用于等离子体约束的系统和方法

文档序号:8032822阅读:462来源:国知局

专利名称::用于等离子体约束的系统和方法
技术领域
:本发明一般性地涉及等离子体约束(containment)的领域,更具体地,涉及一种用于在相对紧凑的约束腔内建立稳定的等离子体的系统和方法。
背景技术
:核聚变是当两个较小质量的原子核熔合产生一个较大质量的原子核和反应产物的时候出现的。因为能量的基本量(substantialamount)与反应产物有关,所以受控的核聚变研究随着作为重要目标之一的高效的能量产生而处于一个正在进行的过程中。为了产生聚变,两个原子核需要在克服相互排斥的库仑势垒之后在核的能级上互相作用。能够采用不同的方法来促进这种互相作用。一个广泛采用的促进聚变过程的方法是提供一块具有足够密度和温度的可熔离子的大量的等离子体。这种等离子体需要约束得足够长时间,以使聚变反应能够发生。优选这样的约束基本上将等离子体从周围环境中隔离,以减少热量损失。约束该可熔等离子体的一个方法是使用磁场将此等离子体“收缩”和限制在一定的体积。一个通常称为“托卡马克”的磁约束设计将此等离子体限制在一个环形(螺旋管)块内。因为许多常规的磁约束聚变设备与电源产品传动,因此约束体积被设计得较大。因而,这种大设备以及各种支撑元件对于普遍的应用中的操作来说可能是复杂的和/或昂贵的。
发明内容前述与大的聚变设备相关的缺点能够通过一种允许形成小块的可熔等离子体的约束方法和装置和通过增强稳定性加以克服。这种等离子体能够通过在无需实行准中性(quasi-neutrality)条件下确定该系统的稳定能量态而设计。具有较小尺寸的约束的可熔等离子体包括一个对该等离子体的稳定性作用很大的基本感应静电场。基于这种约束的等离子体的紧凑设备能够用在不同的应用中,例如中子产生器、x射线产生器和发电机。本发明的一方面涉及一种两模式等离子体约束装置,其包括布置在具有约束尺寸的约束块内的等离子体。所述等离子体包括多个电子和多个离子,并且所述电子构成了在所述等离子体中建立的电流中的电荷载体。该装置还包括一个磁场,其对所述电子比对所述离子的影响基本上更多,使得所述电子作为约束的第一模式被约束在电子约束体积内,该电子约束体积小于所述约束块。这种约束使得所述电子的数量和所述离子的数量分布产生至少部分的分离。所述分离感应出静电场,该静电场促使所述离子约束在所述约束块内构成第二模式。本发明的另一方面涉及一种等离子体腔,其包括具有电子和离子的等离子体。该等离子体腔还包括一个磁场,其具有将所述电子基本上约束在一个受限块内的形状和尺寸,该受限块用块尺度长度表征。所述块尺度长度具有一个由位于所述受限块内的电子趋肤深度(skindepth)决定的尺寸。所述电子和所述离子在所述受限块内保持着重叠的空间分布。所述重叠空间分布在所述受限块内产生一个基本整体的静电场,该受限块稳定所述重叠空间分布并且将所述离子基本上约束在所述受限块内。本发明的又一方面涉及一种用于设计等离子体约束设备的方法。该方法包括产生具有电子分布和离子分布的等离子体系统的能量的特征。所述特征包括与整体静电场相关的能量项,该静电场是由于电子的所述分布与离子的所述分布的不同而在该等离子体内感应的。该方法还包括确定与该等离子体系统的该能量的所述特征相关的平衡态。该方法还包括确定与所述平衡态相关的一个或者多个等离子体参数。本发明的又一方面涉及一种等离子体聚变设备,其包括其中具有约束的等离子体的等离子体反应腔。该等离子体包括多个电子和多个离子。该等离子体聚变设备还包括约束场产生器,其将磁场提供给该反应腔,由此使得该等离子体的约束基本上在等离子体约束块内。该等离子体聚变设备还包括反应燃料供应源,其提供能够在等离子体条件下熔合以产生反应产物的一种或者多种离子核素(species)。所述电子作为建立于该等离子体中的电流的电荷载体,由此使得该磁场影响电子比离子要多。这种磁约束引起电子的数量和离子的数量的分布至少有部分的分离。所述分离感应出静电场,该静电场便于该等离子体反应腔内的离子的约束。该等离子体约束块用块尺度尺寸来表征。在一个实施例中,反应产物包括中子,使得该聚变设备用作中子产生器。在一个实施例中,该反应产物包括能量,使得该聚变设备用作发电机。本发明的又一方面涉及一种x射线产生器,其包括其中具有约束的等离子体的等离子体反应腔。该等离子体包括许多电子和许多离子。该x射线产生器还包括一个约束场产生器,它将磁场提供给该反应腔,由此使得该等离子体的约束基本上在等离子体约束块内。所述电子用作为该等离子体中的电流的电荷载体,由此使得该磁场对电子比对离子的影响要多。该磁约束引起电子的数量和离子的数量在分布上至少有部分的分离。所述分离感应出静电场,该静电场促使位于该等离子体反应腔内的离子的约束。该等离子体约束块用块尺度尺寸来表征。在一个实施例中,这种约束的等离子体在包括非熔合等离子体条件的条件下产生软x射线。本发明的又一方面涉及一种等离子体约束装置,其包括布置在具有约束尺寸的约束块内的等离子体。所述等离子体包括多个电子和多个离子,并且所述离子用作为在所述等离子体中所建立的电流的电荷载体。该装置还包括一个磁场,其对所述离子比对所述电子的影响基本上更多,以将所述离子磁约束在离子约束块内,该离子约束块小于所述约束块,使得所述数量的离子和所述数量的电子的分布产生至少部分的分离。所述分离感应出静电场,该静电场促使所述电子约束在所述约束块内。本发明的又一方面涉及约束等离子体的尺寸,该尺寸与电子约束块、块尺度长度、块尺度、离子约束块等等相关。在一个实施例中,该尺寸在大约1到大约1000的电子趋肤深度的范围内。在一个实施例中,该尺寸在大约1到大约100的电子趋肤深度的范围内。在一个实施例中,该尺寸在大约1到大约60的电子趋肤深度的范围内。在一个实施例中,该尺寸在大约1到大约40的电子趋肤深度的范围内。在一个实施例中,该尺寸在大约1到大约10的电子趋肤深度的范围内。在一个实施例中,该尺寸在大约1到大约2的电子趋肤深度的范围内。在一个实施例中,该尺寸为大约2个电子趋肤深度。本发明的又一方面涉及一种具有电子和离子的稳定等离子体,其中磁约束对一种核素的影响多于另一种核素。磁约束影响的量能够表征为位于该等离子体内的核素的整体运动或者流动。这种约束引起电子和离子分布至少部分的分离。这种分离感应静电场,该静电场便于受到磁场影响更小的那种核素的约束。在一个实施例中,电子提供几乎所有的整体运动。在一个实施例中,离子提供该整体运动中的几乎全部。在一个实施例中,电子和离子两者都提供整体运动。图1示出具有整体静电场的约束等离子体,该体静电场是由于电子和离子的空间分布之差而在等离子体内感应的;图2示出确定具有所述感应的E场的等离子体的稳定态平衡的过程;图3示出约束等离子体的一个实施例,其具有圆柱形对称,使得电子核离子密度取决于距离Z轴的半径距离r;图4A示出图3中的圆柱形对称等离子体的Z收缩约束;图4B示出图3中的圆柱形对称等离子体的θ收缩约束;图5示出可以怎样由圆柱结构来估计高比率的圆环约束;图6示出一个提供Z收缩的方位角磁场曲线的一个实施例;图7示出因磁场力形成的电子的稳定约束的一个实施例,该磁场力基本上抵消了由于E场和压力引起的力;图8示出因磁场力形成的离子的稳定约束的一个实施例,该磁场力基本上抵消了由于压力引起的力;图9A示出因约束的电子和离子的不同的空间分布产生的E场曲线的一个实施例;图9B示出在对数坐标中图9A的电子和离子分布;图10示出温度曲线的一个实施例,其示出如何能够减少损失到位于相对靠近等离子体的约束壁的热量;图11示出等离子体参数1/α作为Y/Λe和温度T的函数的等高线图的一个实施例;图12示出将等离子体θ收缩的轴向磁场的磁场曲线的一个实施例;图13示出在θ收缩的等离子体中不同的电子和离子分布的例子;图14示出因图13中不同的电子和离子分布产生的E场曲线的一个例子;图15A-C示出由静电场促使的等离子体约束的各种尺度,该静电场是因电荷分离感应的;图15D示出相反的等离子体设置的一个实施例,在该等离子体设置中,离子被磁约束,并且电子被感应的静电场约束,其中可以将这种等离子体按比例缩放到基本上大于电子尺度的长度的离子尺度的长度;图16A和16B示出能够产生不同电子和离子分布的Z收缩等离子体约束设备的一个实施例;图17A和17B示出能够产生不同电子和离子分布的θ收缩等离子体约束设备的一个实施例;图18示出能够基于等离子体发出不同输出的设备的一个实施例,在该等离子体中,基本的静电场促使了离子约束。