光成份与P偏光成份的散乱偏极方向的光束。从光源部射出的光束经过偏光发生装置400变换成方向大致一致的一种直线偏光,向照明区域90照射。
光源部100包括光源照射灯101与抛物面反射镜102。从光源照射灯101放射的光,被抛物面反射镜102向一个方向反射,成略平行的光束入射到偏光发生装置400。光源部100的光源光轴R,与系统光轴L在X方向上的距离为D且与其平行。此处的系统光轴L即为偏光分光计320的光轴。在后面叙述这样地将光源光轴R偏移的理由。
偏光发生装置400包括第一光学部件200和第二光学部件300。第一光学部件200的结构是在纵横向上排列许多具有矩形轮廓的微小的光束分割透镜201。第一光学部件200被配置成光源光轴R与第一光学部件200的中心相一致。从Z方向观察到的各光束分割透镜201的外形形状,和照明区域90的形状相似。由于在本实施例中设定了在X方向上较长的照明区域90,所以光束分割透镜201在XY平面上的外形形状也是在X方向上较长。
第二光学部件300包括凸透镜组310、偏光分光计组320、选择相位差板380、以及出射端透镜390。凸透镜组310与第一光学部件200的结构大致相同。即,凸透镜组310是将与构成第一光学部件200的光束分割透镜201相同数量的凸透镜311排列成矩阵状而构成的。凸透镜组310的中心也配置成与光源光轴R一致。
光源部100射出具有杂散偏光方向的大致平行的白色光束。从光源部100射出而入射到第一光学部件200中的光束,被光束分割透镜201分割成中间光束202。中间光束202因光束分割透镜201和凸透镜311的聚光作用,而聚焦在与系统光轴L垂直的平面内(在图19中是XY平面)。在中间光束202聚焦的位置上,会形成与光束分割透镜201相同数量的光源像。并且,光源像成象的位置是偏光分光计320内的偏光分离膜331的附近。
将光源光轴R从系统光轴L偏离,是为了将光源像成象在偏光分离膜331的位置上。其偏离量D设定成偏光分离膜331的X方向上尺寸Wp的一半。如上所述,光源部100、第一光学部件200、以及凸透镜组310的中心与光源光轴R一致,并偏离系统光轴L的距离为D=Wp/2。另一方面,将用以分离中间光束的偏光分离膜331的中心,也从系统光轴L偏离Wp/2的距离。所以,通过使光源光轴R从系统光轴L偏离Wp/2,可以将光源放射灯101的光源像成象在偏光分离膜331的大致中央。
入射到偏光分光计组320中的光束,被全部转换成S偏光或P偏光。从偏光分光计组320射出的光束通过出射端透镜390而照射照明区域90。由于照明区域90被由许多光束分割透镜201分割后的许多光束所照射,所以能够将所有照明区域90照射得非常平均匀。
当入射到第一光学部件200中的光束的平行性非常好时,可以将第二光学部件300的凸透镜组310省略。
如上所述,图19所示的偏光照明装置500包括将含有杂散偏光方向的白色光束转换成特定偏光方向的光束(S偏光或P偏光)的作为偏光发生部的功能和用所述许多偏光束均匀地照射照明区域90功能。
图20是表示具有图19所示偏光照明装置500的投射型显示装置800的主要部分的概略结构图。所述投射型显示装置800包括偏光照明装置500、分色镜801(dichroic mirror)、804、反射镜802、807、809、转换透镜806、808、810、三片液晶嵌板(液晶光阑)803、805、811、交叉分色棱镜813、以及投影透镜814。
