水平铺设天线的电磁无线透地通信系统的制作方法

文档序号:10515134阅读:642来源:国知局
水平铺设天线的电磁无线透地通信系统的制作方法
【专利摘要】本发明属于无线透地通信技术领域,具体涉及一种水平铺设天线的电磁无线透地通信系统。该系统包括水平铺设天线单元1、信号发射单元2、信号接收单元3和数字调制解调单元4;水平铺设天线单元1,将信号发射单元2产生的调制功率电信号辐射到大地土层中,并将感应接收到的大地土层中微弱的电信号传送给信号接收单元3。与现有的天线接地系统相比,本发明能够在相同的通信性能情况下,使天线架设成本和施工量降低30%以上。同时有效提高了设备在高干扰信道环境中以高信噪比接收信息的能力。
【专利说明】
水平铺设天线的电磁无线透地通信系统
技术领域
[0001] 本发明属于无线透地通信技术领域,具体设及一种水平铺设天线的电磁无线透地 通信系统。
【背景技术】
[0002] 目前,矿井通信系统主要有动力线载波通信,中频感应通信,VHF漏泄通信,小区蜂 窝移动通信,矿用小灵通无线通信和低频透地通信。传统通信系统利用专有的通信线路或 已有的动力线W及使用无线信道等线路作为通信链路。
[0003] 传统通信方式可W应对日常指挥调度、人员定位、矿井上下通信等需求,但在塌方 条件下会造成有线通信线路断路通信中断的问题。高频无线信号在巷道转角处、巷道塌方 和堵塞地区不能够有效穿透形成通信链路,运种情况下组网基站通路也容易被切断,因此 传统的矿井通信系统不能满足应急情况下的通信要求。
[0004] 基于电流场的低频电磁波透地通信系统,利用电偶极子天线产生低频电磁波信号 能穿透大型障碍物的原理进行通信,该通信方式能够实现透地通信,但是由于各矿区地质 ±层的电学特性各不相同,导致电偶极子天线两端阻抗存在巨大差异,当两端阻抗过大时 透地通信距离和通信质量都受到很大程度的制约。公开号为CN102594462A的名称为便携式 无线透地通信系统的发明专利中公开了一种透底通信系统,但是该通信系统,该通信系统 是对已发表的论文(Hunri J,Ebi C.Alpine cave radio earth-current at Holloch[J] .CREG化urnal,1996,25:4-5. W及陶晋宜.穿透地层的矿井地下无线通信系统设计方案探 析[J].太原理工大学学报,2015,31(1) :39-42.)和基础电磁通信理论进行的通信系统的框 架化,特别在天线应具备的具体设计指标和降低接地阻抗性能参数,W及应该具有发射接 收模块的设计过程或思路方面。因此,公开号为CN102594462A的名称为便携式无线透地通 信系统的发明专利,仅公开了一种透地通信系统的基本框架结构,同时,由于便携式无线透 地通信系统中的天线无法实现电容抵消,存在阻抗存在感抗分量,导致功放端输出存在较 大的无用功,限制了功放的功率输出,导致天线两端电压超过安全标准,同时天线阻抗随不 同±质变化而变化,不同地区布设的天线阻抗是不同的,如果不进行阻抗匹配,则降低输出 效率,严重情况下会导致功放设备烧坏。
[0005] 同时,传统的降低电偶极子天线两端阻抗的做法是增加电偶极子天线电极的尺 寸,或者通过建立垂直接地电极阵列。在煤矿布置透地通信系统天线为降低天线接地阻抗 需要占用较大天线场地,而在采矿前沿可供使用的场地及其狭窄,难W有效降低天线接地 阻抗。

【发明内容】

[0006] 本发明的目的在于提出一种统应用于矿井应急及日常调度通信网络系统,解决现 有矿井透地通信设备天线接地阻抗过大导致通信设备通信质量变差、通信功耗过大的问题 的水平铺设天线的电磁无线透地通信系统。
[0007] 本发明的目的是运样实现的:
[0008] 该系统包括水平铺设天线单元1、信号发射单元2、信号接收单元3和数字调制解调 单元4;
[0009] 水平铺设天线单元1,将信号发射单元2产生的调制功率电信号福射到大地±层 中,并将感应接收到的大地±层中微弱的电信号传送给信号接收单元3;
[0010] 水平铺设天线单元1由多根电偶极子天线棒101组成;电偶极子天线棒由不诱钢钢 管构成,钢管内外表面光滑无毛刺;在钢管的一端牢固焊接多股粗铜线作为天线馈线,焊点 平整并使用树脂材料绝缘密封,再用绝缘胶布密封钢管此端;把多股粗铜线按最短长度可 靠连接在一点,从运一点连接粗铜线作为天线馈线,连接点处使用胶布密封绝缘,不要裸露 馈线,制作成电偶极子天线棒一根101;其他电偶极子天线棒也采用相同方式制作;
