有机场致发光装置及其制造方法

文档序号:8032654阅读:269来源:国知局
专利名称:有机场致发光装置及其制造方法
技术领域
本发明涉及配备有机场致发光元件的有机场致发光装置以及其制造方法。
背景技术
近年来,伴随着信息设备的多样化,对于比通常使用的CRT(阴极射线管)耗电量少的平板显示元件的需求增加。作为这种平板显示元件之一,具有高效率、薄型、轻量、与视角依存性低等特征的有机场致发光元件(以下,简称有机EL)正引起人们的注意,使用该有机元件的显示装置的开发正在活跃地进行之中。
有机EL元件是从电子注入电极和空穴注入电极分别将电子和空穴注入到发光部内,注入的电子和空穴在发光中心再次结合,使有机分子成为激励状态,在该有机分子从激励状态恢复到基态时产生荧光的自发光型的元件。
该有机EL元件通过选择作为发光材料的荧光物质而能够改变发光色,对于多彩色、全彩色等显示装置的应用的期待高涨。由于有机EL元件能够以低电压进行面发光,所以也可以作为液晶显示装置等的背光来利用。对于这种有机EL元件来说,现在还处于向数字摄像机或者便携电话等小型显示装置中应用进展的阶段。
有机EL元件抗水分能力极弱,具体地说,金属电极和有机层的界面在水分的影响下会引起变质,电极剥离,金属电极氧化而成为高电阻化,引起所谓的有机材料本身因水分而变质的现象。因此,存在所谓的驱动电压上升,暗斑(不发光缺陷)的发生和成长或者产生发光亮度降低等,不能确保足够的可靠性等问题。
因而,在有机EL元件中,只有防止了水分的侵入才能够确保充分的可靠性。因此,为了防止水分的侵入而使用图17所示的构造。图17是现有技术的有机EL装置的模式截面图。
在图17中,在基板1上设置有多个有机EL元件50。各有机EL元件50顺序地包含有空穴注入电极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和电子注入电极。在图17中只示出了空穴注入电极2。
在现有技术的有机EL装置中,在基板1的外周部上涂敷有密封剂11,在内部具有干燥剂31的玻璃制或者金属制的密封罐20J以覆盖多个有机EL元件50的方式而罩在基板1上,通过由紫外线或者热量使密封剂11硬化而将金属制的密封罐20J粘接在基板1上。因此,使有机EL元件50与外部气体隔绝。
然而,对于图17的有机EL装置900来说,在制造时,在密封剂11内部有时会产生气泡。在这种情况下,不能充分防止水分向有机EL元件50的侵入。
此外,对于图17的有机EL装置900来说,为了密封有机EL元件50而使用密封罐20J。这里,考虑到干燥剂31因水分膨胀等原因,而有必要在密封罐20J内的有机EL元件50和干燥剂31之间留有空间。因此,使密封罐20J的厚度变大,从而难以实现薄型化。
因此,提出了以覆盖有机EL元件的有机物EL层的方式来形成具有耐湿性的光硬化树脂层,并在其上部固定有非透水性的小基板的有机EL元件的结构(参照日本专利特开平5-182759号公报)。
在该有机EL元件的构造中,由于通过耐湿性的光硬化树脂层以及非透水性的基板而使有机EL元件与外部气体隔绝,从而实现有机EL元件本身的薄型化。
因此,当为了使光硬化树脂层的透水性降低而添加二氧化硅或者玻璃等的填料时,会导致光硬化树脂层的粘度的上升以及白色化。
通过光硬化树脂层的粘度的上升,而难以均匀化光硬化树脂层的膜厚,同时,也难以实现大面积化。此外,在使光从光硬化树脂层上面一侧输出到外部的构造中,难以使在有机EL层上发生的光充分地输出。
而且,当在光硬化树脂层上粘合非透水性基板时,气泡进入到这些界面的可能性较高。
另一方面,作为防止在粘合基板时发生气泡的方法,提出了在像素屏的上面设置有由紫外线硬化型树脂等构成的密封剂,在该密封剂上配置由增强片所增强的保护层玻璃,通过滚筒的推压力来使保护层玻璃与密封剂粘合,从而防止气泡的侵入的方法(参照日本专利特开2002-110349号公报)。
在这种情况下,虽然通过滚筒的推压力来防止气泡的残留,但是,会发生保护层玻璃错位以及马鞍形变形,从而导致很难以均匀的厚度来粘合保护层玻璃。
除了上述之外,还提出了以下方法,即,为了防止用于密封发光元件的密封材料产生气泡,通过边缘粘接剂以及玻璃盖板来使设置在玻璃基板上的发光元件设置一部分开口并包围之后,使用真空槽而从开口部使密封材料充满由边缘粘接剂以及玻璃盖板形成的中空部,在大气中使密封材料硬化(参照日本专利特开2001-284043号公报)。
在这种情况下,因为注入到包围发光元件的中空部的密封材料是在真空中充填的,所以防止了气泡的发生。然而,由于密封材料的硬化是在大气压下进行的,所以还存在从中空部上设置的开口部产生气泡可能性。

发明内容
本发明的目的在于提供一种不含有气泡、而且能够在均匀的厚度下密封有机场致发光元件的同时,可实现薄型化的有机场致发光装置的制造方法。
本发明的其他目的在于提供一种可薄型化的有机场致发光装置。
本发明的再一目的在于提供一种可薄型化,且充分防止水分侵入的有机场致发光装置。
本发明的又一目的在于提供一种可薄型化,且具有均匀厚度的同时,能够充分防止水分侵入的有机场致发光装置。
根据本发明一方面的有机发光装置的制造方法是包含如下工序的方法,即在基板上形成一个或者多个有机场致发光元件的工序,在基板以及密封板的至少一方上设置用于密封一个或者多个有机场致发光元件的多于一种的密封剂的工序,在减压环境气氛中经密封剂粘合基板和密封板的工序,和将经密封剂粘合的基板以及密封板取出到大气中,使密封剂硬化的工序。
根据该有机场致发光装置的制造方法,在基板上形成一个或者多个有机场致发光元件、在基板及密封板至少一方上设置多于一种的密封剂。其次,在减压环境气氛中经由密封剂粘合基板和密封板。其后,将经由密封剂粘合的基板以及密封板取出到大气中,使密封剂硬化。
在这种情况下,因为基板和密封板的粘合是在减压环境气氛下进行的,所以防止了密封剂内部发生气泡。
此外,在减压环境气氛中经由密封剂粘合基板和密封板之后,因为将粘合的基板取出到大气中,所以在基板上的有机场致发光元件和密封板之间充填的密封剂经密封板从外部接受均匀的压力。因此,基板和密封板之间以均匀的厚度粘合。
