一种适用于mimo-ofdm系统的载波频偏估计方法

文档序号:10492148阅读:341来源:国知局
一种适用于mimo-ofdm系统的载波频偏估计方法
【专利摘要】本发明提出一种适用于MIMO?OFDM系统的载波频偏估计方法,利用接收到的短训练序列和长训练序列来分别完成粗频偏和精频偏估计及补偿,相比于传统方案,本发明利用了更多的数据相关信息,平滑了噪声的影响。本发明提出的载波频偏估计方案允许信道存在频率选择性,而且提高了MIMO系统载波频偏估计的精度,改善了接收机的性能。此外,本发明适用于多种无线局域网接收系统,实用性和可移植性都较强。
【专利说明】
-种适用于MIMO-OFDM系统的载波频偏估计方法
技术领域
[0001] 本发明属于无线通信技术领域,设及MIMO-OFDM接收机基带信号处理中的载波频 偏估计方法,具体设及使用前导序列的粗频偏和精频偏估计方案。
【背景技术】
[0002] 2013年,I邸E组织正式发布了新一代无线局域网通信标准IE邸802. Ilac,该标准 最高支持160MHz的带宽、8个空间码流W及256-QAM的高密度调制,为用户带来了高速率的 数据传输。然而运些技术也使得基于IE邸802. Ilac的产品对射频一致性测试系统有很高 的要求。目前,面向IEEE 802.Ilac系统的射频接收机基带信号处理技术成为研究的重点。
[0003] IE邸802. Ilac物理层采用MIMO-O抑M技术。(FDM系统采用多载波数字调制技术, 通过串并转换将高速串行的数据流分散为若干个相互正交的子载波,提高了系统的频谱利 用率。但是OFDM系统子载波间的正交性使其对载波频偏非常敏感,一旦出现频偏,相邻的子 信道间会产生较大的干扰,子载波间的正交性被破坏,即使是很小的频偏也会造成很大的 系统性能衰减。因此,如何设计低复杂度、高精度的载波频偏估计算法,有待进一步研究。同 时MIMO系统采用空间分集复用技术,使频偏估计变得更为复杂。
[0004] 实际信号传输中,不可避免地会出现收发端的本地振荡器频率不一致、移动终端 相对于发射端不停地运动等现象,运些都会造成载波频率在数据传输过程中发生偏移。目 前,MIMO-O抑M系统中的载波频偏估计算法主要有数据辅助型算法和非数据辅助型算法。基 于训练序列的数据辅助算法在射频测试系统中应用最为广泛,不过,训练序列的存在也降 低了数据传输的有效性。传统的频偏估计算法利用字段,主要应用于SISO 系统,在MIMO系统中频偏估计精度有待提高。

【发明内容】

[0005] 发明目的:本发明的目的是提供一种适用于MIMO-O抑M系统的载波频偏估计方法, 该方法将多个频偏值进行平均运算,提高了频偏估计精度,且实现步骤简单。
[0006] 技术方案:本发明提出一种适用于MIMO-OFDM系统的载波频偏估计方法,利用接收 到的分别完成粗频偏和精频偏估计及补偿,包括W下的步骤:
[0007] (1)从经下变频操作得到的数字基带信号中捕获一段完整的帖信号数据,并进行 帖同步处理;
[000引(2)利用kSTF字段进行粗频偏估计,得到系统的整数倍频偏,并进行粗频偏补偿;
[0009] (3)对粗频偏补偿后的数据进行符号同步处理,确定OFDM符号的起始位置;
[0010] (4)利用kLTF字段进行精频偏估计,得到小数倍的频偏值,并进行精频偏补偿。
[0011] 进一步地,所述步骤(2)中粗频偏的估计方法包括:
[0012] (2.1 )对心51。字段中的数据进行4次延迟相关运算;
[0013] (2.2)根据Schmidl和Cox频偏估计算法原理得到4个归一化的粗载波频偏估计值;
[0014] (2.3)将得到的4个频偏估计值求均值,得到最终的粗频偏估计值。
[0016]
[0015] 进一步地,所述步骤(2.1)中4次延迟相关运算得到的中间变量表示如下:
[0017]
[001引其中,D表示一个STF长度,L表示相关窗内的样值点长度,r(n)表示帖同步处理后 的接收数据;