分色镜801、804具有将白色光束分离成红、蓝、绿三色光的、作为有色光分离器的功能。三片液晶嵌板803、805、811具有根据图像资料(图像信号)将三色光分别调制而形成图像的、作为光调制器的功能。交叉分色棱镜813具有将三色光合成而形成彩色图像的、作为有色光合成器的功能。投影透镜814具有将已合成的彩色图像的投射到屏幕815上的、作为投影光学系统的功能。
蓝光绿光反射分色镜801,使从偏光照明装置500射出的白色光束的红色光成份透过,同时反射蓝色光成份和绿色光成份。透过的红色光被反射镜802反射后到达红光用液晶嵌板803。另一方面,所述由第一分色镜801反射的蓝色光与绿色光中,绿色光被绿光反射分色镜804反射,到达绿光用液晶嵌板805。而蓝色光还透过第二分色镜804透过。
在本实施例中,蓝色光的光路径最长,所以给蓝色光,在分色镜804之后设置由包括入射透镜806、转换透镜808、以及射出透镜810的转换透镜系统构成的导光系统850。即,蓝色光透过分色镜804之后,首先经过入射透镜806与反射透镜807而进入转换透镜808,再被反射镜809反射后而进入射出透镜810,并到达蓝色光用的液晶嵌板811。三片液晶嵌板803、805、811相当于图19的照明区域90。
三片液晶嵌板803、805、811根据图中未示的外部控制电路所传送的图象信号(图象资料),调制各种有色光,并生成包含各种颜色成份的图象信息的有色光。已被调制的三种颜色的光入射到交叉分色棱镜813中。交叉分色棱镜813上十字状地形成着反射红光的电介质多层膜和反射蓝光的电介质多层膜。由所述电介质多层膜合成三种颜色的光,以形成表现彩色图象的光。合成后的光由作为投影光学系统的投影透镜814投射到屏幕815上,而放大显示图像。
在所述投射型显示装置800中,作为光调制器而采用对特定偏光方向的光束(S偏光或P偏光)进行调制的液晶嵌板803、805、811。通常在所述液晶嵌板的入射面与射出面上都会粘接偏光板(图未显示)。因此,当具有散乱偏光方向的光束投射到液晶嵌板上时,该光束中约有一半光会被液晶嵌板上的偏光板吸收而转换成热量。其结果导致光的利用效率低,并且偏光板发热。但是在图20所示的投射型显示装置800中,由于是由偏光照明装置500生成通过液晶嵌板803、805、811的特定偏光方向的光束,所以可以大大改善液晶嵌板的偏光板的光吸收和发热的问题。
如上所述,通过使用根据本实施例的偏光分光计,可以将投射型显示装置的光利用效率比现在再提高。所以投射在屏幕815上的图像更加清晰。
图21是表示利用本发明偏光转换装置的另一投射型显示装置的构成实施例的概略结构图。从作为光源的灯63大致平行地射出的光通过第一透镜板51的多个矩形状透镜组51-a,然后向具有形相同数量透镜组52-a的第二透镜板52方向聚集。第一透镜板51和第二透镜板构成复合照明系统。即,利用透镜组51-a将来自灯63的光束分割,再由透镜组52-a使已分割的光束在液晶嵌板60上重合而实现均匀照明。图中标号55是偏光分光计,如前所述地,其制做方法是将贴有由无机物质多层薄膜所构成的偏光分离膜的玻璃板和蒸镀有铝反射膜的玻璃板两者交替粘接之后,斜向切割并将切割面研磨。