[0011] 水平铺设天线单元1在大地±层的上侧或下侧,通常水平铺设天线单元1由2-8根 电偶极子天线棒组成,分两侧铺埋,一侧可由1-4根电偶极子天线棒并联组成,每根电偶极 子天线棒埋设在一个长方形坑中,坑的尺寸比不诱钢钢管尺寸大;所有坑的位置在一条直 线上一字排开,一侧相邻坑间隔适当距离,两侧间隔约适当距离;在坑中均匀铺埋较厚的降 阻剂102,在倒入适量水把降阻剂调成粥状,放入一根电偶极子天线棒在粥状降阻剂中,在 上面撒上适当厚的降阻剂,倒入适量的水,调成粥状覆盖电偶极子天线棒,上面在覆盖± 层,并适度压实;天线馈线留在地面上,接头用绝缘胶布缠绕防止电流流失;一侧的多根电 偶极子天线棒的天线馈线并联在一起,通过一根天线馈线连接到通路切换模块104上一端, 另一端连接另一侧并联电偶极子天线棒组;使用IX阻抗分析仪测试通路切换模块104两点 间的阻抗;
[0012] 天线单元1接收信号通路切换模块104传送的电磁功率信号,并将电磁功率信号福 射到大地±层,W及感应大地±层中微弱的电流场信号,并将感应到的微弱的电信号传送 至通路切换模块104;
[0013] 阻抗匹配网络103,通过信号通路切换模块104将水平铺设的水平铺设天线单元两 端的阻抗转换为与发射单元2相匹配的输出阻抗,同时消除水平铺设天线单元两端存在的 电抗分量;
[0014] 信号通路切换模块104连接水平铺设天线单元与阻抗匹配网络103和信号接收单 元3,对信号发射单元2发送信号和信号接收单元3接收信号之间的通信电路切换;
[0015] 信号发射单元2将接收数字调制解调单元4产生的已调电信号进行功率放大获得 电磁功率信号;并将电磁功率信号传送至天线单元1;
[0016] 信号接收单元3将天线单元1感应接收到的大地±层中的微弱电信号进行放大滤 波,并将经放大和滤波后的信号传送到数字调制解调单元4;
[0017] 数字调制解调单元4为人机交互接口,将输入的数字信息转换为调制信号,传送至 信号发射单元2, W及将信号接收单元3传送的信号解调并转换为数字信息输出;数字信息 包括文本信息、数字化的语音信息、指令信息、传感器监测信息和人员位置信息;
[0018] 信号接收单元3包括己伦选频回路301、微弱信号放大模块302、二级滤波模块303 和自动增益模块304;
[0019] 己伦选频回路301抑制共模电信号,并将天线单元1感应的差分电信号转换为单端 电压信号,滤除单端电压信号频带W外的无用噪声和干扰,将预处理信号传送到微弱信号 放大模块302;
[0020] 微弱信号放大模块302接收己伦选频回路301输入的微弱电信号,并对接收的微弱 电信号进行低噪声放大,直到接收的电信号的强度达到二级滤波模块303的处理电平范围 W内将放大后的电信号发送至二级滤波模块303;
[0021] 二级滤波模块303接收微弱信号放大模块302输入的电信号,并对接收到的电信号 进行高Q值滤波,并将滤波后的信号输出至后端自动增益模块304;
[0022] 自动增益模块304接收二级滤波模块303输入的滤波后的信号,并将滤波后信号的 电平控制在固定的输出电平上,将固定电平信号输入到数字调制解调单元4进行信号解调; 数字调制解调单元4包括中央运算及控制模块401、语音压缩编码模块402、波形成形及量化 模块403和外部通信接口组404;
[0023] 中央运算及控制模块401接收外部通信接口组404输入的数字信息,对数字信息进 行调制,获得模拟电信号,并将模拟电信号输出给信号发射单元2;接收波形成形及量化模 块403产生化的波形信号,并对接收的量化的波形信号进行解调,将解调后的信息输出到外 部通信接口组404;
[0024] 语音压缩编码模块402将输入的语音信号进行低速率压缩编码为数字信息并通过 外部通信接口组404输出到中央运算及控制模块401,将解调的数字语音信息解码输出;
[0025] 波形成形及量化模块403将中央运算及控制模块401产生的数字波形转换为模拟 电信号并输出到信号发射单元2,同时将信号接收单元3输出的模拟信号进行量化并传送到 中央运算及控制模块401进行解调处理;
[00%]外部通信接口组404连接中央运算及控制模块401与外部用户和设备接口,将文本 信息、指令信息和人员位置信息传输到人机输入输出终端,将数字语音信息通过外部通信 接口组404输出到语音压缩编码模块402。
[0027]所述的水平铺设天线单元的所有电偶极子天线棒都在一条直线上排布,根据布置 天线场地大小、通信距离和功率确定使用电偶极子天线棒的数量,一侧使用1-4根,接收点 信号场强电压:
[002引
[0029] σ是电导率,r是通信距离,山是发射点的天线单元的平均距离,cb是接收点的天线 单元的平均距离。
[0030] 信号发射单元2包括低频功放模块201和电源功能模块202;
[0031] 低频功放模块201将接收数字调制解调单元4产生的已调电信号进行功率放大获 得电磁功率信号,并将电磁功率信号输出到阻抗匹配网络103;
[0032] 电源功能模块202为低频功放模块201提供稳定功能电压,W及为信号接收单元3 和数字调制解调单元4供电。
[0033] 数字调制解调单元采用FPGA或者DSP微处理器件。