[0019] 所述步骤(2.2)中归一化的粗载波频偏估计值为:
[0020]
[0021] 其中,N表示一个IFFT周期。[0022] 进一步地,最终的粗频偏估计值表示为:
[0026] 其中,Nr表示接收端天线数,n(n)表示第j根接收天线上帖同步处理后的数据。[0027] 进一步地,所述步骤(3)中符号同步处理方法包括:
[0023]
[0024]
[0025]
[0028] (3.1)利用粗频偏补偿后得到的数据与本地参考序列
进行互 相关运算;其中,LTF表示kLTF字段的一个重复周期序列,Nt表示发送端的天线数,C&表示 第j根发射天线上的循环移位长度;
[0029] (3.2)定义符号同步位置判决函数为:
[0030]
[0031]
[0032] (3.3)根据符号同步位置判决函数,得到OFDM符号的起始位置为:
[0033] Hsymboi = arg max(M(n))
[0034] 进一步地,所述步骤(4)中精频偏估计值为:
[0035]
[0036] 其中,d表示滑动窗口右移长度,取值范围为[0,LTF),D的大小为一个LTF长度。经 验证,精频偏估计性能与d值的大小有关:在AWGN信道中,d = 0时精频偏估计性能最好;在多 径信道中,d的值越小且恰好大于信道的多径时延时,精频偏估计性能最好。
[0037] 在MIMO系统中,利用多天线分集技术,粗频偏估计值表示为:
[00;3 引
[0039] 有益效果:与现有技术相比,本发明提出的一种适用于MIMO-O抑M系统的载波频偏 估计方法,利用接收到的短训练序列和长训练序列信息来分别完成粗频偏和精频偏估计及 补偿,相比于传统方案,本发明利用了更多的数据相关信息,平滑了噪声的影响。本发明提 出的载波频偏估计方案允许信道存在频率选择性,而且提高了 MIMO系统载波频偏估计的精 度,改善了接收机的性能。此外,本发明适用于多种无线局域网接收系统,实用性和可移植 性都较强。
【附图说明】
[0040] 图1为本发明方法的实现流程图;
[0041 ]图2为本发明中粗频偏估计的实现原理图;
[0042] 图3为本发明的粗频偏估计仿真曲线结果图;
[0043] 图4为传统方法(a)与本发明方法(b)符号同步位置判决函数曲线结果图;
[0044] 图5为本发明中精频偏估计的实现原理图;
[0045] 图6为本发明中滑动窗口位置对精频偏估计性能影响结果图;
[0046] 图7为本发明的精频偏估计仿真曲线结果图。 具体实施方案
[0047] 下面结合具体实施实例对本发明的技术方案进行详细地分析说明。应理解运里给 出的实施实例并不限于本发明针对的IEEE 802. Ilac系统,在阅读本发明之后,本领域技术 人员可在本申请所附权利要求的限定范围内将本发明进行各种等价形式的推广修改。
[004引本发明实例提供了一种MIMO-O抑M系统的载波频偏估计方案,通过接收信号的k 序列分别实现粗频偏和精频偏的估计和补偿。为了更好地说明本发明的技术内 容,特举具体实施例并配合附图进行方案说明。
[00例如图1所示,本发明实施实例公开的一种适用于MIMO-OFDM系统的频偏估计方法, 包括W下的步骤:
[0050] (1)获取一完整帖信号。接收机接收待测件发射的射频信号,对射频信号进行放大 后再通过矢量信号分析仪对接收到的射频信号进行下变频处理得到基带数字信号。I趾E 802. Ilac系统W突发分组模式进行数据传输,波形文件中一般含有多个数据帖。将得到的 IQ数据功率值与预设口限值的大小进行对比,截取一段包含上升沿和下降沿在内的完整的 帖信号。
[0051] (2)对步骤(1)中捕获的一帖信号进行帖同步处理。帖同步的实现是基于心51尸中 包含十个重复周期的STF样值序列,将运十个STF序列进行时域分段延迟相关运算得到帖同 步位置判决函数;通过检测判决函数的峰值位置,来获得帖同步的估计位置。