此外,预先经密封剂在基板上形成的一个或多个有机场致发光元件上粘合密封板,所以比用密封罐,密封有机场致发光元件的情况,实现薄型化。
多于一种的密封剂包含一种第一密封剂和另一种第二密封剂,第一种密封剂具有比第二密封剂低的粘度,可以这样设置,以便使第一密封剂密封基板上的一个或多个有机场致发光元件,也可以这样设置,以便使第二密封剂在基板上的外周部上包围一个或多个有机场致发光元件。
这种情况下,因为在第一密封剂以及第二密封剂硬化时从外部向内部承受大气压,所以防止比第二密封剂粘度低的第一密封剂向外部泄漏。
此外,因为第二密封剂的粘度比第一密封剂的粘度高,所以硬化前的第二密封剂具有比第一密封剂高的保形性,防止第二密封剂向第一密封剂侵入,高度变低。因此,在基板和密封板粘合时防止有机场致发光元件与密封板之间直接接触。
遵从本发明其它局面的有机场致改发光装置配备以下部件,即基板,在基板上配置的一个或多个有机场致发光元件和用于密封一个或多个有机场致发光元件的多种密封剂;一个或多个有机场致发光元件元件通过多种密封剂中的一种第一密封剂密封、基板上的外周部通过其它种类的第二密封剂密封的,以便包围一个或多个有机场致发光元件。
在这种情况下,在基板上配置的一个或多个有机场致发光元件通过多种密封剂中一种第一密封剂密封,基板上的外周部通过其它种类的第二密封剂密封,以便包围一个或多个有机场致发光元件。据此,用密封罐与密封有机场致发光元件的密封情况相比,实现薄型化。
第一密封剂也可以具有比第二密封剂低的粘度。这种情况下,因为粘度低的第一密封剂在一个或多个有机场致发光元件全体容易扩展,所以制造变得容易。此外,因为第二密封剂的粘度比第一密封剂的粘度高,所以在硬化前,防止第二密封剂侵入第一密封剂,高度变低。
也可以在第一密封剂内添加填充剂。这种情况下,通过在第一密封剂上添加填充剂,使第一密封剂的耐湿性上升。因此,可以充分地防止水分向有机场致发光元件的侵入。
也可以在第一密封剂内添加干燥剂。这种情况下,通过在第一密封剂内添加干燥剂,使第一密封剂中包含的水分被干燥剂吸收。因而防止了水分向有机场致发光元件内的侵入。
第一密封剂也可以是粘接剂。在这种情况下,通过使粘接剂硬化,密封基板上的一个或多个有机场致发光元件。
第一密封剂也可以是片状粘接剂。这种情况下,由于第一密封剂是固体,与粘度低的密封剂相比,处理更加容易。此外,由于作为固体的第一密封剂本身具有一定厚度,所以使有机场致发光装置厚度均匀性上升。
第二密封剂内也可以添加填充剂。这种情况下,通过在第二密封剂内添加填充剂,使第二密封剂的耐湿性上升。因此,充分地防止水分向有机场致发光元件的侵入。
也可以在第二密封剂内添加干燥剂。这种情况下,通过在第二密封剂内添加干燥剂,使第二密封剂中包含的水分被干燥剂吸收。因此,充分地防止水分向有机场致发光元件的侵入。
第二密封剂也可以与一个或多个有机场致发光元件相接触。这种情况下,因为通过使第二密封剂与一个或多个有机场致发光元件接触,在广泛的范围可以通过第二密封剂密封基板上的外周部,所以可以更加充分地防止水分向不扩展基板上外周部的非发光领域的有机场致发光元件的侵入。
也可以经多种密封剂在基板上粘合密封板。这种情况下,因为在通过多种密封剂密封基板上一个或多个有机场致发光元件的同时,通过密封板密封,所以充分地防止水分向有机场致发光元件的侵入。
此外,第一密封剂在作为片状粘接剂的情况下,使预先在密封板上贴附片状粘接剂成为可能,谋求制造工艺的简单化。
也可以在与基板对置的密封板的面上设置收纳干燥剂的收纳部。这种情况下,通过在密封板的面上收纳干燥剂的收纳部,在用于密封一个或多个有机场致发光元件的多种密封剂中包含的水分被干燥剂吸收。因此更加充分地防止水分向有机场致发光元件的侵入。
密封板由透光性材料构成,也可以在与基板对置的密封板的面上设置滤色镜。在本说明书中,所谓滤色镜的术语中包含CCM(彩色转换介质)。这种情况下,在基板上形成的有机场致发光元件上发生的光通过滤色镜及密封板输出到外部。据此,实现顶部发射构造的有机场致发光装置。
一个或多个有机场致发射元件也可以通过由单层或多层构成的保护膜涂复。这种情况下,因为有机场致发光元件由非透水性单层或多层形成的保护膜涂复。所以充分地防止水分向有机场致发光元件的侵入。
遵循本发明其它局面的有机场致发光装置配备以下部件,即基板,在基板上配置的一个或多个有机场致发光元件,用于密封基板上的一个或多个有机场致发光元件的密封剂和在基板上经密封剂粘合的密封板;在基板和密封板之间的密封剂外周面是呈凹状形成的。
在该有机场致发光装置上,通过制造时在基板和密封板之间设置的密封剂承受从外部向内部的压力,密封剂外周面呈凹状形成。据此,密封剂内部不含气泡致密地形成。因此充分地防止水分向有机场致发光元件的侵入。
因为从有机场致发光元件向外部引出的端子部上防止填满密封剂并附着,所以没有必要除去在端子部上附着的密封剂的工序。


图1(a)是第一实施方式的有机EL装置的模式截面图。
图1(b)是图1(a)的有机EL装置的部分放大图。
图2是第二实施方式的有机EL装置的模式截面图。
图3是第七实施方式的有机EL装置的模式截面图。
图4是第八实施方式的有机EL装置的模式截面图。
图5是第九实施方式的有机EL装置的模式截面图。
图6是表示第一实施例的有机EL元件的密封构造的模式截面图。
图7是表示第二实施例的有机EL元件的密封构造的模式截面图。
图8是表示第三实施例的有机EL元件的密封构造的模式截面图。
图9是表示第四实施例的有机EL元件的密封构造的模式截面图。
图10是表示第五实施例的有机EL元件的密封构造的模式截面图。
图11是表示第六实施例的有机EL元件的密封构造的模式截面图。
图12是表示第七实施例的有机EL元件的密封构造的模式截面图。
图13是表示第八实施例的有机EL元件的密封构造的模式截面图。
图14是表示第九实施例的有机EL元件的密封构造的模式截面图。
图15是表示比较例的有机EL元件的密封构造的模式截面图。
图16是示出在比较例以及第一~第九实施例中密封的有机EL元件的高温多湿试验结果的曲线图。
图17是现有技术的有机EL装置的模式截面图。
具体实施例方式
以下,基于图1~图5,对第一~第九实施方式的有机场致发光(以下简称为有机EL)装置及其制造方法加以说明。