通过阅读下列详细的说明书以及参照附图,本发明的这些和其它方面、优点和新颖性特征将会变得清楚。在附图中,相同的元件具有系统的参考数字。具体实施例方式本发明一般性地涉及处于相对稳定的平衡中的等离子体约束的系统和方法。一方面,这种等离子体包括促使等离子体的稳定和约束的基本上的(substantial)内静电场。图1示出约束系统112所封闭的约束等离子体100。该等离子体100定义了基本上由边界106所界定的第一区域102和基本上由内边界106和等离子体的边界所界定的第二区域104。等离子体100具有至少一个如箭头110所标出的L数量级的尺寸。为了描述的目的,将该等离子体100表征为具有电子流和离子流的两流体系统。可以理解,离子流可以包括基于相同或者不同元素和/或同位素的离子。也可以理解,这里的表征等离子体的集合(collective)流体方程只是一种描述等离子体的方法,并且决不有限制本发明的教导的意图。可以用其它方法例如动力学方法来描述等离子体的特征。如图1所示,绘出的该等离子体100是一种处于内部的非准中性稳定状态(non-quasi-neutralstablestate),其中在第一区域102中,由电子Q-firstregion产生的积累电荷不同于因离子Q+firstregion产生的积累电荷。类似地,在第二区域104中,Q-secondregion与Q+secondregion有很大不同。第一区域102中的剩余电荷与第二区域104中的剩余电荷极性相反、数量近似相等,这样使得等离子体100整体上基本呈中性。还如图1所示,在内边界106附近形成的不同极性的剩余电荷使得形成如箭头108所示的内部体静电场。如果人们采用常规,电场(E-field)是从正电荷指向负电荷,如果第一区域102有剩余电子(并且第二区域104有剩余离子),那么电场108将向内指向边界106。相反,如果第一区域102有剩余离子,则电场108将向外指向边界106。这两种可能性在下面将详细地描述。如这里所述,在等离子体100内形成这种静电场影响等离子体系统的能量。确定这种系统一个相对稳定的能量状态取决于等离子体参数,包括等离子体维度L的选择范围,这些参数基本上不同于与常规的等离子体系统相关的参数。一般都知道,等离子体中的静电场典型地不会存在于基本上比德拜(Debye)长度要大的距离中。它们因为电子和离子的重排而受到屏蔽。然而,这是没有外力的情况。在这里所描述的公开内容中,等离子体维度L一般比许多的德拜长度要大;然而这里是允许的,因为存在因例如磁场存在而产生的外力。在下面的描述中,将等离子体系统的不同的实施例描述为圆柱系统和圆环系统。在本公开中,采用圆柱的几何结构是为了简化描述,决不应认为是限制性的。因为这里所描述的效果中至少一部分取决于容纳的等离子体的尺度(scale),所以在本公开中,包含的等离子体可采用许多的任意形状。如所示例的,图1中的等离子体100描绘为“普通”形状的块,清楚显示出包含在大约L这一数量级尺度的内静电场的效果,并且给出了相关的等离子体参数。本发明的一方面涉及一种用于确定相对稳定的等离子体状态的方法,并且其中这种稳定性是通过形成相对稳固(substantial)的内静电场推动的。图2示出确定这种稳定状态以及一个或者多个有关的等离子体参数的过程120的一个实施例。该过程120在一个开始状态122开始,并且在随后的步骤块124中,步骤124特征化等离子体系统的能量的特征。该能量特征包括一个在等离子体内部感应的稳固静电场的能量项。在随后的步骤块126中,该过程120确定与该等离子体系统的相对稳定的能量状态相关的平衡状态。在随后的步骤块128中,该过程120确定与该平衡状态相关的一个或者多个等离子体参数。该过程120在终止状态130结束。一个表征等离子体系统的能量特征的方法是采用没有假定准中性(quasi-neutrality)的两流体方法。在常规的方法中,假定了准中性,使得电子和离子的密度分布基本上相等。相反,本发明教导的一方面涉及到表征这样的两流体系统,即基本上在整个等离子体中,允许电子和离子密度独立地改变。这种方法允许两种流体不同的分布,因此在等离子体的平衡状态下感应出整体静电场。对于由磁场至少部分地包含的等离子体,该系统的能量U可以表达为电场能量项、磁场(B-field)能量项、两种流体的动能项、和与两种流体的压力有关的能量项之和的积分。因而,U=∫[ϵ0E22+B22μ0+Σs(msns2us2+ps)]dV---(1)]]>其中E表示电场强度,ε0表示自由空间的介电常数,B表示磁场强度,μ0表示自由空间的磁导率,求和指数和下标s指的是电子e或者离子i的核素,ms表示对应核素的质量,ns表示对应核素的粒子密度,us表示对应核素的速度,ps表示对应核素的流体的压力,以及dV表示这一块等离子体的体积元素的微分。为了这里描述的目的,可以理解,术语“粒子密度”、“数密度”和其它类似的术语一般指的是粒子的分布。诸如“电子密度”和“电子数密度”的术语一般指的是电子的分布。诸如“离子密度”和“离子数密度”的术语一般指的是离子的分布。此外,在这里的描述中,这里使用诸如“平均粒子密度”和“平均数密度”这样的术语来一般性地表示对应分布的平均值。另外一个表征等离子体的方法是把该系统处理为基本上无碰撞的和基本上完全离子化的处于定态的等离子体。此外,可以将两种流体中的每种核素表征为服从如下表示的状态绝热方程式ps=Csnsr---(2)]]>其中Cs代表一个常数,它可以基本上通过下述方法来求出,而γ代表两种核素的比热之比。与两种核素相关的温度可以通过理想气体定律关系求出ps=nskTs(3)其中k代表玻尔兹曼常数。此外,假定两种核素基本上是麦克斯韦尔的。另外一个表征等离子体的方法是表示为对每种核素为基本无碰撞的、平衡力平衡方程msnsus·us=qsns(E+us×B)-ps(4)其中ms代表核素s的粒子质量,qs代表电荷,us代表流体速度,并且其中为了简单描述起见,可以忽略且忽略了应力张量的各项异性部分。另外一个表征等离子体的方法是表示该系统为麦克斯韦尔方程▿·E=Σsqsns/ϵ0---(5)]]>▿×B=μ0Σsqsnsus---(6)]]>×E=0;和(7)·B=0(8)如已知的,方程(5)是一种表示泊松方程的方式;等式(6)是一种表示基本稳定态条件下的安培定律的方式;等式(7)是一种表示遵从基本上为定态条件下的法拉第定律的电场的无旋性的方式;等式(8)是一种表示磁场的无散性的方式。还如已知的,麦克斯韦尔方程假定系统的总电荷守恒。因而,可以引入因变量Q,其定义为·Q=ne(9)以使通过以下述方式调整合适的边界条件来基本上保证电子守恒。可以进一步将电子密度ne的特征表示为服从关系ne≥0。一种求出等离子体系统的相对稳定的约束状态的方法是确定一个平衡状态,该状态从该等离子体系统如方程(1)所表达的能量服从如等式(2)-(9)所表达的各种约束的第一个偏差(variation)中产生。