[0052] (3)利用步骤(2)处理得到的数据r(n)进行粗频偏估计和补偿,本发明的实现原理 如图2所示,利用kSTF的时域相关性获得归一化频偏估计值。粗频偏估计的具体实现步骤 包括如下:
[0053] (3.1)对帖捕获得到的数据进行延迟相关运算,得到的中间变量表示如下:
[0化4]
[0化5]
[0056] 其中,D表示一个STF长度,L表示相关窗内的样值点长度,r(n)表示帖同步处理后 的接收数据;
[0057] (3.2)根据Schmidl和Cox频偏估计算法原理可得到4个归一化的粗载波频偏估计
值。
[0化引
[0059] 其中,N表示一个IFFT周期。
[0060] (3.3)根据上述得到的4个频偏估计值,充分利用多个延迟相关信息,将粗频偏估 计值定义为:
[0061]
[0062] 假设忽略帖同步偏差的影响,对于IE邸802.Ilac 20MHz带宽的信号,两相关窗间 的延时D = 16,相关窗长L = 16,相应的粗频偏估计值计算公式为:
[0063]
[0064] 扁估计公式修改为:
[00 化]
[0066] 其中,Nr表示接收端天线的个数。
[0067] 图3给出了传统粗频偏估计算法与本发明方案的MSE性能曲线对比。由于传统的粗 载波频偏估计算法只作了一次短训练序列周期相关运算,而本发明进行了四次延迟相关求 均值,利用了更多的样值相关信息,且平滑了系统噪声的影响,因此,从仿真结果可W看出, 无论是SISO还是MIMO系统,本发明方案相比于传统的粗频偏估计算法,在相同信噪比下的 MSE性能有很大的提升。
[0068] 本发明的粗频偏估计范围与传统算法相同,均为子载波间隔的2倍,因此可W实现 整数倍的频偏化计巧补俟。本发巧力塞的巧频偏化计器方差为:
[0069]
[0070] 可见,本发明方案的估计方差变小,粗频偏估计精度提高。
[0071] (4)利用步骤(3)中得到的粗频偏估计值对r(n)数据进行粗频偏补偿,即
,将频偏降到较小的范围内。
[0072] (5)对步骤(4)中得到的数据进行符号同步处理,确定OFDM符号的准确起止位置。 传统的符号同步算法是将接收信号与本地已知的一个周期LTF序列信息进行互相关得到同 步位置判决函数。本发明的方案综合考虑了kLTF内含有两个完整的LTF序列信息,而VHT-LTFs中也含有一个周期的LTF序列信息,并且MIMO系统发射端为避免波束成型引入不同长 度的循环移位,将本地参考序列修改为
,将同步位置判决函数修改为
,通过检测该判决函数的峰值位置来估计0抑M符号的起止位置。
[0073] 如图4所示,本发明的方案使得符号同步位置判决函数只出现一个峰值且峰值出 现的位置就是kLTF去除循环前后第一个LTF序列的起始位置,避免了传统方法中多峰的影 响,提高了符号同步精度。
[0074] (S)OFDM符号位置确定后,利用kLTF字段进行精频偏估计和补偿。本发明的方案 是基于kLTF序列的特性,原理框图如图5所示(图中A表示LTF序列的前半周期,B表示LTF序 列的后半周期)精频偏估计值的计算具体通过W下几个步骤实现:
[0075] (6.1)将符号同步处理后得到的数据r(n)进行延迟相关运算,得到的中间变量表 示如下:
[0076]
[0077] 其中,A2是估计器2相邻的滑动窗相关值,与右移长度d有关;
[0078] (6.2)定义精频偏估计器的频偏估计值为:
[0079]
[0080] 其中
守见,本发明中 精频偏估计范围为0.5倍的子载波间隔,可实现小数倍的频偏估计和补偿。
[0081 ] 本实例中,对于IE邸802. Ilac 20MHz带宽的信号,N=D = LTF = 64,得到精频偏估 计值为:
[0082]
[0083]
[0084]