(第一实施方式)图1(a)是第一实施方式的有机EL装置的模式截面图,图1(b)是图1(a)的有机EL装置的部分放大图。其中,第一实施方式的有机EL装置100具有从上面一侧输出光的顶部发射(top emission)构造。
在图1(a)的有机EL装置100中,在基板1上以矩阵状配置有多个有机EL元件50。各有机EL元件50构成像素。对于单纯矩阵型(无源型)来说,使用玻璃基板作为基板1,对于有源矩阵型来说,使用在玻璃基板上设置有多个TFT(薄膜晶体管)和平坦层的TFT基板来作为基板1。
这里,设互相正交的三个方向为X方向、Y方向以及Z方向。X方向以及Y方向是与基板1表面平行的方向,Z方向是与基板1的表面垂直的方向。多个有机EL元件50沿着X方向以及Y方向排列。
如图1(b)所示,有机EL元件50包括空穴注入电极2、空穴注入层3、空穴传输层4、发光层5、电子传输层6、电子注入层7和电子注入电极8的层积构造。空穴注入电极2沿着X方向连续地或者按每个像素排列,电子注入电极8沿着Y方向排列。邻接的有机EL元件50之间通过由抗蚀剂(resist)材料形成的元件分离用绝缘层而分离。
空穴注入电极2是由ITO(铟锡氧化物)等金属化合物、Ag等金属或者合金构成的透明电极、半透明电极或者不透明电极。电子注入电极8是由ITO等金属化合物、金属或者合金构成的透明电极。空穴注入层3、空穴输运层4、发光层5、电子输运层6以及电子注入层7是由有机材料构成。
在图1(a)中,在基板1上的多个有机EL元件50的上部设置有密封层10,在基板1的外周部上,以包围多个有机EL元件50的整个四周而设置有密封剂11。密封剂10的上面一侧通过滤色镜21而与密封板20粘接。滤色镜21与密封板20一体形成。密封板20以及滤色镜21是由玻璃或者塑料等透明材料构成。其中,例如也可以使用(日本专利)特开2002-299055号公报中所揭示的CCM(彩色转换介质)作为滤色镜21。
这样一来,在本实施方式中,以包围多个有机EL元件50的方式来设置密封剂10,而且,以包围密封剂10的外周部的方式来设置密封剂11。即,在多个有机EL元件50的外周部上双重地设置密封剂10、11。密封剂11的宽度t1约为1~5mm。
当在有机EL元件50的空穴注入电极2和电子注入电极8之间施加驱动电压时,发光层5发光。在发光层5上发生的光经由电子注入电极8、密封剂10、滤色镜21以及密封板20而被输出到外部。
对在有机EL装置100中所使用的密封剂10、11加以说明。在本实施方式中,对密封剂11的粘度进行调整,使得比密封剂10的粘度高。密封剂10、11的粘度由使用材料的种类及其在各自的密封剂10、11内添加的填充剂或干燥剂等添加物种类以及添加量来决定。
密封剂10、11由紫外线硬化型、可见光硬化型、热硬化型、紫外线以及热的复合硬化型或者使用紫外线的后硬化型的树脂或者粘接剂等构成。
具体地说,对密封剂10使用尿素树脂系,三聚氰氨树脂系,苯酚树脂系,间苯二酚树脂系,环氧树脂系,不饱和聚酯树脂系,聚氨酯树脂系或丙烯酸树脂系等热硬化性树脂系的树脂,醋酸乙烯树脂系,乙撑醋酸乙烯聚合体树脂系,丙烯树脂系,氰基丙烯酸酯树脂系,聚乙烯醇树脂系,聚酰胺树脂系,聚烯烃树脂系,热可塑聚氨酯树脂系,饱和聚酯树脂系或纤维素系等热可塑性树脂系的树脂,酯丙烯酸,聚氨酯丙烯酸,环氧丙烯酸,密胺丙烯酯,丙烯酸树脂丙烯酸等各种丙烯酸或者氨酯聚酯等的原子团系光硬化型粘接剂,用环氧,乙烯酯等树脂的阳离子系光硬化型粘接剂,附加硫醇、盐附加型树脂系粘接剂,氯二丁烯橡胶系,腈基橡胶,苯乙烯、丁二烯系,天然橡胶系,丁基橡胶系或者硅橡胶系等橡胶系,乙烯-酚醛,氯二丁烯-酚醛,腈基-酚醛,尼龙-酚醛或者环氧-酚醛等复合系的合成高分子粘接剂。
此外,对密封剂11使用作为密封剂10用的上述材料中添加填充剂。
在密封剂11所内添加的填充剂由SiO(氧化硅)、SiON(氧氮化硅)或者SiN(氮化硅)等无机材料、或者Ag、Ni(镍)或者Al(铝)等金属材料构成。对于密封剂11来说,因为添加有填充剂,所以与使用的材料本身相比,其粘度和耐湿性都得到了提高。
其中,对于密封剂10来说,其对于波长约400nm~约800nm的可见光,具有约大于30%透过率较好,具有约大于70%透过率更好。
以下,对本实施方式的有机EL装置100的制造方法加以说明。
首先,在基板1上形成多个有机EL元件50。其次,在与滤色镜21一体形成的密封板20下面(滤色镜21侧)外周部上通过丝网印刷法使添加了填充剂的密封剂11均匀地成膜。其中,也可以通过分配装置(dispenser)而在密封板20的外周部上均匀地涂敷有密封剂11。此外,也可以使密封剂11不是在密封板20的下面外周部而是在基板1上面外周部成膜或者涂敷。
接着,向密封板20的中央部滴下密封剂10。也可以使密封剂10在整个密封板20面全体,少量等间隔地多滴滴下。这种情况下,由于密封剂10在密封板20的整个面上容易扩展,所以可以短时间进行后述基板1和密封板20之间的粘合。
其后,在真空腔室内进行密封板20和基板1的粘合。起初,在开放在大气压下的真空腔室内,在各个基板托架上安装有密封板20和具有多个有机EL元件50的基板1。在该状态下,密闭真空腔室,使真空腔室内减压至预定的真空度。从而,真空腔室内成为真空状态。
其次,在真空状态的真空腔室内,通过操作基板托架来进行定位,使得密封板20和基板1之间对置,从而使密封板20和基板1重合。因此,再次进行定位,在预定压力下粘合密封板20和基板1。
在粘合密封板20和基板1之后,解除真空腔室内的真空状态,从真空腔室内取出相互粘合在一起的基板以及密封板20。最后,通过根据各自的材料的硬化方法,来使基板1和密封板20之间的密封剂10、11硬化,从而完成有机EL装置100。
根据上述的制造方法,因为有机EL装置100的基板1和密封板20的粘合是在真空腔室内的真空中进行,所以防止了在密封剂10、11内部产生气泡。
此外,通过在真空中由密封剂10、11而引起的基板1和密封板20的粘合后,在大气中进行密封剂10、11的硬化处理。因此,硬化前的密封剂10、11通过接受从外部向内部的大气压,而密封剂11的外周面如图1(a)所示那样呈凹状变形。而且,密封剂10、11在该状态下硬化。