在一个这样的求解中,方程(1)和(4)中的压力项可以通过方程(2)消去。通过使用拉格朗日算子函数,所得到的约束可以邻近所得到的能量表达式U。这种本领域所公知的变分过程可以产生相对复杂的非线形差分方程的普通向量形式。一种简化该变分过程而不牺牲所得到的方案的令人感兴趣的性质的方法是使用圆柱坐标和与其相关的对称性来进行这个处理。可以利用圆柱的对称性将该系统的独立变量减少到一个变量γ。因而,该系统的因变量可以表示为nb、ne、Ez、Bz、Bθ、Q、uiz、uiθ、uez和ueθ,其中下标i和e分布代表离子和电子核素。前面的六个是状态变量。因为后面四个(速度分量)的导数不会出现在方程(11A)-(11P)中,能够以下述方式将它们处理为控制变量。应用圆柱对称性到该等离子体系统(其中约束条件方程(7)和(8)×E=0和·B=0基本上相等地满足),使用拉格朗日算子函数Mi、Me、ME、Mz、Mθ和MQ,与方程(4)-(6)和(9)有关的圆柱坐标表达式可以与方程(1)的U邻近。如名字所隐含的,所述控制变量的变分可以认为是在稳定变量以及拉格朗日算子函数中产生的变分。变分U对于稳定变量和针对拉格朗日算子函数导致第一阶微分方程,并且对于控制变量导致代数方程。这样的方程可以按常规采用下列替代表示为无量纲形式的方程r→rΛe,us→usc,n→N0n,E→EeNoAe/ε0,B→BeN0Λeμ0c,Cs→Csmec2N01-r,ps→psmeN0c2,Q→QΛe和T→Tsk/mc2,其中c代表光速,N0代表平均粒子密度,e代表电荷的数量,以及Λe代表电子趋肤深度,其表示为Λe=(me/μ0N0e2)1/2(10)可以将一个遵从前述能量变分方法的方程的系统表示为dMe/dr=-ruez2/2-Mθuez-rueθ2/2+Mzueθ-ME-MQ-Cerγner-1-Me(Ceγ)-1(2-γ)ne1-γ(Er+ueθB2-uezBZ-uezBθ+ueθ2/r)---(11A)]]>dMi/dr=-ruiz2/2-Mθuiz-ruiθ2/2+Mzuiθ+ME-Cirγniγ-1+Mi(Ciγ)-1(2-γ)ni1-γ(Er+uiθBz-uizBθ+uiθ2/r)---(11B)]]>dME/dr=-rEr-Mene2-γ(Ceγ)-1+Mini2-γ(Ciγ)-1-ME/r---(11C)]]>dMz/dr=-rBz-Mene2-γueθ(Ceγ)-1+Mini2-γuiθ(Ciγ)-1---(11D)]]>dMθ/dr=-rBθ+Mene2-γuez(Ceγ)-1+Mini2-γuiz(Ciγ)-1+Mθ/r---(11E)]]>dMQ/dr=MQ/r(11F)uez={Mene1-γBθ(Ceγ)-1-Mθ}/r---(11G)]]>ueθ={Mz-Mene1-γ(rCeγ)-1}/{r+2Mene1-γ(rCe)-1}---(11H)]]>uiz{Mini1-γBθ(Ciγ)-1-Mθ}/r---(11I)]]>uiθ={Mz-Mini1-γ(rCeγ)-1}/{r+2Mini1-γ(rCe)-1}---(11J)]]>dne/dr=-(Ceγ)-1ne2-γ(Er+ueθBz-uezBθ-ueθ2/r)---(11K)]]>dni/dr=(Ciγ)-1ni2-γ(Er+uiθBz-uizBθ)+uiθ2/r---(11L)]]>dEr/dr=-Er/r+ni-ne(11M)dBz/dr=neueθ-niuiθ(11N)dBθ/dr=-Bθ/r+niuiz-neuez(110)dQ/dr=-Q/r+ne(11P)一组边界条件(在r=0且r=a处,其中a定义为图3中的外边界)包括Er(0)=Er(a)=0,Bz(a)=B0和Bθ(0)=0。边界条件还可以包括与各种核素电荷守恒相关的Q(0)=0和Q(a)=N0a/2。还将每个边界处的条件加在每个状态变量,或者它的对应的拉格朗日算子函数上,以使如果基本没有状态变量条件时基本上等于零。它满足Me(0)=Me(a)=Mi(0)=Mz(0)=0。在确定前述圆柱等离子体系统的稳定的平衡态的方法的一个实施中,用于解这些方程(方程(11A-11P))的系统的输入参数(以量纲形式表示)包括圆柱半径a、对两种核素基本上相等的平均粒子数密度N0、在边界a处的轴向磁场Bz(a)=Bz(0)、净轴向电流I、和电子和离子两者的温度值T0(取在ns=N0时的r值下的温度)。采用这些输入参数,可以求出Bθ(a)=μ0I/(2πa)。此外,Cs的值可以通过结合方程(2)的状态绝热方程和方程(3)的理想气体定律确定,求出Cs=ns1-γkTs]]>。因而,当以值r来评估时(其中ns=N0且Ts=T0)Cs=N01-γkT0]]>。电子和离子平均温度可以不同,这会产生不同的Ci和Ce值。对于本发明公开的例子,它们取值基本相同也即T0。这种出于简化描述的目的决不应认为限制本发明的范围。另外一组有用的输入参数可以通过用等离子体的定义为β=N0kT0/(B02/2μ0)]]>的β值置换B0、以及用另外的β值α=N0kT0/Bθ(a)2/2μ0置换I来得到,其中I=2πaBθ(a)/μ0。注意1/β=0对应着基本纯Z收缩(z-pinch),而1/α=0对应着基本纯θ收缩(θ-pinch)。螺旋收缩对于1/α和1/β两者来说对应着基本非零值。前述能量变分方法产生该等离子体系统的描述,即十二个一阶耦合的非线形普通微分方程、四个代数方程和一个不等式条件(ne≥0),和十六个未知数。这种方程的系统的数字解可以通过很多方式得到。这里公开的解答是采用已知的微分方程解答程序例如BVPFD(其是已知的数值分析软件IMSL的一部分)得到的。图3示出圆柱形封闭等离子体140的一个实施例,其将上述两流体系统的能量变分分析的一个可能的解具体化。作为基准,该圆柱形等离子体140与圆柱形坐标系统142重叠。该坐标系统142内的任意一点144可以用坐标(r,θ,z)来表示。等离子体140定义了沿z轴延伸到r=Y的第一圆柱体150、和沿z轴延伸到r=a的第二圆柱体152。第一体积150通常对应着等离子体140的两种流体中第一核素分布为n1(r)的区域。第二体积152通常对应着等离子体140的两种流体的第二核素分布为n2(r)的区域。通常,第一和第二核素如此分布∫0Yn1dr>∫0Yn2dr---(12A)]]>∫Yan1dr=0---(12B)]]>∫0an1dr=∫0an2dr---(12C)]]>也即,第一区域150具有的第一核素比第二核素更多,而在第一区域外面的第二区域152这部分基本上不具有第一核素。如方程(12C)所示,两种核素中的粒子总数在一个实施例中基本上相等。在一些实施例中,第一核素中基本上所有都在第一区域150内,以使r=Y定义了第一核素的边界。因而,区域Y<r<a基本上没有第一核素,并且填充了第二核素一个ΔN的量。由于在一个实施例中第一和第二核素的总数基本上相等,因此值ΔN也代表在第一区域150内第一核素相对于第二核素的剩余数。在一些实施例中,如以下更详细描述的,当对于边界r=Y的值来说,等离子体封闭在一个或者多个选择范围内的时候,第一核素可以是电子,而第二核素可以是离子。在其它实施例中,也如一些更详细描述的,当对于边界r=Y的值来说,该等离子体封闭在其它的一个或者多个选择范围内的时候,第一核素可以是离子,而第二核素可以是电子。图4A和4B示出两种方法,即用磁场限制圆柱结构的等离子体,由此使得电子和离子分布如上面参照图3所述的方式成为不同。图4A示出Z收缩封闭160的一个实施例,而图4B示出θ收缩封闭180的一个实施例。