[0034] 阻抗匹配网络采用变压器加可变容性元件实现。
[0035] 铺设在电偶极子天线棒和±层之间使用降阻剂,增强水平铺设的电偶极子天线棒 101与周围大地±层的接触,降低电偶极子天线棒101周围大地±层的电阻率和水平铺设电 偶极子天线棒101两端的接地阻抗;选用的降阻剂由细石墨、膨润±、固化剂、润滑剂、导电 水泥组成,在电偶极子天线棒101周围形成一个变化平缓的低电阻区域。
[0036] 本发明的有益效果在于:
[0037] 本发明应用于矿井应急及日常通信的水平铺设天线的电磁无线透地通信系统天 线单元将发射单元的电磁功率信号福射到地层中,实现信号的发送,信号发射单元将调制 信号转换为电功率信号,并将电磁功率信号禪合到天线单元,信号接收单元通过放大解调 天线单元感应的电信号实现信息的接收,数字调制解调单元将数字语音信息或者文本信息 转换为调制信号波形W及解调接收到的信号并将其音频输出或者输出到显示设备。且本发 明通过优化布置天线单元,采用降阻剂降低了天线接触大地±层的电阻率,解决了现有的 无线透地通信系统负载阻抗大,功率损耗过大,续航能力弱,频带外功率信号泄露严重的问 题。与现有的天线接地系统相比,本发明能够在相同的通信性能情况下,使天线架设成本和 施工量降低30% W上。同时有效提高了设备在高干扰信道环境中W高信噪比接收信息的能 力。
【附图说明】
[0038] 图1为本发明所述的水平铺设天线的电磁无线透地通信系统框图;
[0039] 图2为水平铺设天线单元结构框图;
[0040] 图3为信号接收单元结构框图;
[0041 ]图4为数字调制解调单元结构框图。
【具体实施方式】
[0042] 下面结合附图对本发明做进一步描述。
[0043] 本发明公开了一种水平铺设天线的电磁无线透地通信系统,设及一种应用于矿井 应急及日常通信的水平铺设天线的电磁无线透地通信系统,解决了现有矿井透地通信设备 天线接地阻抗过大导致通信设备通信质量变差、通信功耗过大和天线较大、铺设困难复杂 的问题。本发明所述的水平铺设天线单元将发射单元的电磁功率信号福射到地层中,实现 信号的发送,信号发射单元将已调制信号转换为电功率信号,并将电磁功率信号禪合到天 线单元;信号接收单元通过水平铺设天线单元感应的电信号实现信息的接收,然后放大解 调,数字调制解调单元将数字语音信息或者文本信息等数字信息转换为调制信号波形W及 将接收到的信号解调输出音频或者输出到显示设备。本发明提高电磁无线透地通信距离和 效果,便于天线铺设,减少施工量。本发明适用于应用于矿井应急及日常通信使用。
[0044] 水平铺设天线的电磁无线透地通信系统,该系统包括水平铺设天线单元(1)、信号 发射单元(2)、信号接收单元(3)和数字调制解调单元(4);
[0045] 水平铺设天线单元(1),用于将信号发射单元(2)产生的调制功率电信号福射到大 地±层中,并将感应接收到的大地±层中微弱的电信号传送给信号接收单元(3);
[0046] 水平铺设天线单元(1)由多根电偶极子天线棒(101)组成;电偶极子天线棒由不诱 钢钢管构成,钢管内外表面光滑无毛刺;在钢管的一端牢固焊接多股粗铜线作为天线馈线, 焊点平整并使用树脂材料绝缘密封,再用绝缘胶布密封钢管此端,并把多股粗铜线按最短 长度可靠连接在一点,从运一点连接粗铜线作为天线馈线,连接点等处使用胶布密封绝缘, 不要裸露馈线,制作成电偶极子天线棒一根(101);其他电偶极子天线棒也采用相同方式制 作;
[0047]水平铺设天线单元(1)在大地±层的上侧或下侧,通常水平铺设天线单元(1)由2- 8根电偶极子天线棒组成,分两侧铺埋,一侧可由1-4根电偶极子天线棒并联组成,每根电偶 极子天线棒埋设在一个长方形坑中,坑的尺寸比不诱钢钢管尺寸稍大一些;所有坑的位置 在一条直线上一字排开,一侧相邻坑间隔适当距离,两侧间隔约适当距离;首先在坑中均匀 铺埋较厚的降阻剂(102),在倒入适量水把降阻剂调成粥状,然后放入一根电偶极子天线棒 在粥状降阻剂中,再在上面撒上适当厚的降阻剂,倒入适量的水,调成粥状覆盖电偶极子天 线棒,上面在覆盖±层,并适度压实;天线馈线留在地面上,接头用绝缘胶布缠绕防止电流 流失;一侧的多根电偶极子天线棒的天线馈线并联在一起,通过一根天线馈线连接到通路 切换模块(104)上一端,另一端连接另一侧并联电偶极子天线棒组;使用IX阻抗分析仪测试 通路切换模块(104)两点间的阻抗,作为后面计算匹配阻抗的依据;一般的水平铺设天线单 元阻抗为10欧姆W内,阻抗过高则导致无用功率大量损耗,天线不能正常福射电磁波;
[004引天线单元(1)用于接收信号通路切换模块(104)传送的电磁功率信号,并将电磁功 率信号福射到大地±层,W及感应大地±层中微弱的电流场信号,并将感应到的微弱的电 信号传送至通路切换模块(104);