[0085] 图6给出了SISO系统下信噪比为15地的AWGN信道中估计器2滑动窗口的右移长度d 对本发明中精频偏估计性能的影响。随着滑动窗口的右移,在相同信噪比下,精频偏估计性 能几乎呈线性下降。具体取向右滑动的样值数分别为0和16,得到本发明中精估计器与基础 估计器的频偏估计性能对比如图7所示。本发明中的精频偏估计器可有效提高频偏估计性 能,且估计器2的相关窗起始位置越偏左,频偏估计性能改善越好。
[0086] 上述的仿真结果均考虑的是AWGN信道,由于是无偏估计,所W仿真结果均为一条 直线。在多径信道中,由于本发明中的估计器使用了循环前缀的信息,因此多径干扰会造成 频偏估计性能的下降。在实际的通信系统接收机中,我们可W估计出多径信道的径数,运 时,只要估计器2的滑动窗口右移样值点数大于多径信道时延且取值尽可能小,就可避免多 径干扰对本发明中算法的影响,同时最大限度地提高频偏估计精度,改善接收机性能。
[0087] (7)利用精频偏估计值^对数据进行频偏补偿J
>.接下来 就可W继续进行信道估计与均衡、IQ不平衡补偿、信号的解析解码W及计算各测试项等操 作。
【主权项】
1. 一种适用于MIMO-OFDM系统的载波频偏估计方法,其特征在于:该方法利用短训练序 列和长训练序列分别对基础的粗频偏和精频偏估计算法进行改进来提高频偏估计精度,包 括W下的步骤: (1) 从经下变频操作得到的基带数字信号中捕获一段完整的帖信号数据,并进行帖同 步处理; (2) 利用短训练序列化-STF)字段进行粗频偏估计,得到系统的整数倍频偏,并进行粗 频偏补偿; (3) 对粗频偏补偿后的数据进行符号同步处理,确定OFDM符号的起始位置; (4) 利用长训练序列化-LTF)字段进行精频偏估计,得到小数倍的频偏值,并进行精频 偏补偿。2. 根据权利要求1所述的适用于MIM0-0FDM系统的载波频偏估计方法,其特征在于:所 述步骤(2)中粗频偏的估计方法包括: (2.1 )对心5了。字段中的样值点进行4次时域延迟相关运算; (2.2) 根据Schmidl和Cox频偏估计算法原理可得到4个归一化的粗载波频偏估计值; (2.3) 将得到的4个频偏估计值进行求均值,得到最终的粗频偏估计值。3. 根据权利要求2所述的适用于MIM0-0FDM系统的载波频偏估计方法,其特征在于:所 述步骤(2.1)中4次延迟相关运算得到的中间变量表示如下:其中,D表示一个STF长度,L表示相关窗内的样值点长度,Hn)表示帖同步处理后的接 收数据; 所述步骤(2.2)中的归一化载波频偏估计值为:其中,N表示一个IFFT周期。4. 根据权利要求3所述的适用于MIM0-0FDM系统的载波频偏估计方法,其特征在于:最 终的粗频偏估计值表示为:在ΜΙΜΟ系统中,利用多天线分集技术,粗频偏估计值表示为:其中,Nr表示接收端天线的个数,η(η)表示第j根接收天线上帖同步处理后的数据。5. 根据权利要求1所述的适用于MIM0-0FDM系统的载波频偏估计方法其特征在于:所述 步骤3中符号同步处理方法包括: (3.1)利用粗频偏补偿后得到的数据与本地参考序列进行互相关 运算,其中,LTF表示kLTF字段中的一个重复周期序列,化表示发送端天线的个数;C&表示 第j根发射天线上的循环移位长度; (3.2) 定义符号同步位置判决函数为:(3.3) 根据符号同步位置判决函数,得到OFDM符号的起始位置为: nsymb〇i = argmax(M(n))。6.根据权利要求1所述的适用于MIM0-0FDM系统的载波频偏估计方法,其特征在于:所 述步骤(4)中精频偏估计值为:其中,d表示滑动窗口右移长度,取值范围为[0,LTF),D的大小为一个LTF长度; 在ΜΙΜΟ系统中,利用多天线分集技术,精频偏估计值表示为:
【文档编号】H04L27/26GK105847211SQ201610147118
【公开日】2016年8月10日
【申请日】2016年3月15日
【发明人】裴文江, 张田静, 王开, 夏亦犁
【申请人】东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1