尽管Z收缩法和θ收缩法单独示出,但是应该理解,这两种收缩可以组合起来形成通常所称的螺旋收缩。如图4A所示,当在等离子体172内建立轴向电流Iz164的时候能够实现Z收缩160。这种电流能够以多种方式来建立,包括下述例子中的方法。轴向电流Iz164形成方位角(azimuthal)磁场Bθ166,该磁场对于等离子体162的移动带电粒子产生一个径向向内的力Fz-收缩。如下详细所述,当将该等离子体的径向尺寸选择在一定范围内时,一种核素相对于另一种核素的运动能够得到增强,由此易于受到磁场收缩力。因而,如图4A所示,该等离子体162内部的第一区域170基本上包括所有的受到磁约束的核素。在图4A中,所绘出的磁约束核素是电子。如此,粒子分布在包含且从第一区域107径向扩展出去的第二区域172内。两种核素的这种分布可以感应内部的静电场174(如Er1所表示的)。该静电场174便于将离子基本上约束在第二区域172内。可以理解,如果使离子磁约束在第一区域170内,那么静电场174的方向就反过来,并且通过这种静电场可以便于电子约束。如图4B所示,当在该等离子体内建立稳定方位电流Iθ186的时候,就能够实现θ收缩180。电流Iθ186能够以多种方式产生,包括下述例子中的方法。轴向磁场Bz184在方位电流Iθ186上维持一个径向向内的力Fθ-收缩188,这样便于该等离子体182的封闭。图5示出可以把上述在圆柱几何结构环境下等离子体的约束解法用于圆环几何结构约束设备的近似设计中。示出一段圆环约束的等离子体200与一段类似尺寸(管状尺寸)的圆柱约束的等离子体210重叠的情况。所绘圆环200关于中心点206为中心,这样使圆环“管”的中心(具有半径a)与中心点206隔开一个距离R(由箭头208标出)。可以看到,当距离R相比a较大的时候,例如在一个高纵横比(R/a)的圆环中,一个给定段的圆环结构可以用圆柱结构来近似。因而,通过使用圆柱结构可以得到设计参数,并且应用这种解法来设计圆环设备。如本领域所已知的,这种圆柱近似法为圆环设计提供了一个好的基础。一种修正圆环和圆柱结构之间差别的方法是提供一个修正外场(一般指的是垂直场,其阻止因磁环力导致的等离子体圆环半径R增加)来约束该等离子体。因而,如图5所示,圆环约束的等离子体200包括一个圆环形的第一区域202和一个圆环形的第二区域204,它们彼此之间的布置类似于圆柱形等离子体的方式。如圆柱形等离子体,第一区域在一些实施例中可以限定为电子,在其它实施例中也可以限定为离子。前述关于圆柱形等离子体的分析包括采用能量变分法的一维(r)分析。如上面参照图5所述,这种一维分析能够提供用于估计大展弦比(highaspectratio)圆环的设计和特征的基础。希望例如对于一般的圆环或者任何形状的腔以类似方式所作的一般化的三维分析产生类似的电子部分和离子部分分开的结果,由此在该等离子体内产生实际的静电场。本发明的一方面涉及其中感应有实际静电场的封闭的等离子体的尺度(scale)。在圆柱对称的环境中描述了前述能量变分步骤的各种结果。然而,可以理解,这种结果也能够清楚显示在具有类似长度的其它形状的封闭的等离子体中。图6-10示出针对Z收缩的系统用一组输入进行的圆柱形对称的能量变分分析中得到的各种等离子体参数。该等离子体被限定为一个圆柱,它具有近似三倍的趋肤深度(尺度长度)Λe的外径a。对于该等离子体该尺度的这样一段,示例的输入参数包括N0=1019/m3,T0=5keV,1/α=2.51(由此限定磁场强度Bθ(a)和轴向电流I),和1/β=0(由此设定Bz(a)=B0=0)。对应的电子趋肤深度参数Λe=(me/μ0N0e2)1/2(方程(10),并且取决于输入参数N0),大约为1.7mm。前述输入参数得到一个封闭的等离子体,其中电子被磁场力收缩,由此产生电子-离子电荷分离。因而,电子基本上分布在圆柱体(图3中的第一区域150)的内区,而离子部分地分布在第一区域150内,并且部分地超出第一区域150的边界(r=Y)。这种电荷分离产生一个约束离子的静电场。所得到的电荷梯度尺度长度相对较小—在如方程(10)所表示的电子趋肤深度的数量级上。图6示出方位磁场强度Bθ作为无量纲变量r/Λe的函数的曲线220。这样的磁场约束如图7所示的电子,其中作用在电子上的力示作为r/Λe的函数。在图7的力曲线中,力的正值表示向外的径向力,而负值表示相反的。因而,趋于使电子流膨胀的动压力230指向外面。电子上的电子力232是由指向里面的静电场(其是在该等离子体内由前述电荷梯度感应的)产生的。因此,约束电子的磁力234指向里面,并且抵消所述位于电子块的多数上的、指向外面的压力和电力230、232之和。在图7所示的电子约束例子中,加在电子块的多数上的压力230和电子力232具有基本相等的大小。在图7所示的一个实施例中,电子力曲线没有延伸超出r=Y,因为基本上没有电子超出那个边界。图8示出作用在离子上的力的曲线。由于运动离子相对低的速度,位于离子上的磁力242基本上忽略不计。趋于使离子流体要膨胀的动压力240指向外面。位于离子上的电子力244指向里面,并是由指向里面的静电场(由前述电荷梯度在该等离子体内感应的)产生的。可以看到,电子力244是重要的,并且大概抵消了压力240。因而,从电荷分离所产生的电场是主要的离子约束力。可以理解,尽管磁场为该等离子体提供初始的约束机理,但是内部产生的电场在建立稳定等离子体平衡中扮演着一个重要而且实质性的角色。图7和8中所示的力曲线以及所得到的等离子体的稳定态平衡强调了电场的重要性。如果该等离子体是准中性的话,那么就不会出现这种由电场促使的稳定的平衡态。因此,这证明了在设计等离子体约束设备中不作出准中性假设的重要性。图9A示出电子分布250和离子分布254产生电场曲线252的情况。三条曲线250、252和254示出作为无量纲变量r/Λe的函数。电子和离子分布250和254的纵向尺度是根据平均密度值N0。电场曲线252产生如参照图7和8所述的电力曲线。如电子分布250所示,电子基本上分布在近似1.2Λe的边界Y内。如方程(10)所定义的,当N0=1019/m3时,值Λe=(me/μ0N0e2)1/2近似为1.7mm。因而,对于图9A中的示例等离子体,电子边界Y的值近似为2.04mm。如图9A所示,电子和离子分布关于轴与至少一部分该等离子体重叠。如图9A进一步所示,电子基本上约束在一个由电子边界Y所限定的受限块内。因而,能够用块尺度长度例如电子趋肤深度Λe来表征这种受限块。如图9A进一步所示,离子分布254延伸超出了边界Y。超出边界Y,则能够将离子流表征为满足可以容易地通过改变上述方程组得到的单流体方程。一种得到基本上完整的离子分布及其相关等离子体参数的方法是匹配边界Y处的两组方程(r<Y和r>Y),通过调整输入参数直到因变量和它们的导数在Y处基本连续。本发明教导的一方面涉及一种具有感应的分离的电荷的等离子体系统(如用电子分布250和离子分布254所示),由此形成与该等离子体块基本上重叠的径向电场曲线252。这种感应的静电场的覆盖范围能够在封闭的等离子体系统内实现,该系统对于电子的边界Y具有电子尺度长度Λe的数量级。对于一个实施例中一个位于深到足以提供坚固的约束的能量井内的系统,圆柱体的半径能够落在接近电子尺度长度(趋肤深度)Λe的值的范围内。在上面参照6-9所述的实施例的例子中,Y≈1.2Λe,并且电场延伸出了该等离子体的主要部分。一个相对大的半径配置(例如Y=6Λe)能够导致在等离子体圆柱体的外区附近感应一个实际的电场。与Y≈1.2Λe的情况相比,与此配置相关的能量井可能相对较浅。另外,一个相对较小的半径配置(例如Y=0.3Λe)能够导致约束的丧失。