[0049] 降阻剂(102)设置在电偶极子天线棒(101)的外侧,设置在铺设电偶极子天线棒 (101)的大地±层的表面,用于增强水平铺设的电偶极子天线棒(101)与周围大地±层的接 触,降低电偶极子天线棒(101)周围大地±层的电阻率和水平铺设电偶极子天线棒(101)两 端的接地阻抗;阻抗匹配网络(103),通过信号通路切换模块(104)将水平铺设的水平铺设 天线单元两端的阻抗转换为与发射单元(2)相匹配的输出阻抗,同时消除水平铺设天线单 元两端存在的电抗分量;
[0050] 信号通路切换模块(104)用于连接水平铺设天线单元与阻抗匹配网络(103)和信 号接收单元(3),对信号发射单元(2)发送信号和信号接收单元(3)接收信号之间的通信电 路切换;
[0051] 信号发射单元(2)将接收数字调制解调单元(4)产生的已调电信号进行功率放大 获得电磁功率信号;并将电磁功率信号传送至天线单元(1);
[0052] 信号接收单元(3)将天线单元(1)感应接收到的大地±层中的微弱电信号进行放 大滤波,并将经放大和滤波后的信号传送到数字调制解调单元(4);
[0053] 数字调制解调单元(4)作为人机交互接口,将输入的数字信息转换为调制信号,传 送至信号发射单元(2),W及将信号接收单元(3)传送的信号解调并转换为数字信息输出; 数字信息包括文本信息、数字化的语音信息、指令信息、传感器监测信息和人员位置信息;
[0054] 信号接收单元(3)包括己伦选频回路(301)、微弱信号放大模块(302)、二级滤波模 块(303)和自动增益模块(304);
[0055] 己伦选频回路(301)用于抑制共模电信号,并将天线单元(1)感应的差分电信号转 换为单端电压信号,滤除单端电压信号频带W外的无用噪声和干扰,将预处理信号传送到 微弱信号放大模块(302);
[0056] 微弱信号放大模块(302)用于接收己伦选频回路(301)输入的微弱电信号,并对接 收的微弱电信号进行低噪声放大,直到接收的电信号的强度达到二级滤波模块(303)的处 理电平范围W内将放大后的电信号发送至二级滤波模块(303);
[0057] 二级滤波模块(303)用于接收微弱信号放大模块(302)输入的电信号,并对接收到 的电信号进行高Q值滤波,并将滤波后的信号输出至后端自动增益模块(304);
[0058] 自动增益模块(304)用于接收二级滤波模块(303)输入的滤波后的信号,并将滤波 后信号的电平控制在固定的输出电平上,防止产生寄生调制干扰,并将固定电平信号输入 到数字调制解调单元(4)进行信号解调;数字调制解调单元(4)包括中央运算及控制模块 (401)、语音压缩编码模块(402)、波形成形及量化模块(403)和外部通信接口组(404);
[0059] 中央运算及控制模块(401)用于接收外部通信接口组(404)输入的数字信息,对数 字信息进行调制,获得模拟电信号,并将模拟电信号输出给信号发射单元(2);接收波形成 形及量化模块(403)产生化的波形信号,并对接收的量化的波形信号进行解调,将解调后的 信息输出到外部通信接口组(404);
[0060] 语音压缩编码模块(402)用于将输入的语音信号进行低速率压缩编码为数字信息 并通过外部通信接口组(404)输出到中央运算及控制模块(401),W及将解调的数字语音信 息解码输出;
[0061] 波形成形及量化模块(403)用于将中央运算及控制模块(401)产生的数字波形转 换为模拟电信号并输出到信号发射单元(2),同时将信号接收单元(3)输出的模拟信号进行 量化并传送到中央运算及控制模块(401)进行解调处理;
[0062] 外部通信接口组(404)用于连接中央运算及控制模块(401)与外部用户和设备接 口,将文本信息、指令信息和人员位置信息传输到人机输入输出终端,将数字语音信息通过 外部通信接口组(404)输出到语音压缩编码模块(402)。
【具体实施方式】 [0063] 一、结合图1至图4说明本实施方式,本实施方式所述的水平铺设天 线的电磁无线透地通信系统,该系统包括水平铺设天线单元(1)、信号发射单元(2)、信号接 收单元(3)和数字调制解调单元(4);
[0064] 水平铺设天线的电磁无线透地通信系统,其特征在于,该系统包括水平铺设天线 单元(1)、信号发射单元(2)、信号接收单元(3)和数字调制解调单元(4);
[0065] 水平铺设天线单元(1),用于将信号发射单元(2)产生的调制功率电信号福射到大 地±层中,并将感应接收到的大地±层中微弱的电信号传送给信号接收单元(3);
[0066] 水平铺设天线单元(1)由多根电偶极子天线棒(101)组成;电偶极子天线棒由不诱 钢钢管构成,钢管内外表面光滑无毛刺;在钢管的一端牢固焊接多股粗铜线作为天线馈线, 焊点平整并使用树脂材料绝缘密封,再用绝缘胶布密封钢管此端,并把多股粗铜线按最短 长度可靠连接在一点,从运一点连接粗铜线作为天线馈线,连接点等处使用胶布密封绝缘, 不要裸露馈线,制作成电偶极子天线棒一根(101);其他电偶极子天线棒也采用相同方式制 作;