这种情况下,因为密封剂10、11接受从外部向内部的大气压,所以防止了粘度低的密封剂10向外部泄漏。其结果,防止了从空穴注入电极2向密封剂11的外部引出的电极端子上附着密封剂10。
此外,粘度低的密封剂10被充填在基板1的有机EL元件50和密封板20之间。而且,有机EL元件50上的密封剂10通过取出到大气中,而经由密封板20接受从外部来的均匀压力。因此,在基板1和密封板20粘合时,密封剂10容易扩展到全体,基板1和密封板20以均匀的厚度进行粘合。
而且,因为在基板1上形成的多个有机EL元件50的上面经由密封剂10、11而粘合密封板20,所以与覆盖图17的密封罐20J相比,能够实现薄型化。
此外,通过在密封剂11内添加填充剂,而与使用密封剂11的材料自身相比,粘度以及耐湿性都得到上升。因此,密封有机EL元件50的密封剂10的外周部通过具有高粘度以及高耐湿性的密封剂11所包围,而且密封剂10的上面一侧由非透水性的密封板20所覆盖。因此,能够充分地防止了水分向有机EL元件50的侵入。
而且,因为密封剂11的粘度比密封剂10的粘度高,所以硬化前的密封剂11与密封剂10相比具有较高的保形性,防止密封剂11侵入密封剂10,高度变低。因此,在基板1和密封板20粘合时,防止有机EL元件50与密封板20直接接触。
此外,因为在密封剂10内没有添加成为白色化主要因素的填充剂,所以可以使由有机EL元件50产生的光通过密封剂10而充分输出到外部。
而且,因为在使用同一材料作为密封剂10,11的情况下,通过在密封剂11中添加填充剂而得到上述效果,所以使材料成本降低成为可能。
其中,在上述有机EL装置100制造时,在基板1和密封板20粘合时,如果基板1和密封板20的整个表面承受大气压,则通过基板1和密封板20的相互推压而往往有可能使密封剂11的外周面难以呈凹状变形。因此,为了使密封剂11的外周面呈凹状变形,也可以预先在基板1和密封板20之间设置具有预定高度的多个间隔片。这种情况下,通过使多个间隔片在基板1和密封板20之间以等间隔配置,而在基板1以及密封板20的整个表面承受大气压的情况下,基板1和密封板20之间的间隔由多个间隔片所维持。因此,密封剂11的外周面通过大气压呈凹状变形。
此外,在本实施方式中,即使在密封剂11的外周面未呈凹状变形的情况(例如不作变形或者呈凸状变形的情况等)下,也能够得到与上述相同效果,即,基板1和密封板20之间以均匀的厚度粘合,实现薄型化以及防止水分向有机EL元件50的侵入。
其中,本实施方式的有机EL元件50的密封构造也可以适用于从基板1里面一侧输出有机EL元件50发生的光的背发射构造。
在具有背发射构造的有机EL装置中,在空穴注入电极2中使用ITO等金属化合物,金属或者合金构成的透明电极,对电子注入电极8使用ITO等金属化合物,金属或合金构成的透明电极,半透明电极或者不透明电极。此外,将滤色镜21设置在基板1的里面或者基板1和空穴注入电极2之间。
(第二实施方式)图2是第二实施方式的有机EL装置的模式截面图。对于第二实施方式的有机EL装置100来说,除去以下方面之外具有与第一实施方式的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
以基板1上的外周部的密封剂11的宽度t2(与基板1表面平行方向的尺寸)比第一实施方式的密封剂11的宽度t1(约1~5mm)厚的方式而形成。密封剂11的宽度t2约为2~10mm。在本实施方式中,,以包围多个有机EL元件50的方式来设置密封剂11。即,在基板1上的外周部上以一重的方式来设置密封剂11,密封剂11与外周部的有机EL元件50连接。这种情况下,进一步充分地防止水分向基板1上的未扩展的外周部的非发光领域的有机EL元件50的侵入。
(第三实施方式)对于第三实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
在基板1上的外周部的密封剂11内添加填充剂以及干燥剂来使用。添加在密封剂11内的干燥剂由氧化钙、硫化钙、氯化钙、氧化钡或者氧化锶等化学吸附剂或者活性碳、硅胶或者人造沸石等物理吸附剂构成。密封剂11的材料可以使用在第一实施方式中所示的材料。
通过在密封剂11内添加干燥剂,而能够由干燥剂来吸收在密封剂11中所含有的水分。因此,充分地防止了水分向有机EL元件50的侵入。
(第四实施方式)对于第四实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
在基板1上,在密封有机EL元件50的密封剂10内添加填充剂来使用。作为添加在密封剂10内的填充剂,使用在第一实施方式中作为添加在密封剂11内的填充剂所示出的填充剂。其中,希望添加在密封剂10内的填充剂的含有率比添加在密封剂11内的填充剂的含有率低得多。
通过在密封剂10内添加填充剂,使得密封剂10的耐湿性上升。因此,充分地防止了水分向有机EL元件50的侵入。
当添加在密封剂10内的填充剂的含有率极低的情况下,因为降低了由填充剂的添加而产生的白色化,所以可以使通过有机EL元件50所发生的光通过密封剂10而充分地输出到外部。此外,因为还降低了粘度的上升,所以在基板1和密封板20的粘合时,密封剂10很容易向全体扩展,从而以均匀的厚度来粘合基板1和密封板20。
希望添加在密封剂10内的填充剂的折射率是密封剂10的折射率的±10%以内。当通过减少填充剂的添加量而能够确保密封剂10的透过率大于70%的情况下,可以不控制填充剂的折射率。
在本实施方式,添加有填充剂的密封剂10对波长约400nm~约800nm的可见光具有约30%以上的透过率较好,具有约70%以上的透过率更好。
(第五实施方式)对于第五实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
在基板1上,在密封有机EL元件50的密封剂10内添加填充剂来使用。作为添加在密封剂10内的填充剂,使用在第一实施方式中作为添加在密封剂11内的填充剂所示出的填充剂。其中,希望添加在密封剂10内的填充剂的含有率比添加在密封剂11内的填充剂的含有率低得多。