因而,在一个实施例中,由感应的静电场促使的等离子体约束具有位于近似1到2倍的电子尺度长度Λe范围内的Y值。在一个实施例中,1.2Λe附近的Y值看上去提供了一个近似优选的约束条件。对于N0=1019/m3(如图6-9中的等离子体例子)的等离子体,Λe=1.7mm,且Y=(1.2)(1.7)≈2.4mm。由于在该例等离子体中a=3Λe,因此约束的等离子体的外径近似为5.1mm。可以看到,这种稳定、封闭的紧凑尺寸可以用于许多应用中,其中一些在下面具体地描述。这样封闭等离子体,使得从该等离子体到一个限定约束块的壁的能量和/或粒子损失得以减少。一种实现这种能量/粒子损失减少的方法是减少与该壁接触的等离子体粒子数。如图9B所示,电子和离子分布250和254在对数标尺上绘出,当r/Λe近似为Y值两倍的时候,离子数密度254到达近似0.001N0的值。因而对于Y=1.2Λe≈2.04mm的实施例来说,在r≈(2.04)(2)=4.1mm处的离子数密度到达平均密度值N0的大约0.1%。如上所述,对于其中a=3Λe的等离子体约束设计,当Y=1.2Λe时,外径a为近似5.1mm。对于这种系统,能够在r>5.1mm的地方布置一个壁,并且仍然允许构造一个相对小的约束设备。此外,在r>5.1mm(3Λe)处的离子数密度基本上小于上述的0.1%级别。因而,与在r>5.1mm处的与该壁所接触的离子的数目和转换能量到壁和/或彼此的交互作用要少得多。图10示出上面参照图6-9所述的等离子体例子中等离子体温度曲线260作为r/Λe的函数的情况。可以看出,该温度在3Λe(5.2mm)处下降得很多。因而,由于与该壁接触的等离子体粒子与该等离子体内面部分相比具有非常小的动能,从该等离子体到位于r>3Λe的该壁的热传递就减小了。有利的是,上面参照图6-10所述例子中的等离子体包括感应的静电场。这种等离子体包括几乎分布在边界Y(其在近似1-2Λe范围内)内的电子,因而允许该电场覆盖该等离子体块的基本部分。该电场如此有意义的存在有助于将该等离子体坚固地包含在电子尺度长度(趋肤深度)的数量级的范围内。对于这种等离子体系统的调查表明当输入参数改变很大时,在这样一个范围的该约束的等离子体的这种特征会保持。如示例的,当平均数密度N0变化一个近似为10的因子、且当输入温度值T0改变一个近似为30的因子的时候,类似有利的电场促使的约束保持在一个近似为2的因子的范围内。因而,能够使具有位于电子尺度长度数量级的维度的等离子体约束的设计相对灵活。本发明展现了一个由于在r<Y的区域内有过度的电子且在r>Y的区域内离子几乎是唯一的核素而产生的实际电场。如上所述,通过针对r<Y求解方程(11A)-(11P)并且用Y取代边界条件的a,能够得到数值解答。可以求出r>Y的修正集(对离子),并且用边界条件的Y取代0,然后匹配两个集在r=Y的解答。在一个实施例中,磁束缚核素的数量密度在r=Y处基本为零。在一个实施例中,完成这样一个匹配过程能够对输入或者控制参数(能够根据1/α和1/β来表示)施加一个附加的限制。例如,在Z收缩的圆柱坐标处理的实施例中,1/α(能够从N0、T0和B0得到)近似为2(对于典型的熔合等离子体参数值)。更精确的1/α值可以表示为T0和n0的缓慢变化函数。以圆柱形结构为例,如图11所示的,从把1/α作为Y/Λe和温度T的函数的等高线图的例子中可以得到一个近似值。对于θ收缩、螺旋收缩,离子的运动、其它几何结构、或者它们的组合,要么用试验方法,要么通过求解与方程(11A)-(11P)类似的方程,可以得到适当的限制,并且对于r>Y时可以得到适当的修正集。在一个实施例中,电流携载核素的数量密度在边界r=Y处近似达到零。在两种核素都能够携带基本电流的一个实施例中,可以应用类似的方法来获得解答。上面参照图6-10所述的等离子体例子是Z收缩。当等离子体是θ收缩的时候也能够产生类似的静电场效应。图12-14示出了如上所述的能量变分方法的结果的例子。对于θ收缩的例子,采用的外径a近似为3Λe。此外,采用输入参数N0=1019/m3,T0=104keV,1/α=0,和1/β=20.5。对应的电子尺度长度Λe=(me/μ0N0e2)1/2近似为1.7mm。基于前述例子中的输入,图12示出轴向磁场曲线270作为距Z轴的距离的函数。这种磁场θ收缩能够约束等离子体,使得电子分布280和离子分布282形成为如图13所示。由于这种分布之故,电荷的分离能够产生基本的静电场曲线290,如图14所示。前述例子的θ收缩约束导致Y值近似为2.04mm。因而,其约束维度在电子尺度长度Λe数量级上的θ收缩的等离子体能够提供如上面参照Z收缩的等离子体系统所述的多方面的有利的特点。如前所述,螺旋收缩能够通过组合Z收缩和θ收缩来实现。因而,由1/α≠0且1/β≠0,能够实现与前述类似的能量变分分析,从而产生类似的结果,其中基本静电场是由电荷的分离而感应的。此外,约束维度在电子尺度长度Λe数量级的螺旋收缩等离子体能够提供与上面参照Z收缩和θ收缩等离子体系统类似的优点。通常认为螺旋收缩磁约束等离子体壁简单的Z收缩或者θ收缩更稳定。期望本发明中的螺旋收缩的实施方式享有这里所公开的各种特点。也如所述的,维度在等离子体的电子尺度长度数量级上的磁约束等离子体导致电荷的分离,由此在整个该等离子体块的基本部分感应基本静电场。这种电场能够表征为对应到与稳定平衡相关的能量井的深度。另外,期望当电子流半径Y在大约1-2Λe范围内的时候该能量井的深度相对较深。这种相对较深的平衡状态的能量井提供相对稳定的约束的等离子体。然而,约束的等离子体在Y值近似为1-2Λe处的这种稳定性不排除在更大Y值处磁约束能够具有它的由感应静电场所大力促使的稳定性的可能性。本发明的一方面涉及在不同尺寸标度的磁约束和相对稳定的平衡等离子体。图15A-C示出不同等离子体尺寸的电子和离子分布。尽管较大尺寸的等离子体系统可能不产生如处于Y=1-2Λe情形一样稳定的平衡,但是这种平衡仍然可能具有足够的稳定性(其是由电场促使的)。图15A示出第一组作为无量纲变量r/Λe的函数的粒子密度。曲线300和302表示电子和离子分布的示例。绘出的电子分布300基本上限定于Y≈1.5Λe内,因此与参照图9A所述的那例等离子体类似。产生的感应静电场(用括号304表示)覆盖该等离子体的基本部分。图15B示出第二组粒子密度,其中电子密度分布306基本上限定于一个示例性值Y≈10Λe内。所示离子密度分布308延伸超出了界限Y,由此感应出一个影响位于该等离子体外边界附近的区域310的静电场。图15C示出第三组粒子密度,其中电子密度分布312基本上限定于一个示例性值Y≈40Λe内。所示离子密度分布314延伸超出了边界Y,由此感应出一个影响位于该等离子体外边界附近的区域316的静电场。在各种等离子体的实施例中,电场覆盖范围(304、310、316)通常是类似的,并且能够处在几个电子尺度长度的数量级上。因而,一种表征该等离子体稳定性的静电场角色的方法是认为该电场是一个形成于该等离子体块的表面附近的层。在等离子体块尺寸位于E场层“厚度”(例如图15A的系统)数量级的时候,该静电场的影响相对于整个等离子体是实质性的。因而,由静电场所促使的能量稳定性在这种系统中可能更为显著。在等离子体块的尺寸基本上大于E场层“厚度”(例如图15C和15B的系统)的时候,该静电场的影响相比图15A的系统中的来说可能不是实质性的。因而,静电场能够对能量稳定性起到重要的贡献;然而,这种贡献一般不如其在更小的系统中的显著。本发明的一方面涉及一种等离子体,它具有的尺度长度(趋肤深度)比其中感应静电场处于电子尺度长度(电子投入深度)数量级的等离子体的趋肤深度基本上要大。