[0067] 水平铺设天线单元(1)在大地±层的上侧或下侧,通常水平铺设天线单元(1)由2- 8根电偶极子天线棒组成,分两侧铺埋,一侧可由1-4根电偶极子天线棒并联组成,每根电偶 极子天线棒埋设在一个长方形坑中,坑的尺寸比不诱钢钢管尺寸稍大一些;所有坑的位置 在一条直线上一字排开,一侧相邻坑间隔适当距离,两侧间隔约适当距离;首先在坑中均匀 铺埋较厚的降阻剂(102),在倒入适量水把降阻剂调成粥状,然后放入一根电偶极子天线棒 在粥状降阻剂中,再在上面撒上适当厚的降阻剂,倒入适量的水,调成粥状覆盖电偶极子天 线棒,上面在覆盖±层,并适度压实;天线馈线留在地面上,接头用绝缘胶布缠绕防止电流 流失;一侧的多根电偶极子天线棒的天线馈线并联在一起,通过一根天线馈线连接到通路 切换模块(104)上一端,另一端连接另一侧并联电偶极子天线棒组;使用IX阻抗分析仪测试 通路切换模块(104)两点间的阻抗,作为后面计算匹配阻抗的依据;一般的水平铺设天线单 元阻抗为10欧姆W内,阻抗过高则导致无用功率大量损耗,天线不能正常福射电磁波;
[0068] 水平铺设天线单元(1)用于接收信号通路切换模块(104)传送的电磁功率信号,并 将电磁功率信号福射到大地±层,W及感应大地±层中微弱的电流场信号,并将感应到的 微弱的电信号传送至通路切换模块(104);
[0069] 降阻剂(102)设置在电偶极子天线棒(101)的外侧,设置在铺设电偶极子天线棒 (101)的大地±层的表面,用于增强水平铺设的电偶极子天线棒(101)与周围大地±层的接 触,降低电偶极子天线棒(101)周围大地±层的电阻率和水平铺设电偶极子天线棒(101)两 端的接地阻抗;阻抗匹配网络(103),通过信号通路切换模块(104)将水平铺设的水平铺设 天线单元两端的阻抗转换为与发射单元(2)相匹配的输出阻抗,同时消除水平铺设天线单 元两端存在的电抗分量;
[0070] 信号通路切换模块(104)用于连接水平铺设天线单元与阻抗匹配网络(103)和信 号接收单元(3),对信号发射单元(2)发送信号和信号接收单元(3)接收信号之间的通信电 路切换;
[0071] 信号发射单元(2)将接收数字调制解调单元(4)产生的已调电信号进行功率放大 获得电磁功率信号;并将电磁功率信号传送至天线单元(1);
[0072] 信号接收单元(3)将天线单元(1)感应接收到的大地±层中的微弱电信号进行放 大滤波,并将经放大和滤波后的信号传送到数字调制解调单元(4);
[0073] 数字调制解调单元(4)作为人机交互接口,将输入的数字信息转换为调制信号,传 送至信号发射单元(2),W及将信号接收单元(3)传送的信号解调并转换为数字信息输出; 数字信息包括文本信息、数字化的语音信息、指令信息、传感器监测信息和人员位置信息;
[0074] 信号接收单元(3)包括己伦选频回路(301)、微弱信号放大模块(302)、二级滤波模 块(303)和自动增益模块(304);
[0075] 己伦选频回路(301)用于抑制共模电信号,并将天线单元(1)感应的差分电信号转 换为单端电压信号,滤除单端电压信号频带W外的无用噪声和干扰,将预处理信号传送到 微弱信号放大模块(302);
[0076] 微弱信号放大模块(302)用于接收己伦选频回路(301)输入的微弱电信号,并对接 收的微弱电信号进行低噪声放大,直到接收的电信号的强度达到二级滤波模块(303)的处 理电平范围W内将放大后的电信号发送至二级滤波模块(303);
[0077] 二级滤波模块(303)用于接收微弱信号放大模块(302)输入的电信号,并对接收到 的电信号进行高Q值滤波,并将滤波后的信号输出至后端自动增益模块(304);
[0078] 自动增益模块(304)用于接收二级滤波模块(303)输入的滤波后的信号,并将滤波 后信号的电平控制在固定的输出电平上,防止产生寄生调制干扰,并将固定电平信号输入 到数字调制解调单元(4)进行信号解调;数字调制解调单元(4)包括中央运算及控制模块 (401)、语音压缩编码模块(402)、波形成形及量化模块(403)和外部通信接口组(404);
[0079] 中央运算及控制模块(401)用于接收外部通信接口组(404)输入的数字信息,对数 字信息进行调制,获得模拟电信号,并将模拟电信号输出给信号发射单元(2);接收波形成 形及量化模块(403)产生化的波形信号,并对接收的量化的波形信号进行解调,将解调后的 信息输出到外部通信接口组(404);
[0080] 语音压缩编码模块(402)用于将输入的语音信号进行低速率压缩编码为数字信息 并通过外部通信接口组(404)输出到中央运算及控制模块(401),W及将解调的数字语音信 息解码输出;