再者,由透镜组51-a射出的聚焦光线54在偏光分光计55内的偏光分离膜上聚焦。含有散乱偏光成份的聚焦光线54中,P偏光通过偏光分离膜,而S偏光反被射。S偏光被反射膜反射之后,从偏光分光计55射出(S偏光光线58)。另一方面,当P偏光经过选择性地设置于偏光分光计55的光出射面端的λ/2相位差板时,偏光轴转90度,即由P偏光转换成S偏光57。聚光透镜56用于将从偏光分光计55射出的光束重合在液晶嵌板60上。液晶嵌板根据图象信息对入射光束进行调制,然后调制后的图象通过投射透镜61投射到屏幕上。本实施例的投影显示装置,是在只能使用灯出射光中的一种偏光成份的系统上,通过再利用偏光分光计55而能够使用所有的光成分,使光损失减少,从而可获得清晰明亮的投影画面。而且,由于光损失减少,而现有的光损失转换成为热量,因此发热现象也可消失了。所以可将用于冷却的冷却装置小型化或省略,而达到整体装置小型化和结构紧凑化的目的。又由于偏光分光计55是从玻璃板的粘接区块斜向切割而形成的,所以可做成薄板形状。总之,只要在没有偏光分光计的复合光学系统中划出一小部分的空间而插入偏光分光计,就可以构成明亮清晰的投射型显示装置。
并且,在复合光学系统中,透镜的分割数越多,越能减少灯63的光线光斑。在这里,偏光分光计55需要与复合光学系统的透镜的分割数相对应数量的偏光分离膜和反射膜,但在本实施例中的偏光分光计55是采用玻璃板的粘接而形成的,所以能够根据透镜的分割数很容易地制造出具有许多偏光分离膜和反射膜的偏光分光计。而在现有的三角棱镜的粘合过程中,棱镜的研磨、膜的蒸镀、粘合等受到限制,故无法实现。综上所述,如果使用从玻璃板粘接区块中斜切而得的偏光分光计,则在具有复合光学系统的投射型显示装置中,可提高其光利用效率,并且可得无光斑的均匀的图象。
本发明不仅限于上述实施例,可在不脱离本发明要点的范围内以各种形式实现本发明,例如可以作如下的变化。
图22是本发明的偏光分光计的另一实施例。在本实施例中,使其偏光分离膜43、47和反射膜45、49互相对称地并列配置偏光分光计41A、41B而构成偏光分光计40。在玻璃板42上蒸镀无机物质的偏光分离膜43,并在玻璃板44上蒸镀反射膜45。在玻璃板46上蒸镀无机物质偏光分离膜47,并在玻璃板48上蒸镀反射膜49。在玻璃板上分别蒸镀偏光分光计41A、41B后,经过粘接、切割而构成板状。
将偏光分光计作为具有偏光转换机构的照明装置的偏光转换装置而使用时,使灯的光轴通过偏光分光计的大致中央位置。此时,如图23所示,向偏光分离膜43、47入射的光的角度并不固定。另一方面,偏光分离膜43、47可以是无机物质的多层薄膜,所以如果光的入射角度改变,则如图24所示地,透过和反射的特性会改变,容易产生左右非对称的着色。在图24中,实线表示从光源出射的光的光谱特性,虚线表示在图23中以θ1的角度入射的光的透过率曲线图,一点划线表示在图23中以θ2角度入射的光的透过率曲线图。如果像本实施例的偏光分光计那样使偏光分离膜43、47和反射膜45、49左右对称地相对配置,则多层薄膜的角度依存性可左右相互抵消。因此,可对全体照明区域进行无光斑的均匀照明。若将这样的偏光转换装置用于投射彩色图象的投射型显示装置中,可以得到色彩均匀的满意的图像。
为消除所述着色,也可采用下述的方法。图25表示在从光源出射的光谱中,与各色光的峰值对应的波长的光的入射角度改变时,其透过率的特性。在本实施例中θ0是45度,θ1是50度,θ2是40度。当以40度至45度的入射角入射波长为蓝色光的峰值波长的约435nm光和波长为绿色光的峰值波长的约550nm光时,本实施例的偏光分光计的偏光分离膜的透过率差值小于5%。虽然图25所示的光谱中没有红色光的峰值,但是射入波长约为610nm的红色光时,随入射角变化的透过率的差值小于5%。换言之,所述偏光分离膜能够将红色光、蓝色光与绿色光的主要波长范围内的透过率差值调整在5%以内。所述“各色光的峰值”是指入射到偏光分离膜中的各色光的主要波长范围。