在本实施方式中,添加有填充剂的密封剂10对波长约400nm~约800nm的可见光,具有约30%以上的透过率较好,具有约70%以上的透过率更好。
在基板1上的外周部的密封剂11内,添加填充剂以及干燥剂来使用。作为添加在密封剂11内的干燥剂,使用在第三实施方式中示出的干燥剂。密封剂11的材料使用在第一实施方式中所示出的材料。
通过在密封剂10、11内添加填充剂来提高密封剂10、11的耐湿性,通过在密封剂11内添加干燥剂而能够由干燥剂来吸收包含在密封剂11的水分。因此,充分地防止了水分对有机EL元件50的侵入。
当添加在密封剂10内的填充剂的含有率极低的情况下,因为降低了因添加填充剂而引起的白色化,所以可以使由有机EL元件50发生的光通过密封剂10而充分地被输出到外部。此外,因为还降低了粘度,所以在粘合基板1和密封板20时,密封剂10很容易向全体扩展,从而以均匀的厚度粘合基板1和密封板20。
(第六实施方式)对于第六实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
在基板1上密封有机EL元件50的密封剂10以及在基板1上的外周部的密封剂11内添加填充剂以及干燥剂来使用。
作为添加在密封剂10、11内的填充剂,使用在第一实施方式示出的填充剂,作为干燥剂使用在第三实施方式示出的干燥剂。其中,希望在密封剂10内添加的填充剂的含有率比在密封剂11内添加的填充剂的含有率低得多。
在本实施方式中,添加有填充剂以及干燥剂的密封剂10对波长约400nm~约800nm的可见光,具有大约30%以上的透过率较好,具有大约70%以上的透过率更好。
通过在密封剂10、11内添加填充剂来提升密封剂10的耐湿性,通过在密封剂10、11内添加干燥剂而由干燥剂吸收包含在密封剂10、11中的水分。因此,充分地防止了水分对有机EL元件50的侵入。
当在密封剂10内添加的填充剂的含有率极低的情况下,因为降低了因填充剂的添加而产生的白色化,所以能够使由有机EL元件50发生的光通过密封剂10并充分地输出到外部。此外,因为还降低了粘度的上升,所以在基板1和密封板20的粘合时,使密封剂10很容易向全体扩展,从而以均匀的厚度粘合基板和密封板20。
(第七实施方式)图3是第七实施方式的有机EL装置的模式截面图。对于第七实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,除了以下方面以外通过与第一实施方式相同的制造方法来制造。
在本实施方式中,使用密封剂12来取代在第二实施方式使用的密封剂10。作为密封剂12,具体地说,使用氯丁二烯橡胶系、腈橡胶系、苯乙烯-丁二烯(styrene-butadiene)橡胶系、天然橡胶系、丁基橡胶系或者硅系等的橡胶系的粘接剂(粘接片)。
在有机EL装置100的制造过程中,在预先与滤色镜21一体形成的密封板20的下面中央部(粘合时的多个有机EL元件50的上部位置)上贴附有密封剂12。这种情况下,在密封剂11的成膜或者涂敷后,在真空腔室内进行密封板20和基板1的粘合。
密封剂12向密封板20的粘合作业也可以在添加有填充剂的密封剂11通过丝网印刷法而成膜或者通过分配装置涂敷后来进行。
由于密封剂12是固体,所以比粘度低的密封剂更容易处理。此外,由于作为固体的密封剂12本身具有一定的厚度,所以基板1和密封板20以均匀的厚度粘合,提高了膜厚的均匀性。而且,密封剂12可以预先贴附在密封板20上,实现制造工序的简单化。
在本实施方式中,密封剂12对波长约400nm~约800nm的可见光,具有大约30%以上的透过率较好,具有大约70%以上的透过率更好。
在本实施方式中,作为密封剂11使用在第二~第五实施方式中所使用的密封剂11,起到与上述相同的效果。
(第八实施方式)图4是第八实施方式的有机EL装置的模式截面图。对于第八实施方式的有机EL装置100来说,除了以下方面之外具有与图3的有机EL装置100相同的构造,通过与第七实施方式相同的制造方法来制造。
在本实施方式中,使用在外周部附近形成有沟30的密封板20a来取代在第七实施方式中所使用的密封板20。在沟30内收纳有干燥剂31。
在有机EL装置100的制造过程中,在预先与滤色镜21一体形成的密封板20的下面外周部附近形成沟30,在沟30的内部收纳有干燥剂31。干燥剂31具有液体或者固体(片)状的形态,具体地说,使用在第三实施方式示出的材料。其中,沟30形成于被密封剂12所覆盖的位置上。
通过在密封板20的下面外周部附近的沟30内收纳干燥剂31,使得在密封剂12中所包含的水分被干燥剂吸收。因此,充分地防止了水分对有机EL元件的侵入。
而且,因为沟30被密封剂12所覆盖,所以能够防止干燥剂31和密封剂11接触而反应。此外,因为干燥剂31被收纳在密封板20的沟30内,所以,即使在因吸水而导致干燥剂31发生体积膨胀的情况下,也能够防止因向密封剂12施加应力而降低紧贴性。
其中,在本实施方式中,作为密封剂11使用在上述第二~第五实施方式中所使用的密封剂,起到与上述相同的效果。
(第九实施方式)图5是第九实施方式的有机EL装置的模式截面图。对于第九实施方式的有机EL装置100来说,除了以下方面之外具有与图2的有机EL装置100相同的构造,通过与第一实施方式相同的制造方法来制造。
在本实施方式中,在有机EL元件50的上面以及侧面形成保护膜13。作为保护膜13使用由SiO、SiON或者SiN等无机膜或者聚对二甲苯等的高分子膜等而构成的单层膜或者多层膜。
在有机EL装置100的制造过程中,当有机EL元件50向基板1上形成后,在有机EL元件50的上面以及侧面上通过CVD法(化学气相沉积法)或者溅射法等各种成膜法来形成保护膜13,之后,通过与第六实施方式相同的密封剂10、11来粘合基板1和密封板20,密封有机EL元件50。
在这种情况下,因为在有机EL元件50上形成有非透水性保护膜13,所以充分地防止了水分向有机EL元件50的侵入。即使在使用第七以及第八实施方式中所使用的密封剂12来取代第六实施方式的密封剂10,也可以得到同样的效果。
此外,在本实施方式中,作为密封剂10、11使用上述第二~第五实施方式的密封剂10、11,起到上述相同的效果。