[0081] 波形成形及量化模块(403)用于将中央运算及控制模块(401)产生的数字波形转 换为模拟电信号并输出到信号发射单元(2),同时将信号接收单元(3)输出的模拟信号进行 量化并传送到中央运算及控制模块(401)进行解调处理;
[0082] 外部通信接口组(404)用于连接中央运算及控制模块(401)与外部用户和设备接 口,将文本信息、指令信息和人员位置信息传输到人机输入输出终端,将数字语音信息通过 外部通信接口组(404)输出到语音压缩编码模块(402)。
[0083] 本实施方式所述的水平铺设天线的电磁无线透地通信系统的新型天线,其具有长 效降低天线接地阻抗的能力使天线在高阻抗±壤地区仍旧能够将阻抗低到4欧姆W下,同 时采用水平接地方式,有效降低了施工难度;本发明专利发明了容性抵消模块,抵消了天线 端存在的感性分量;本发明使用语音压缩模块进行数字语音传输,用户更易操作;本发明在 接收端采用己伦平衡电路,完全抵消了天线两端的直流分量影响;同时本发明专利发明了 应用于透地通信系统的多抽头阻抗匹配网络。
【具体实施方式】 [0084] 二、本实施方式是对一所述的水平铺设天线的电磁无 线透地通信系统的进一步说明,信号发射单元(2)包括低频功放模块(201)和电源功能模块 (202);
[0085] 低频功放模块(201)将接收数字调制解调单元(4)产生的已调电信号进行功率放 大获得电磁功率信号,并将电磁功率信号输出到阻抗匹配网络(103);
[0086] 电源功能模块(202)用于为低频功放模块(201)提供稳定功能电压,W及为信号接 收单元(3)和数字调制解调单元(4)供电。
[0087] 本实施方式所述的信号发射单元的低频功放模块采用新型大功率音频放大集成 电路忍片的典型音频功放电路连接方式,该模块配备电路保护功能包括过压保护、过热保 护、电流限制功能等;功率放大器电路接成D类功放电路形式,电源利用率高、输出功率大, 能够连续输出50W的功率。由电源功能模块提供48V直流功率电源,功率输出至天线单元的 阻抗匹配网络,电源功能模块具有两套供电模式,在正常调度、人员定位、相互通信的非紧 急状态中使用电源接插头连接矿井中电源线供电,并为自备储能电池充电。在应急状态下 电源线不能正常供电时,供电模块自动启动储能电池供电工作模式。信号通路切换模块在 设备处于发射状态时建立阻抗匹配网络和水平铺设电偶极子天线棒的电路连接,将电功率 信号禪合到水平铺设电偶极子天线棒;
[0088] 水平铺设电偶极子天线棒和降阻剂共同组成天线福射系统,降阻剂是高导电性高 渗透性材料,能够有效填充大地±层中的缝隙增强天线与±壤的接触,进一步降低水平铺 设电偶极子天线棒接地电阻,减小电磁功率信号在天线端的损耗,同时增强信号接收的稳 定性;
[0089] 信号通路切换模块在设备处于接收状态时建立信号接收单元和水平铺设电偶极 子天线棒的电路连接,将天线感应到的微弱电磁信号禪合到接收单元的己伦选频回路;
[0090] 己伦选频回路将平衡电路转换为不平衡电路,起到抑制共模干扰信号作用,并起 简化放大电路的作用,同时滤除接收到微弱信号W外的噪声和干扰,起到选频和防止信号 出现截止状态的作用;己伦选频回路连接微弱信号放大模块;
[0091] 微弱信号放大模块,使用超低噪声、低失真运放忍片将己伦选频回路的微弱信号 进行低噪声固定倍数放大40地,使放大后的信号处于后端二级滤波模块可处理且不存在信 号截止饱和的状态,并且为后级电路提供较强的带负载能力,放大后信号被二级滤波模块 进行局Q滤波;
[0092] 二级滤波模块采用多片具有可编程、可设置带通滤波器中屯、频率、可设置滤波器 品质因数功能的专用滤波器忍片级联的设计方式。根据实际情况,通过板间配置电路来设 置滤波器的中屯、频率W及品质因数,带通滤波器可W做到带宽最窄达到50化,品质因数可 W高达64。滤波器忍片使用切比雪夫型滤波器W获取更加睹峭的滚降,更快的衰减。二级滤 波模块将处理电信号输出至自动增益模块。
[0093] 自动增益模块增加接收信号的动态范围:当输入信号过小时,自动增益模块增大 放大器增益;当输入信号过大时,自动增益模块减小放大器的增益。通过自动控制的过程实 现输出信号保持在最佳的输出电平,增加了信号接收单元的动态范围。本发明中系统的动 态范围是0-60地。电路输入信号在ImV~IV范围内变化时,输出信号稳定在6Vpp,并输出到 与之相连的波形成型及量化模块。
[0094] 波形成型及量化模块对输入信号进行12bit线性量化,将量化后信号输出到数字 调制解调单元;数字调制解调单元依次完成载波同步、位同步、帖同步和纠错译码。将解码 信息根据类型通过外部通信接口组输出到用户计算机并显示出用户文本信息、外部监测传 感器监测信息和定位信息,同时将语音数据进行存储,等到接收到所有的语音信号后将语 音数据输入到语音压缩编码中并进行语音解码操作和音频输出。