当随具有与各色光的峰值对应的波长的光的入射角的不同而变化的透过率差值被调整在5%以内时,强度高的光不依赖入射角度而大致均匀地通过,所以可有效地防止色斑。因此,若将本实施例的偏光分光计用于投射彩色图象的投射型显示装置,可得到颜色均匀且质优的画面。
在图25所示的偏光分光计中,使与角度θ0的入射角之差在±5度以内时入射光的透过率变化也被控制在5%之内,但若存在与角度θ0的入射角之差大于±5度的入射光时,最好将其透过率变化也控制在5%以内。并且,入射角度与角度θ0之差为多少,是随透镜组51-a、51-b的间隔和从第一透镜板51到偏光分离膜43、47的距离等而不同。
如图25所示,对于红色光的峰值不明确的光源光而言,应使红色光的波长范围在600nm至750nm之间,最好围是在600m至620nm之间的范围内,以控制透过率的误差在5%之内。若是小于600nm的低波长的光,则成为接近黄色光的照明光,所以不合适。
再者,如图25所示的从光源射出的光的光谱中,570nm附近的峰值由于可导致照明光的照明不均匀,所以最好用滤镜将其去除。
在上述的第四实施例中,在图19所示的偏光照明装置500和图20所示的投射型显示装置800中使用了图17所示的偏光分光计,但也可使用图3所示的第一实施例的偏光分光计、图9所示的第二实施例的偏光分光计、或图13所示的第三实施例的偏光分光计、或是其它实施例所示的偏光分光计。
本发明不只适用于从观察投射面的一侧进行投射的前方投射型显示装置,也适用于从观察投射面的相反侧进行投射的背面投射型显示装置。并且,作为光阑,可不使用透过型液晶嵌板,也可以采用反射型液晶嵌板。
在上述实施例中是使用玻璃板制作偏光分离装置,但并不限于玻璃板,也可以使用光学玻璃板或合成树脂等其它透光性基板。
本发明的偏光分离装置可适用各种投射型显示装置。而且,本发明的投射型显示装置也可用于例如将从计算机输出的画面和从录像机(videorecorder)输出的图象投射到屏幕上而显示。
权利要求
1.一种偏光分离装置的制造方法,所述偏光分离装置用于将具有散乱偏光方向的光分离成具有两种偏光成份的光,其特征在于,所述制造方法包括形成具有第一基板、偏光分离层、第二基板、反射层的重合结构的基板区块的工序;以及,按与所述基板表面的规定角度切割所述基板区块的工序。
2.如权利要求1所述的偏光分离装置的制造方法,其特征在于,其中形成所述基板区块的工序包括在所述第一基板上形成所述偏光分离层的步骤;在所述第二基板上形成所述反射层的步骤;以及将已形成所述偏光分离层的所述第一基板和已形成所述反射层的所述第二基板交替叠合的步骤。
3.如权利要求2所述的偏光分离装置的制造方法,其特征在于,将已形成所述偏光分离层的所述第一基板和已形成所述反射层的所述第二基板交替叠合的步骤中,是按切割所述基板区块的角度使端面错开地将所述第一基板和所述第二基板交替叠合。
4.如权利要求1所述的偏光分离装置的制造方法,其特征在于,形成所述基板区块的工序包括在所述第一基板上形成所述偏光分离层的步骤;在所述第二基板上形成所述反射层的步骤;将一个形成有所述偏光分离层的所述第一基板和一个形成有所述反射层的所述第二基板叠合而形成基本区块的步骤;以及将多个所述基本区块叠合的步骤。
5.如权利要求1所述的偏光分离装置的制造方法,其特征在于,将多个所述基本区块叠合的步骤中,是按切割所述基板区块的角度将端面错开而叠合。
6.如权利要求1-5所述的偏光分离装置的制造方法,其特征在于,在按与所述基板表面的规定角度切割所述基板区块的步骤之后,还包括研磨所述切割面的步骤。
7.如权利要求1-5所述的偏光分离装置的制造方法,其特征在于,形成所述基板区块之后,还包括在构成所述基板区块两表面的所述基板中至少一个基板上叠合虚置基板的步骤。