图15D示出一个例子的等离子体400,它的离子分布限制在内边界402,而电子分布限制在外边界404,这样感应出径向指向外面的静电场406。可以看出,在这种等离子体中,电子和离子的作用颠倒了。在这种作用颠倒的等离子体中,离子构成电荷载体,由此受到磁约束。对于该离子运动的等离子体,因为大得多的离子趋肤深度Λion=(mion/μ0N0e2)1/2,其值a会是相对于电子运动等离子体的很多倍。对于具有类似的平均密度值的等离子体,比率Λion/Λe=(mion/me)1/2。对于氘,该比率Λion/Λe大约为61。因而,具有运动离子的等离子体具有的体积大约为类似的电子运动的等离子体的612=3700倍,其它一切基本相同。可以容易地将这里所述的能量变分方法修改用于分析,并且得到的等离子体系统将很可能大到足够允许电能产生。如上结合图1-15所述,感应静电场能够形成在一个具有宽范围的块尺度长度的等离子体内。对于其中电子受到磁约束的等离子体,块尺度长度能够用电子约束尺寸Y来表示。在一个实施例中,块尺度长度可以涵盖从大约1Λe到大约100Λe的范围。在一个实施例中,块尺度长度可以涵盖从大约1Λe到大约60Λe的范围。在一个实施例中,块尺度长度可以涵盖从大约1Λe到大约40Λe的范围。在一个实施例中,块尺度长度可以涵盖从大约1Λe到大约10Λe的范围。在一个实施例中,块尺度长度可以涵盖从大约1Λe到大约2Λe的范围。能够将类似的块尺度长度特征应用到离子受到约束的等离子体中。如上结合图1-15所述,形成于等离子体中的感应静电场有助于稳定等离子体状态的形成。特别是,静电场包括径向场。如已知的,动态(相对于静态)径向电场存在于大系统例如托卡马克(受控热核反应装置)中。然而,这种动态径向场是离子洛仑兹和离子压力不平衡的结果,并且该动态场的振幅看上去要比感应静态电场(因电荷分离)的振幅小大致10的倍数。如上结合图1-15所述,静电场促使的稳定等离子体能够通过电子或者离子的磁约束而形成。在这种构造中,磁约束的粒子构成电荷载体。因而,当电子构成电荷载体时,电子受到磁约束;当离子构成电荷载体时,离子受到磁约束。等离子体中电荷载体能够以不同的方式来表征其特征。一种方式是说电荷载体在等离子体中产生电流。另一种方式是说电荷载体在等离子体中经受整体运动(bulkmotion)。还有一种方式是说电荷载体在等离子体中流动。在一个实施例中,电子和离子都能够作为电荷载体。也即,电子和离子都对电流有贡献,经受整体运动,并且在等离子体中流动。这两种核素的电流产生特性的程度上的差别能够导致一种核素比另一种更受到磁约束。这两种核素在磁约束方面的这种差别能够感应出使得在等离子体中形成静电场的电荷分离。现在,图16和17示出一个能够磁性地封闭其中感应了基本静电场的等离子体的等离子体约束设备的简化图。图16A和16B示出简化的Z收缩设备320,其具有通过铁心326磁耦合到初级线圈324的约束环322。环322中的电荷载体用作为变压器铁心326上的次级线圈,使得建立在主线圈324(通过电源334)上的初级电流i1(t)在环322内感应出次级电流i2(t)332。这种环形电流(在圆柱近似法中的轴向电流)如上参照图4A所述约束等离子体。选择环322合适的尺寸以及为其中的等离子体选择合适的参数导致电子密度分布330与离子密度分布328的分离,由此感应基本静电场。图17A和17B示出一个具有约束段342(其外具有线圈344)的简化的θ收缩设备340。电流i(t)由电源346产生,并且通过线圈344,由此形成轴向磁场Bz352(该环形系统中的环形场)。如上参照图4B所述,这种磁场能够通过θ收缩约束等离子体。选择约束段342合适的尺寸以及为其中的等离子体选择合适的参数可以导致电子密度分布350与离子密度分布348的分离,由此感应基本静电场。如前所述,能够将Z收缩和θ收缩组合在一起产生螺旋收缩。因而,能够将图16和17中的Z收缩设备和θ收缩设备组合起来以形成螺旋收缩设备。此外,这里所公开的这种约束方法和各种思想能够在具有能够通过圆柱结构来近似的约束段的任何约束设备中实现。图18示出以本发明的约束等离子体为基础的熔合反应装置360的一个实施例。该反应装置360包括反应腔364,该反应腔包括一个将等离子体372基本约束在该反应腔364内的磁场。这种磁场可由电磁耦合到等离子体372的约束场产生器元件366来产生。该场产生器元件366由电源370来供电。反应装置360还包括为等离子体372提供和/或保持反应燃料的反应燃料供应源。如图18所示,等离子体372包括电子分布374,它至少部分地从离子分布376中分离出来。这样约束的等离子体允许反应腔364至少具有如上所述的相对小的尺寸。以前述方式封闭的等离子体372能够经受产生中子、x射线、电能和/或其它的反应产物的核聚变反应。在表1-3中概括了这些可能的反应结构和产物中的一些,例如在各个例子的操作条件下的氘-氚(DT)反应。1概括了与在各种粒子密度下的电子尺度高纵横比环形系统相关的各种尺寸。与表1相关的量如下定义n=平均粒子密度;Λ=电子尺度长度;Y=电子流边界半径=设为1.5Λ;a=圆环最小半径=离子流边界半径=设为2.5Y;R=圆环最大半径=设为20a;V=圆环体积=2π2Ra2。表1表2概括了对于表1的系统在各个温度下的中子产生率的各个估计值。与表2相关的量如下定义T=等离子体温度;σν=反应速率;中子产率=n2(σν)V/4。这些反应速率和中子产率表达式在本领域是众所周知的。表2表3概括了对于表1的系统在各个温度下对于氘-氚设备的各个功率产量的估计值。与表3相关的量如下定义T=等离子体温度;与带电粒子相关的功率=(nDnTσν)(5.6×10-13)(瓦)。功率的表达式在本领域是众所周知的。表3作为来自表1-3的一个例子,不能解释为任何方式上的限制,考虑一个具有约束在高比率环形腔内的DT燃料的等离子体系统。大约1020m-3的平均数密度对应着大约0.0532cm的电子尺度长度Λ。设置Y=1.5Λe=0.080cm、在2.5Λe处的最小半径a=0.20cm、在20a的最大半径R=4cm得到近似3.13cm3的体积V。在大约5keV的温度下(反应速率大约为1.30×10-17)操作这种等离子体能够产生大约每秒1.02×1011个中子。在这样紧凑的设备中这样一个数量级的中子通量在许多领域是有用的,例如反恐怖主义的材料探测、测井、地下水监视、放射性同位素产品以及其它的应用。这种DT燃料等离子体的操作也能够产生具有在大约1-5keV范围内的能量的高强度的软x射线。来自这种紧凑设备的这种x射线在一些领域例如光刻中是有用的。在一个实施例中,即使不出现聚变,软x射线也从等离子体中产生。从表1-3可以看出,示例在5keV温度下1020m-3平均数密度的操作参数能产生大约57mW的输出功率。通过改变不同的等离子体参数,输出功率能够大大增加。如前所述,人们认为,参照图6-10示例的等离子体的方案在平均数密度改变大约10的倍数时和温度改变大约30的倍数时保持不变。作为对可能的功率增加的相对保守的估计,在温度方面改变大约20的倍数产生大约100keV的等离子体温度,其中在n=1020m-3时输出功率大约为3.72W。另外,如上结合图15A-C所述,静电场促使的稳定等离子体能够随着体积的增加而形成。因而,对高纵横比率的圆环的大半径和小半径放大10倍使体积增加了103倍数。因而,因为输出功率与等离子体的体积成正比,所以能够对前述例子3.72mW的输出设备放大以产生几千瓦的功率。这种设备具有大约40cm的大半径,这对于功率发生器仍然是一个相对紧凑的设备。这里描述的各个例子的等离子体设备能够通过包括一个促使形成稳定且约束的等离子体的启动过程来操作。