【具体实施方式】 [0095] Ξ、本实施方式是对一所述的水平铺设天线的电磁无 线透地通信系统的进一步说明,数字调制解调单元采用FPGA实现。
[0096] 本实施方式所述的水平铺设天线的电磁无线透地通信系统外扩连接SDRAM,并搭 载NI0S软核,对输入的数字信息依次进行数据打包、纠错编码、数据调制和生成数字域的调 制波形,W50bps发送语音数据,W25bps发送文本信息;并将数字域调制波形通过波形成型 及量化模块转换为电平幅度为5V的PSK模拟波形,输出到与之相连的信号发射单元的低频 功放模块。
【具体实施方式】 [0097] 四、本实施方式是对一所述的水平铺设天线的电磁无 线透地通信系统的进一步说明,阻抗匹配网络采用变压器加可变容性元件实现。
[0098] 阻抗匹配网络采用变压器加可变容性元件实现,其功能是实现负载阻抗与低频功 放模块输出阻抗的匹配,同时消除电路中存在的电抗成分。阻抗匹配网络频率响应可W达 到300化-25Ifflz。并具有多抽头,W适应不同矿井的不同接地阻抗。
[0099] 本发明存在W下优点:1、发明天线基于传统电偶极子天线理论,并在此基础上通 过添加环绕天线的半流体性质降阻材料,使天线阻抗能够降低到传统电器接地要求的低于 4欧姆的水平;2、相对于其垂直的接地方式本发明天线采用水平依次串联排列的方式,有效 的减少了安装人员在岩石基底的地面安装天线的工作量,方便施工;3、本发明在天线端和 功放输出端存在多抽头阻抗匹配网络,实现不同的天线阻抗和功放输出阻抗的匹配,使电 磁能量W最大功效输出;4、本发明设计了容性抵消电路,能够有效消除天线上存在的电抗 分量,减少了功放设备上的无功功率;5、本发明的接收模块存在己伦平衡电路,能够直接消 除由于天线两端±壤电解质存在的酸碱差异造成的原电池现象,进而导致接收放大电路的 失真失效情况;6、本发明沿用经典无线终端设计思路,在配有文本和压缩数字语音传输的 基础上使用存储慢发技术,有效提高了设备在高干扰信道环境中W高信噪比接收信息的能 力。
[0100]本发明虽按照具体实例设计通信系统天线、功放匹配网络、容性消除电路和己伦 平衡电路等,但意图并非局限于此。相关领域人员根据本发明进行修改获得新实例后,本发 明权利要求书将包含属于本发明范围内的修改。
【主权项】
1.水平铺设天线的电磁无线透地通信系统,其特征在于:该系统包括水平铺设天线单 元(1)、信号发射单元(2)、信号接收单元(3)和数字调制解调单元(4); 水平铺设天线单元(1),将信号发射单元(2)产生的调制功率电信号辐射到大地土层 中,并将感应接收到的大地土层中微弱的电信号传送给信号接收单元(3); 水平铺设天线单元(1)由多根电偶极子天线棒(101)组成;电偶极子天线棒由不锈钢钢 管构成,钢管内外表面光滑无毛刺;在钢管的一端牢固焊接多股粗铜线作为天线馈线,焊点 平整并使用树脂材料绝缘密封,再用绝缘胶布密封钢管此端;把多股粗铜线按最短长度可 靠连接在一点,从这一点连接粗铜线作为天线馈线,连接点处使用胶布密封绝缘,不要裸露 馈线,制作成电偶极子天线棒一根(101);其他电偶极子天线棒也采用相同方式制作; 水平铺设天线单元(1)在大地土层的上侧或下侧,通常水平铺设天线单元(1)由2-8根 电偶极子天线棒组成,分两侧铺埋,一侧可由1-4根电偶极子天线棒并联组成,每根电偶极 子天线棒埋设在一个长方形坑中,坑的尺寸比不锈钢钢管尺寸大;所有坑的位置在一条直 线上一字排开,一侧相邻坑间隔适当距离,两侧间隔约适当距离;在坑中均匀铺埋较厚的降 阻剂(102),在倒入适量水把降阻剂调成粥状,放入一根电偶极子天线棒在粥状降阻剂中, 在上面撒上适当厚的降阻剂,倒入适量的水,调成粥状覆盖电偶极子天线棒,上面在覆盖土 层,并适度压实;天线馈线留在地面上,接头用绝缘胶布缠绕防止电流流失;一侧的多根电 偶极子天线棒的天线馈线并联在一起,通过一根天线馈线连接到通路切换模块(104)上一 端,另一端连接另一侧并联电偶极子天线棒组;使用LC阻抗分析仪测试通路切换模块(104) 两点间的阻抗; 天线单元(1)接收信号通路切换模块(104)传送的电磁功率信号,并将电磁功率信号辐 射到大地土层,以及感应大地土层中微弱的电流场信号,并将感应到的微弱的电信号传送 至通路切换模块(104); 阻抗匹配网络(103),通过信号通路切换模块(104)将水平铺设的水平铺设天线单元两 端的阻抗转换为与发射单元(2)相匹配的输出阻抗,同时消除水平铺设天线单元两端存在 的电抗分量; 信号通路切换模块(104)连接水平铺设天线单元与阻抗匹配网络(103)和信号接收单 元(3),对信号发射单元(2)发送信号和信号接收单元(3)接收信号之间的通信电路切换; 信号发射单元(2)将接收数字调制解调单元(4)产生的已调电信号进行功率放大获得 