8.如权利要求1-5所述的偏光分离装置的制造方法,其特征在于,所述第一基板与所述第二基板是研磨玻璃板。
9.如权利要求8所述的偏光分离装置的制造方法,其特征在于,所述研磨玻璃板是白板玻璃或无碱玻璃。
10.如权利要求1-5所述的偏光分离装置的制造方法,其特征在于,所述第一基板和所述第二基板是浮法玻璃。
11.如权利要求1-5所述的偏光分离装置的制造方法,其特征在于,所述第一基板和所述第二基板之中的一个是带颜色的透光性基板,另一个是无色透光性基板。
12.如权利要求1-11所述的偏光分离装置的制造方法,其特征在于,所述反射层是由铝薄膜构成。
13.如权利要求1-11所述的偏光分离装置的制造方法,其特征在于,所述反射层是由铝薄膜和电介质薄膜构成。
14.如权利要求1-11所述的偏光分离装置的制造方法,其特征在于,所述反射层是由电介质薄膜构成。
15.一种偏光分离装置,其特征在于,所述偏光分离装置由权利要求1-14所述的偏光分离装置的制造方法中任一方法制成。
16.一种偏光转换装置,使用权利要求15所述的偏光分离装置,其特征在于,在所述偏光分离装置的光出射面一端设置偏光转换器,所述偏光变换器用于将被所述偏光分离层分离的具有两种偏光成份的光转换成具有一种偏光成份的光。
17.如权利要求16所述的偏光转换装置,其特征在于,所述偏光转换器是与由所述第一基板形成的光出射面和由所述第二基板形成的光出射面中任一面相对应而设置的λ/2相位差板。
18.如权利要求16所述的偏光转换装置,其特征在于,在光入射面和所述光出射面的至少一侧设置反射防止膜。
19.一种投射型显示装置,其特征在于,它包括光源;复合光学系统,由第一透镜板与第二透镜板构成,用于将来自所述光源的光分割成多个中间光束;如权利要求16-18所述偏光转换装置;调制器,对来自所述偏光转换装置的出射光进行调制;以及投射光学系统,投射由所述调制器所调制的光。
20.一种投射型显示装置,其特征在于,它包括光源;复合光学系统,由第一透镜板与第二透镜板构成,用于将来自所述光源的光分割成多个中间光束;如权利要求16-18所述的偏光转换装置;色分离光学系统,将来自所述偏光转换装置的出射光分离成多种颜色的光;多个调制器,分别调制由所述色分离光学系统分离的多种颜色的光;合成光学系统,合成由所述调制器调制的光;以及投射光学系统,投射由所述合成光学系统合成的光。
21.如权利要求16所述的偏光转换装置,其特征在于,所述偏光分离层的透过率特性被调整为,当与入射到所述偏光分离层的光的光谱的各色光的峰值相对应的波长的光,以规定范围内的入射角之差入射时,具有与所述各色光的峰值对应的波长的光的透过率之差在约5%以内。
22.一种偏光分离装置,其特征在于,它包括基板区块,包含光入射面、与所述光入射面大致平行的光出射面、在与所述光入射面和所述光出射面成规定角度的多个界面上依次粘接的多个透光性基板、以及在所述多个界面上交替设置的多个偏光分离层与多个反射层;位置识别部,设置于所述基板区块侧面中的与所述多个界面大致垂直地形成的两个侧面中至少一方,可在对所述偏光分离装置进行定位时使用。
23.如权利要求22所述的偏光分离装置,其特征在于,所述位置识别部设置在,和邻接于具有所述位置识别部的所述两个侧面的另两个侧面的距离大致相等的位置。
24.如权利要求22所述的偏光分离装置,其特征在于,所述位置识别部设置在,和邻接于具有所述位置识别部的所述两个侧面的另两个侧面的距离不等的位置。