在具有圆环形结构的等离子体设备的上下文中描述了这例启动过程,在这类结构中环形(轴向的)和角向(方位角)磁场在约束中扮演着重要的角色。类似的启动过程通常应用到这里所描述的Z、θ和螺旋收缩思想中。在一个实施例中,通过电流携带环形场沿角向的线圈缠绕(例如图17A和17B所示的)建立真空环形磁场。接着,将中性气体喷入此真空腔中,并且一个强迫击穿使该气体离子化,从而产生相对冷且基本中性的等离子体。在一个比电子和离子的复合时间短的时间内,在变压器的主线圈绕组(例如图16A和16B中所示的)中的电流倾斜上升。在通过环形线圈的中心部分的磁通量中的变化感应出一个产生角向(方位角)磁场的环形(轴向)电流。这个电流能够使得等离子体的抗焦耳热达到大约2-3keV。因而,前述例子的启动过程能够将等离子体引入基本密度和温度(它们表征该等离子体的环境)的参量方式。随后,该等离子体通过松弛处理随着对离子产生约束的基本、径向静电场的伴随发展朝着稳定、约束的平衡状态前进。可以利用附加热机理例如射频加热来进一步增加等离子体温度,并且因此增加在该等离子体环境中发生的聚变事件的可能性。尽管上述实施例已经示出、描述并且指出了本发明如应用到上面公开的实施例中的基本的新颖性特征,但是应该理解,本领域普通技术人员可以在不脱离本发明的范围的前提下对所示的设备、系统和/方法的细节方面进行各种省略、取代和改变。因而,本发明的范围不应受限于前面的描述,而应该由所附权利要求来限定。权利要求1.一种两模式等离子体约束装置,包括等离子体,其设置在具有约束尺寸的约束块内,所述等离子体包括多个电子和多个离子,并且其中所述电子用作在所述等离子体中建立的电流的电荷载体;以及磁场,其对所述电子比对所述离子的影响基本上更多,使得所述电子作为约束的第一模式被约束在电子约束块内,该电子约束块小于所述约束块,使得所述电子的数量和所述离子的数量的分布产生至少部分的分离,其中所述分离感应出静电场,该静电场促使所述离子约束在所述约束块内作为第二模式。2.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约1000电子趋肤深度的范围内。3.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约100电子趋肤深度的范围内。4.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约60电子趋肤深度的范围内。5.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约40电子趋肤深度的范围内。6.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约10电子趋肤深度的范围内。7.如权利要求1的装置,其中该电子约束块具有的尺寸在大约1到大约2电子趋肤深度的范围内。8.如权利要求1的装置,其中该电子约束块具有大约1.2电子趋肤深度的尺寸。9.如权利要求1的装置,其中该约束块大致为圆柱形。10.如权利要求1的装置,其中该约束块大致为圆环形。11.如权利要求1的装置,其中该电子是使用Z收缩约束由磁场约束的。12.如权利要求1的装置,其中该电子是使用θ收缩约束由磁场约束的。13.如权利要求1的装置,其中该电子是组合使用Z收缩约束和θ收缩约束由磁场约束的。14.如权利要求1的装置,其中该等离子体的操作参数遭受到在与该等离子体相关的β值方面的限制,其中该β值取决于包括该等离子体的平均数密度、温度和该磁场的强度的因素。15.如权利要求1的装置,其中该电子对于该电流的贡献比该离子对于该电流的贡献更多。16.如权利要求1的装置,其中该电子在该等离子体内的整体运动比该离子在该等离子体内的整体运动要多。17.如权利要求1的装置,其中该电子在该等离子体内的流动比该离子在该等离子体内的流动要多。18.一种等离子体腔,包括包含电子和离子的等离子体;和磁场,具有将所述电子基本上约束在一个受限块内的形状和尺寸,该受限块用块尺度长度表征,所述块尺度长度具有一个由位于所述受限块内的电子趋肤深度决定的尺寸,其中所述电子和所述离子在所述受限块内保持着重叠的空间分布,所述重叠空间分布在所述受限块内产生一个基本整体的静电场,该受限块稳定所述重叠空间分布并且将所述离子基本上约束在所述受限块内。19.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约1000电子趋肤深度的范围内。20.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约100电子趋肤深度的范围内。21.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约60电子趋肤深度的范围内。22.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约40电子趋肤深度的范围内。23.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约10电子趋肤深度的范围内。24.如权利要求18的等离子体腔,其中所述块尺度长度在大约1到大约2电子趋肤深度的范围内。25.如权利要求18的等离子体腔,其中所述块尺度长度为大约1.2电子趋肤深度。26.如权利要求18的等离子体腔,其中所述受限块大致为圆柱形。27.如权利要求18的等离子体腔,其中所述受限块大致为圆环形。28.如权利要求18的等离子体腔,其中所述电子是使用Z收缩约束由所述磁场约束的。29.如权利要求18的等离子体腔,其中所述电子是使用θ收缩约束由所述磁场约束的。30.如权利要求18的等离子体腔,其中所述电子是组合使用Z收缩约束和θ收缩约束由磁场约束的。31.如权利要求18的等离子体腔,其中该等离子体的操作参数遭受到在与该等离子体相关的β值方面的限制,其中该β值取决于包括该等离子体的平均数密度、温度和该磁场的强度的一些因素。32.如权利要求18的等离子体腔,其中该等离子体是以一种允许该离子中至少一部分进行聚变反应的方式被封闭的。33.如权利要求32的等离子体腔,其中该聚变反应产生中子。34.如权利要求32的等离子体腔,其中该聚变反应产生电能。35.如权利要求18的等离子体腔,其中该等离子体是以一种允许产生软x射线的方式被封闭的。36.如权利要求18的等离子体腔,其中该电子对该等离子体中电流的贡献比该离子对于该电流的贡献要多。37.如权利要求18的等离子体腔,其中该电子在该等离子体内的整体运动比该离子在该等离子体内的整体运动要多。38.如权利要求18的等离子体腔,其中该电子在该等离子体内的流动比该离子在该等离子体内的流动要多。39.一种用于设计等离子体约束设备的方法,包括产生等离子体系统的能量的特征,该等离子体系统包括电子分布和离子分布,其中所述特征包括与整体静电场相关的能量项,该静电场是由于电子的所述分布与离子的所述分布的不同而在该等离子体内感应的;确定与该等离子体系统的该能量的所述特征相关的平衡态;以及确定与所述平衡态相关的一个或者多个等离子体参数。40.如权利要求39的方法,其中所述一个或者多个等离子体参数包括电子数密度和块尺度长度。41.一种等离子体聚变设备,包括具有在其中约束的等离子体的等离子体反应腔,其中该等离子体包括多个电子和多个离子;约束场产生器,其提供磁场到反应腔,由此使得该等离子体的约束基本上在等离子体约束块内;以及反应燃料供应源,其提供能够在等离子体条件下熔合以产生反应产物的离子的一种或者多种核素,其中电子用作为建立于该等离子体中的电流的电荷载体,由此使得该磁场影响电子比离子要多,从而使得磁约束引起电子的数量和离子的数量的分布至少有部分的分离,其中所述分离感应出静电场,该静电场促使位于该等离子体反应腔内的离子的约束,并且其中该等离子体约束块用块尺度尺寸来表征。