以上,在第一~第九实施方式中,密封剂10、12相当于第一密封剂,密封剂11相当于第二密封剂。
在上述第二~第九实施方式中,由于与第一实施方式相同,使密封剂11的外周面呈凹状变形,所以也可以使用间隔片。
在第一~九实施例中,在基板上形成单体的有机EL元件,根据上述第一~第九实施方式的方法来密封有机EL元件。
图6是示出第一实施例的有机EL元件密封构造的模式截面图。在第一实施例中,通过上述第一实施方式的方法来进行密封。
如图6所示,在基板1上形成有单体的有机EL元件50。在基板1上的有机EL元件50的上部以及外周部设置有密封剂10,在基板1上的密封剂10的外周部设置密封剂11。在密封剂10上面侧与密封板20粘接。
首先,在基板1上形成有机EL元件50。使用玻璃基板作为基板1。
有机EL元件50具有空穴注入电极2、空穴注入层3、空穴传输层4、发光层5、电子传输层6、电子注入层7、以及电子注入电极8的层积构造。使用Ag作为空穴注入电极2,使用MgAg(镁银)作为电子注入电极8。
其次,在密封板20的下面外周部通过丝网印刷法对添加有填充剂的密封剂11进行均匀地成膜,在密封板20的中央部滴下密封剂10。
密封板20使用的是玻璃。如表1所示,密封剂10使用紫外线硬化型环氧树脂,密封剂11使用添加30%的SiO(填充剂)的紫外线硬化型环氧树脂。密封剂10的粘度为5Pa·S,密封剂11的粘度为50Pa·S。


然后,为了进行密封板20和基板1之间的粘合,将密封板20和基板1导入到真空腔室内。
在开放于大气压下的真空腔室内,使密封板20和具有有机EL元件50的基板1分别安装在基板托架上。在该状态下,密闭真空腔室,使真空腔室内减压至预定的真空度。
其次,在真空状态的真空腔室内,通过操作基板托架来进行定位,从而使密封板20和基板1相吻合,以使密封板20和基板1重叠。因此,再次进行定位,在预定压力下使密封板20和基板1粘合。
当密封板20和基板1的粘合结束之后,解除真空腔室内的真空状态,从真空腔室内取出相互粘合在一起的基板1和密封板20。最后,通过对基板1和密封板20之间的密封剂10、11照射紫外线来使其硬化,而结束有机EL元件50的密封。
密封剂11的宽度t1(与基板1表面平行方向的尺寸)大约为1~5mm,基板1的下面和密封板20的上面之间的厚度大约为0.5~2.0mm。
图7是示出第二实施例的有机EL元件的密封构造的模式截面图。在第二实施例中,通过上述第二实施方式来进行有机EL元件50的密封。密封构造除了以下方面其他均与图6的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
在密封剂11相对于密封板20的下面外周部成膜时,以使宽度t2(与基板1表面平行方向的尺寸)比第一实施例的密封剂11的宽度t1更厚的方式而形成密封剂11。
在本第二实施例中,如表2所示,密封剂10使用紫外线硬化型环氧树脂,密封剂11使用添加30%SiO(填充剂)的紫外线硬化型环氧树脂。密封剂10的粘度为5Pa·S,密封剂11的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11的宽度t2大约为2~10mm。
图8是示出第三实施例的有机EL元件的密封构造的模式截面图。在第三实施例中,通过上述第三实施方式的方法进行有机元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同的,密封顺序除了以下方面其他均与第一实施例相同。
使用添加有填充剂以及干燥剂的密封剂11a来取代图7的密封剂11。
在本第三实施例中,如表3所示,密封剂10使用紫外线硬化型环氧树脂,密封剂11a使用添加30%SiO(填充剂)以及3%氧化钙的紫外线硬化型环氧树脂。密封剂10的粘度为5Pa·S,密封剂11的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11a的宽度t2大约为2~10mm。

图9是示出第四实施例的有机EL元件密封构造的模式截面图。在第四实施例,通过上述第四实施方式的方法来进行有机EL元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
使用添加有填充剂的密封剂10a来取代图7的密封剂10。
在本第四实施例中,如表4所示,密封剂10a使用添加5%SiO(填充剂)的紫外线硬化型环氧树脂,密封剂11使用添加30%SiO(填充剂)的紫外线硬化型氧树脂。密封剂10a的粘度为8Pa·S,密封剂11的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11的宽度t2约为2~10mm。
图10是示出第五实施例的有机EL元件的密封构造的模式截面图。在第五实施例中,通过上述第五实施方式的方法来进行有机EL元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
使用添加填充剂的密封剂10a取代图7的密封剂10。此外,使用添加填充剂以及干燥剂的密封剂11a取代图7的密封剂11。
在本第五实施例中,如表5所示,密封剂10a使用添加5%SiO(填充剂)的紫外线硬化型环氧树脂,密封剂11a使用添加30%SiO(填充剂)以及3%氧化钙的紫外线硬化型环氧树脂。密封剂10a的粘度为8Pa·S,密封剂11a的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11a的宽度为2~10mm。
图11是示出第六实施例的有机EL元件密封构造的模式截面图。在第六实施例通过上述第六实施方式进行有机EL元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
使用添加填充剂以及干燥剂的密封剂10b取代图7的密封剂10。此外,使用添加填充剂及干燥剂的密封剂11a取代图7的密封剂。
在本第六实施例中,如表6所示,密封剂10b使用添加5%SiO(填充剂)以及3%氧化钙的紫外线硬化型环氧树脂,密封剂11a使用添加30%SiO(填充剂)以及3%氧化钙的紫外线硬化型氧树脂。密封剂10b的粘度为8Pa·S,密封剂11a的粘度为50Pa·S。