25.如权利要求22或24所述的偏光分离装置,其特征在于,所述位置识别部是设置在所述侧面上的突出部。
26.如权利要求22或24所述的偏光分离装置,其特征在于,所述位置识别部是设置在所述侧面上的凹部。
27.如权利要求22或24所述的偏光分离装置,其特征在于,所述位置识别部是所述侧面上具有其它不同的特定颜色的部分。
28.一种偏光分离装置的制造方法,其特征在于,包括形成复合板材的工序,通过交替粘接多个透光性基板的多个界面,而形成在所述多个界面上具有交替设置的多个偏光分离层与多个反射层的复合板材;生成基板区块的工序,通过按与所述多个界面的规定角度切割所述复合板材,而生成具有相互大致平行的光入射面与光出射面的基板区块;研磨所述基板区块的所述光入射面与所述光出射面;所述形成复合板材的工序还包括形成位置识别部的步骤,所述位置识别部设置在所述基板区块侧面中的与所述多个界面大致垂直地形成的两个侧面之中至少一个上,可在对所述偏光分离装置定位时使用。
29.如权利要求28所述的偏光分离装置的制造方法,其特征在于,还包括研磨所述基板区块的所述光入射面与所述光出射面的工序。
30.如权利要求28或29所述的偏光分离装置的制造方法,其特征在于,所述形成复合板材的工序还包括通过将所述多个透光性基板的至少一部分从其它透光性基板错开而形成作为所述位置识别部的突出部的步骤。
31.一种偏光转换装置,使用了权利要求22-27中任一项所述的偏光分离装置,其特征在于,在所述偏光分离装置的所述光出射面一侧设置偏光转换器,所述偏光转换器用于将由所述偏光分离层分离的具有两种偏光成份的光转换成具有一种偏光成份的光。
32.如权利要求31所述的偏光转换装置,其特征在于,所述偏光转换器是与所述基板构成的所述光出射面中的、由每隔一个的基板构成的所述光出射面相对应而设置的λ/2相位差板。
33.如权利要求31所述的偏光转换装置,其特征在于,在所述光入射面与所述光出射面中至少一侧设置反射防止膜。
34.一种投射型显示装置,其特征在于,它包括光源;复合光学系统,由第一透镜板和第二透镜板构成,将来自所述光源的光分割成多个中间光束;如权利要求31~33所述的偏光转换装置;调制器,对来自所述偏光转换装置的出射光进行调制;以及投射光学系统,投射由所述调制器调制的光。
35.一种投射型显示装置,其特征在于,它包括光源;复光学系统,由第一透镜板和第二透镜板构成,将来自所述光源的光分割成多个中间光束;如权利要求31~33所述的偏光转换装置;色分离光学系统,将来自所述偏光转换装置的出射光分离成多种颜色的光;多个调制器,分别对由所述色分离光学系统分离的多种颜色的光进行调制;合成光学系统,合成来自所述调制器所调制的光;以及投射光学系统,投射由所述所合成光学系统所合成的光。
全文摘要
一种具有将偏光分离膜面与反射膜面以细小间隔交替配置的重复结构的板状偏光分离装置,及使用该偏光分离装置的投射型显示装置。偏光分离装置的制造方法是,先将表面上具有无机物质多层膜构成的偏光分离膜的玻璃板和表面上具有反射膜的玻璃板交替粘接而形成玻璃板区块,然后斜对着粘接面切割该玻璃板区块。在切割后的板状区块上可设置用于偏光分离装置定位用的突出部,并在该偏光分离装置的光出射面的一部分粘接λ/2相位差板。
文档编号H04N5/74GK1181815SQ9719017
公开日1998年5月13日 申请日期1997年3月12日 优先权日1996年3月12日
发明者桥爪俊明, 伊藤嘉高, 矢岛章隆 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1