42.如权利要求41的等离子体聚变设备,其中该块尺度尺寸在大约1到大约1000电子趋肤深度的范围内。43.如权利要求41的等离子体聚变设备,其中该块尺度尺寸在大约1到大约100电子趋肤深度的范围内。44.如权利要求41的等离子体聚变设备,其中该块尺度尺寸在大约1到大约40电子趋肤深度的范围内。45.如权利要求41的等离子体聚变设备,其中该块尺度尺寸在大约1到大约10电子趋肤深度的范围内。46.如权利要求41的等离子体聚变设备,其中该块尺度尺寸大约为3电子趋肤深度。47.如权利要求41的等离子体聚变设备,其中该反应产物包括中子,使得该聚变设备用作中子产生器。48.如权利要求47的等离子体聚变设备,其中该反应燃料供应源提供氘-氚燃料。49.如权利要求48的等离子体聚变设备,其中该氘-氚等离子体具有平均密度为大约1020电子每立方米,允许该尺寸小于大约1cm。50.如权利要求49的等离子体聚变设备,其中该氘-氚等离子体具有平均温度为大约5keV,以大约1011中子每秒的速率产生中子产物。51.如权利要求41的等离子体聚变设备,其中该反应产物包括能量,使得该聚变设备用作发电机。52.如权利要求51的等离子体聚变设备,其中具有小于大约40cm尺寸的发电机产生千瓦范围内的电能。53.如权利要求41的等离子体聚变设备,其中该等离子体的操作参数遭受到在与该等离子体相关的β值方面的限制,其中该β值取决于包括该等离子体的平均数密度、温度和该磁场的强度的一些因素。54.如权利要求41的等离子体聚变设备,其中该电子对于该等离子体中电流的贡献比该离子对于该电流的贡献要大。55.如权利要求41的等离子体聚变设备,其中该电子在该等离子体中的整体运动比该离子在该等离子体中的整体运动要多。56.如权利要求41的等离子体聚变设备,其中该电子在该等离子体中的流动比该离子在该等离子体中的流动要多。57.一种x射线产生器,包括具有约束在其中的等离子体的等离子体腔,其中该等离子体包括多个电子和多个离子;和约束场产生器,其将磁场提供给该等离子腔,由此使得该等离子体的约束基本上在等离子体约束块内;其中电子用作为建立于该等离子体中的电流的电荷载体,由此使得该磁场对电子比对离子的影响要多,从而使得磁约束引起电子的数量和离子的数量在分布上至少有部分的分离,其中所述分离感应出静电场,该静电场促使位于该等离子体腔内的离子的约束,并且其中该等离子体约束块用块尺度尺寸来表征。58.如权利要求57的x射线产生器,其中该块尺度尺寸在大约1到大约1000电子趋肤深度范围内。59.如权利要求57的x射线产生器,其中该块尺度尺寸在大约1到大约100电子趋肤深度范围内。60.如权利要求57的x射线产生器,其中该块尺度尺寸在大约1到大约40电子趋肤深度范围内。61.如权利要求57的x射线产生器,其中该块尺度尺寸在大约1到大约10电子趋肤深度范围内。62.如权利要求57的x射线产生器,其中该块尺度尺寸为大约3电子趋肤深度。63.如权利要求57的x射线产生器,其中该x射线包括由该等离子体在包括非熔合条件的条件下产生的软x射线。64.如权利要求57的x射线产生器,其中该等离子体的操作参数遭受到在与该等离子体相关的β值方面的限制,其中该β值取决于包括该等离子体的平均数密度、温度和该磁场的强度的一些因素。65.如权利要求57的x射线产生器,其中该电子对于等离子体中电流的贡献比该离子对于该电流的贡献要大。66.如权利要求57的x射线产生器,其中该电子在等离子体中的整体运动比该离子在该等离子体中的整体运动要多。67.如权利要求57的x射线产生器,其中该电子在该等离子体中的流动比该离子在该等离子体中的流动要多。68.一种等离子体约束装置,包括等离子体,其设在具有约束尺寸的约束块内,所述等离子体包括多个电子和多个离子,并且其中所述离子用作在所述等离子体中所建立的电流的电荷载体;以及磁场,其对所述离子比对所述电子的影响基本上更多,以将所述离子磁约束在离子约束块内,该离子约束块小于所述约束块,使得所述数量的离子和所述数量的电子的分布产生至少部分的分离,其中所述分离感应出静电场,该静电场促使所述电子约束在所述约束块内。69.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约1000离子趋肤深度的范围内。70.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约100离子趋肤深度的范围内。71.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约60离子趋肤深度的范围内。72.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约40离子趋肤深度的范围内。73.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约10离子趋肤深度的范围内。74.如权利要求68的装置,其中该离子约束块具有的尺寸在大约1到大约2离子趋肤深度的范围内。75.如权利要求68的装置,其中该离子约束块具有大约1.2离子趋肤深度的尺寸。76.如权利要求68的装置,其中该约束块大致为圆柱形。77.如权利要求68的装置,其中该约束块大致为圆环形。78.如权利要求68的装置,其中该离子是使用Z收缩约束由磁场约束的。79.如权利要求68的装置,其中该离子是使用θ收缩约束由磁场约束的。80.如权利要求68的装置,其中该离子是组合使用Z收缩约束和θ收缩约束由磁场约束的。81.如权利要求68的装置,其中该等离子体的操作参数遭受到在与该等离子体相关的β值方面的限制,其中该β值取决于包括该等离子体的平均数密度、温度和该磁场的强度在内的一些因素。82.如权利要求68的装置,其中该离子对于该电流的贡献比该电子对于该电流的贡献更多。83.如权利要求68的装置,其中该离子在该等离子体内的整体运动比该电子在该等离子体内的整体运动要多。84.如权利要求68的装置,其中该离子在该等离子体内的流动比该电子在该等离子体内的流动要多。85.如权利要求68的装置,其中该等离子体是以一种允许至少部分的离子发生聚变反应的方式被封闭的。86.如权利要求85的装置,其中该聚变反应产生中子。87.如权利要求85的装置,其中该聚变反应产生电能。88.如权利要求68的装置,其中该等离子体是以一种允许产生软x射线的方式被封闭的。全文摘要公开了一种用于等离子体约束的装置(12)和方法。通过改变该系统能量服从麦克斯韦尔方程、动量矩方程和状态绝热方程来确定等离子体(100)的稳定平衡,而不需实行准中性条件。在一个实施例中,电子受到磁场力的约束,离子受到因两种流体的电荷分离产生的内部静电力约束。在一个实施例中,选择用于能量变分处理的输入参数,使之满足等离子体β参数条件,由此减少一个控制变量的数目。在一维平衡中的圆柱对称等离子体的径向尺度的长度用电子趋肤深度表征。能够将这种等离子体约束为一个具有紧凑尺寸的高比率圆环。该紧凑等离子体聚变设备的应用包括中子产生器、x射线产生器和发电机。文档编号H05H3/06GK1973338SQ200480009880公开日2007年5月30日申请日期2004年3月19日优先权日2003年3月21日发明者W·法瑞尔·爱德华斯,艾瑞克·赫尔德申请人:犹他州立大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1