电磁功率信号;并将电磁功率信号传送至天线单元(1); 信号接收单元(3)将天线单元(1)感应接收到的大地土层中的微弱电信号进行放大滤 波,并将经放大和滤波后的信号传送到数字调制解调单元(4); 数字调制解调单元(4)为人机交互接口,将输入的数字信息转换为调制信号,传送至信 号发射单元(2),以及将信号接收单元(3)传送的信号解调并转换为数字信息输出;数字信 息包括文本信息、数字化的语音信息、指令信息、传感器监测信息和人员位置信息; 信号接收单元(3)包括巴伦选频回路(301)、微弱信号放大模块(302)、二级滤波模块 (303)和自动增益模块(304); 巴伦选频回路(301)抑制共模电信号,并将天线单元(1)感应的差分电信号转换为单端 电压信号,滤除单端电压信号频带以外的无用噪声和干扰,将预处理信号传送到微弱信号 放大模块(302); 微弱信号放大模块(302)接收巴伦选频回路(301)输入的微弱电信号,并对接收的微弱 电信号进行低噪声放大,直到接收的电信号的强度达到二级滤波模块(303)的处理电平范 围以内将放大后的电信号发送至二级滤波模块(303); 二级滤波模块(303)接收微弱信号放大模块(302)输入的电信号,并对接收到的电信号 进行高Q值滤波,并将滤波后的信号输出至后端自动增益模块(304); 自动增益模块(304)接收二级滤波模块(303)输入的滤波后的信号,并将滤波后信号的 电平控制在固定的输出电平上,将固定电平信号输入到数字调制解调单元(4)进行信号解 调;数字调制解调单元(4)包括中央运算及控制模块(401)、语音压缩编码模块(402)、波形 成形及量化模块(403)和外部通信接口组(404); 中央运算及控制模块(401)接收外部通信接口组(404)输入的数字信息,对数字信息进 行调制,获得模拟电信号,并将模拟电信号输出给信号发射单元(2);接收波形成形及量化 模块(403)产生化的波形信号,并对接收的量化的波形信号进行解调,将解调后的信息输出 到外部通信接口组(404); 语音压缩编码模块(402)将输入的语音信号进行低速率压缩编码为数字信息并通过外 部通信接口组(404)输出到中央运算及控制模块(401),将解调的数字语音信息解码输出; 波形成形及量化模块(403)将中央运算及控制模块(401)产生的数字波形转换为模拟 电信号并输出到信号发射单元(2),同时将信号接收单元(3)输出的模拟信号进行量化并传 送到中央运算及控制模块(401)进行解调处理; 外部通信接口组(404)连接中央运算及控制模块(401)与外部用户和设备接口,将文本 信息、指令信息和人员位置信息传输到人机输入输出终端,将数字语音信息通过外部通信 接口组(404)输出到语音压缩编码模块(402)。2. 根据权利要求1所述的水平铺设天线的电磁无线透地通信系统,其特征在于:所述的 水平铺设天线单元的所有电偶极子天线棒都在一条直线上排布,根据布置天线场地大小、 通信距离和功率确定使用电偶极子天线棒的数量,一侧使用1-4根,接收点信号场强电压:〇是电导率,r是通信距离,cU是发射点的天线单元的平均距离,d2是接收点的天线单元 的平均距离。3. 根据权利要求1所述的水平铺设天线的电磁无线透地通信系统,其特征在于:信号发 射单元(2)包括低频功放模块(201)和电源功能模块(202); 低频功放模块(201)将接收数字调制解调单元(4)产生的已调电信号进行功率放大获 得电磁功率信号,并将电磁功率信号输出到阻抗匹配网络(103); 电源功能模块(202)为低频功放模块(201)提供稳定功能电压,以及为信号接收单元 (3)和数字调制解调单元(4)供电。4. 根据权利要求1所述的水平铺设天线的电磁无线透地通信系统,其特征在于:数字调 制解调单元采用FPGA或者DSP微处理器件。5. 根据权利要求1所述的水平铺设天线的电磁无线透地通信系统,其特征在于:阻抗匹 配网络采用变压器加可变容性元件实现。6. 根据权利要求1所述的水平铺设天线的电磁无线透地通信系统,其特征在于,铺设在 电偶极子天线棒和土层之间使用降阻剂,增强水平铺设的电偶极子天线棒(101)与周围大 地土层的接触,降低电偶极子天线棒(101)周围大地土层的电阻率和水平铺设电偶极子天 线棒(101)两端的接地阻抗;选用的降阻剂由细石墨、膨润土、固化剂、润滑剂、导电水泥组 成,在电偶极子天线棒(101)周围形成一个变化平缓的低电阻区域。
【文档编号】H01Q1/50GK105871476SQ201610289420
【公开日】2016年8月17日
【申请日】2016年5月4日
【发明人】薛伟, 李北明, 綦俊炜, 安澄全, 刘玉梅
【申请人】哈尔滨工程大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1