如以上所示,在基板上密封了有机EL元件50,密封剂11a的宽度t2约为2~10mm。

图12是示出第七实施例的有机EL元件密封构造的模式截面图。在第七实施例中,通过上述第七实施方式的方法来进行有机EL元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
使用密封剂12取代图7的密封剂10。作为有机EL元件50的密封顺序,在密封剂11向密封板20的成膜作业前,在密封板20的下面中央部(粘合时的多个有机EL元件50的上部位置)贴附密封剂12。因此,不进行密封剂10向第二实施例的密封板20的滴下作业。
在本第七实施例中,如表7所示,密封剂11使用添加30%的SiO(填充剂)的紫外线硬化型环氧树脂,密封剂12使用丁基橡胶的粘接片(粘接膜)。密封剂11的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11的宽度大约为2~10mm。
图13是示出第八实施例的有机EL元件密封构造的模式截面图。在第八实施例中,通过上述第八实施方式的方法来进行有机EL元件50的密封。密封构造除了以下方面其他均与图12的密封构造相同,密封顺序除了以下方面其他均与第七实施例相同。
使用在外周部附近形成有沟30的密封板20a取代图12的密封板20。在沟30内收纳有干燥剂31。
作为有机EL元件50的密封顺序,预先在密封板20下面外周部附近形成沟30,通过在沟30的内部收纳干燥剂31来制作密封板20a。其中,向密封板20a的下面中央部进行贴附,使得由密封剂12覆盖沟30。
在本第八实施例中,如表8所示,密封剂11使用添加30%SiO(填充剂)的紫外线硬化型环氧树脂,密封剂12使用乙基系橡胶的粘接片。密封剂11的粘度为50Pa·S。


如以上所示,在基板1上密封了有机EL元件50,密封剂11的宽度t2为1~5mm。
图14是示出第九实施例的有机EL元件密封构造的模式截面图。在第九实施例中,通过上述第九实施方式的方法来进行有机EL元件50的密封。密封构造除了以下方面其他均与图7的密封构造相同,密封顺序除了以下方面其他均与第一实施例相同。
在有机EL元件50的上面以及侧面形成有保护膜13。使用添加填充剂以及干燥剂的密封剂10b取代图7的密封剂10。使用添加填充剂以及干燥剂的密封剂11a取代图7的密封剂11。
作为有机EL元件50的密封顺序,当有机EL元件50在基板1上形成后,在有机EL元件50的上面以及侧面通过溅射法形成保护膜13。当对密封板20的下面外周部进行密封剂11的成膜时,以宽度t2比第一实施例的密封剂11的宽度t1更厚的方式形成密封剂11a。其后,通过密封剂10b、11a来粘合基板1和密封板20,从而密封有机EL元件50。
在本第九实施例中,如表9所示,保护膜13使用SiN的单层膜,密封剂10b使用添加5%SiO(填充剂)以及3%氧化钙的紫外线硬化型环氧树脂,密封剂11a使用添加30%SiO(填充剂)以及3%氧化钙紫外线硬化型还原树脂。密封剂10b的粘度为8Pa·S,密封剂11a的粘度为50Pa·S。


如以上所示,在基板1上形成了有机EL元件50,密封剂11a宽度大约为1~10mm。
在比较例中,在基板上形成单体的有机EL元件,通过以下所示的方法来密封有机EL元件。
图15是示出比较例的有机EL元件密封构造的模式截面图。
如图15所示,在基板1上形成单体有机EL元件50。在基板1上的有机EL元件50的上部以及外周部设置密封剂10,密封板20粘接在密封剂10上面一侧。
首先,在基板1上形成有机EL元件50。与第一~九实施例同样地使用玻璃基板作为基板。
有机EL元件50具有与第一~九实施例的有机EL元件50相同的构造,作为空穴注入电极2以及电子注入电极8用的电极也与第一~九实施例相同。
其次,向密封板20滴下密封剂10。密封板20用玻璃。如表10所示,密封剂10使用紫外线硬化型环氧树脂。密封剂10粘度为5Pa·S。


其后,在大气中,经由密封剂10使密封板20和基板1重叠。在该状态下,通过使用滚筒从密封板20的一边向另一边施加推压力,以此来粘合密封板20和基板1。最后,通过照射紫外线来使基板1和密封板20之间的密封剂10硬化,结束有机EL元件50的密封。
在比较例中,由于在大气中进行基板1和密封剂10的粘合,所以确认硬化的密封剂10的内部存在气泡40。
对在上述第一~第九实施例以及比较例中密封的有机EL元件50通过以下方法来进行高温多湿试验。
在高温多湿试验中,在温度85℃、湿度85%的环境下使密封的有机EL元件50连续发光,经时地测量从空穴注入电极2的边缘开始的非发光领域的扩展。通过目视来进行有机EL元件50的非发光领域的判定,算出非发光领域与空穴注入电极2边缘的距离。
在表11以及图16示出了有关第一~第九实施例以及比较例的有机EL元件50的高温多湿试验结果。图16是示出在比较例以及第一~第九实施例密封的有机EL元件的高温多湿试验结果的曲线图。
如表11所示,通过比较例密封的有机EL元件50在100小时连续发光时,确认从空穴注入电极2的边缘开始的67μm为非发光领域,在200小时连续发光时,确认从空穴注入电极2的边缘开始的93.8μm为非发光领域,在300小时连续发光时,确认从空穴注入电极2的边缘开始的115.9μm为非发光领域。此外,在400小时连续发光时确认从空穴注入电极2的边缘开始的137μm为非发光领域。在500小时连续发光时确认从空穴注入电极2的边缘开始的150μm为非发光领域。这种情况下的非发光领域的经时变化由图16的曲线h1所示出。
另一方面,通过第一实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制33%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j1所示出。
通过第二实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制50%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化在图16的曲线j2上示出。
通过第三实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制56%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j3所示出。
通过第四实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制57%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j4所示出。
通过第五实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制66%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j5所示出。
通过第六实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制73%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j6所示出。
通过第七实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制66%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j7所示出。
通过第八实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制75%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j8所示出。
通过第九实施例密封的有机EL元件50比由比较例密封的有机EL元件50的非发光领域的经时变化大约抑制96%非发光领域的发生和扩大。在这种情况下的非发光领域的经时变化由图16的曲线j9所示出。
从以上的结果出发,通过第一~第九实施例密封的有机EL元件50都在大气压下进行密封作业,与只通过密封剂10密封的比较例的有机EL元件50相比,降低了连续发光时恶化的进程。
在上述各实施例中,密封的有机EL元件50全体的厚度约为0.5~2.0mm。与此相反,如图17所示,当使用密封罐来取代密封剂10时全体必须取大约2.2mm以上的厚度。因此,在上述各实施例制作的有机EL元件50的密封构造实现薄型化。
权利要求
1.一种有机场致发光装置的制造方法,其特征在于,包括在基板上形成一个或者多个有机场致发光元件的工序,在所述基板以及密封板至少一方上设置用于对所述一个或者多个有机场致发光元件进行密封的多于一种密封剂的工序,在减压气氛下,经由所述密封剂来粘合所述基板和所述密封板的工序,和取出经由所述密封剂粘合的所述基板和所述密封板到大气中,使所述密封剂硬化的工序。
2.根据所述权利要求1所述的有机场致发光装置的制造方法,其特征在于所述一种以上的密封剂包含一种第一密封剂和另一种第二密封剂,所述第一密封剂具有比所述第二密封剂低的粘度,以密封所述基板上的所述一个或者多个有机场致发光元件的方式来设置所述第一密封剂,以在所述基板上的外周部包围所述一个或者多个有机场致发光元件的方式来设置所述第二密封剂。
3.一种有机场致发光装置,其特征在于,包括基板,配置在所述基板上的一个或者多个有机场致发光元件,和用于对所述一个或者多个有机场致发光元件进行密封的多种密封剂,其中,所述一个或者多个有机场致发光元件通过所述多种密封剂中的一种第一密封剂来进行密封,所述基板上的外周部通过另一种第二密封剂以包围所述一个或者多个有机场致发光元件的方式来进行密封。
4.根据权利要求3所述的有机场致发光装置,其特征在于所述第一密封剂具有比所述第二密封剂低的粘度。
5.根据权利要求4所述的有机场致发光装置,其特征在于在所述第一密封剂内添加有填充剂。
6.根据权利要求4所述的有机场致发光装置,其特征在于在所述第一密封剂内添加有干燥剂。
7.根据权利要求4所述的有机场致发光装置,其特征在于所述第一密封剂由粘接剂所构成。
8.根据权利要求3所述的有机场致发光装置,其特征在于所述第一密封剂由片状的粘接剂构成。
9.根据权利要求3所述的有机场致发光装置,其特征在于在所述第二密封剂内添加有填充剂。
10.根据权利要求3所述的有机场致发光装置,其特征在于在所述第二密封剂内添加有干燥剂。
11.根据权利要求3所述的有机场致发光装置,其特征在于所述第二密封剂与所述一个或者多个有机场致发光元件相连接。
12.根据权利要求3所述的有机场致发光装置,其特征在于在所述基板上经由所述多种密封剂来粘合密封板。
13.根据权利要求12所述的有机场致发光装置,其特征在于在与所述基板相对的所述密封板的面上设置有收纳干燥剂的收纳部。
14.根据权利要求12所述的有机场致发光装置,其特征在于所述密封板由透光性材料所构成,在与所述基板相对的所述密封板的面上设置有滤色镜。
15.根据权利要求3所述的有机场致发光装置,其特征在于所述一个或者多个有机场致发光元件通过由单层或者多层构成的保护膜所覆盖。
16.一种有机场致发光装置,其特征在于,包括基板,在所述基板上配置的一个或者多个有机场致发光元件,用于对所述基板上的一个或多个有机场致发光元件进行密封的密封剂,和经由所述密封板而被粘合在所述基板上的密封板,其中,在所述基板和所述密封板之间的所述密封剂的外周面呈凹状而形成。
全文摘要
首先,在基板上形成多个有机EL元件。其次,在密封板下面(滤色镜一侧)的外周部上对密封剂进行成膜。接着,向密封板的中央部滴下密封剂。其后,在真空状态的真空腔室内,在预定压力下粘合密封板和基板,解除真空腔室内的真空状态。从真空腔室内取出基板以及密封板,根据各自的材料的硬化方法,对基板和密封板之间的密封剂进行硬化。
文档编号H05B33/04GK1748445SQ200480003538
公开日2006年3月15日 申请日期2004年2月2日 优先权日2003年2月4日
发明者井上广匡, 白玖久雄, 原田学 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1