成分分析方法及成分分析装置的制作方法

文档序号:8033827阅读:348来源:国知局
专利名称:成分分析方法及成分分析装置的制作方法
技术领域
本发明涉及物体的元素的成分分析方法及成分分析装置。
背景技术
在用于电气·电子产品的普通的电路基板中,采用焊料连接安装在印刷线路板或薄膜基板上的各种电路部件。从可操作性和产品的可靠性上出发,这种用于将电路部件连接在基板上的焊料普遍使用含有较多铅的锡·铅共晶焊料。
当具有使用了这种含有铅的焊料的电路基板的电气·电子产品不再使用而被废弃时,如果弃于室外或作填埋处理,则从被废弃的产品中溶出的铅会污染地下水,混入饮用水中,从而可能对人体造成不良影响。因此将不再使用的具有使用了含有铅的焊料的电路基板的电气·电子产品填埋于按照一定的要求管理的管理型处置场中,上述要求就是含铅的污染水不漏出。
为了更切实地防止环境污染,最好将不再使用的电气·电子产品拆开,使各构件分离,取出电路基板后,从该电路基板中分离回收铅。但是分离回收铅要消耗较多的时间和人力,再生的铅需要相当高的分离回收成本。
近年来,开始采用如下的化学回收方法,即拆开不再使用的电气·电子产品,将取出的要废弃的电路基板(以下,简称为废电路基板)粉碎后,通过对由此所得的粉碎物进行干馏来回收。采用该化学回收方法,开启了进行循环再利用之路,即回收用作配线材料和镀层材料的金、银、铜、钯这类价格较高的金属(有价金属)。这时,废电路基板通常所含的玻璃等硅化合物被作为矿渣回收。该矿渣例如能够作为水泥原料等被有效地再利用。但是,废电路基板含铅时,铅会混入矿渣中。因此为了将该矿渣作为水泥原料等加以有效地利用,必须分离回收铅。但是由于分离回收铅的成本的问题,目前这种含铅的矿渣也只是被填埋于管理型处置场中而没有进行重复利用。
因此近年来,为了切实地防止环境污染,便于进行循环再利用,正在进行用不含有铅的焊料即所说的无铅焊料替代锡·铅共晶焊料的工作。特别是,各精力。如果将使用了无铅焊料的废电路基板粉碎后进行干馏,则能够在回收有价金属的同时,回收不含铅的矿渣。由此,能够将回收的矿渣作为水泥原料等加以有效地利用。
目前已知的付诸实用的无铅焊料比锡·铅共晶焊料熔点高,例如目前被认为将成为无铅焊料的主流的Sn-Ag-Cu系无铅焊料的熔点为216~220℃,锡·铅共晶焊料的熔点约为183℃。这样,由于无铅焊料比锡·铅共晶焊料熔点高,因此使用无铅焊料时就必须在高温下进行焊接作业。所以,在电路部件中,也会存在虽然相对以往的焊接作业温度而言具有耐热性,但对象上述这样高的焊接作业温度其耐热性就不足的电路部件。此外,根据电路部件的引线的材料和形状,有时在焊接作业后个别部件还必须通过可靠性试验进行认可。
因此,难以将电路基板和由电路基板制成的产品中所使用的焊料全部替换为无铅焊料,一部分电路基板仍在使用含铅的焊料。此外,在已经制成使用的电气·电子产品中存在大量使用了含铅焊料的产品。因此目前的情况是,在拆卸不再使用的电气·电子产品,分离其中的构件,取出电路基板的作业现场,不可避免地会存在使用了含铅焊料的电路基板和使用了无铅焊料的电路基板混杂在一起的现象。
如果不具备有效的分离使用了无铅焊料的废电路基板的手段,则将在使用了含铅焊料的电路基板和使用了无铅焊料的电路基板混杂在一起的状态下,进行回收再利用以及废弃处理。进行这样的处理,会产生如下的问题。
首先,如果只有使用了无铅焊料的废电路基板,则能够将通过废电路基板的粉碎和干馏所获得的矿渣例如作为水泥原料等加以有效利用。但是,如果使用了含铅焊料的电路基板和使用了无铅焊料的电路基板混杂在一起,则铅混入矿渣中,不能作为水泥原料等进行有效地利用。这样,特意使用了无铅焊料的电路基板在回收了有价金属后也只能和使用了含铅焊料的废电路基板的残渣一起被填埋于管理型处置场中。
此外,从通过废电路基板的粉碎、干馏、以及其后有价金属的回收所获得的矿渣中回收处理铅时,如果在含铅焊料中混杂有无铅焊料,则也存在问题,即铅的含有率降低,反而使铅的分离回收成本增高。
因此,希望找到一种低成本的且能够简便地甄别使用了含铅焊料的电路基板和使用了无铅焊料的电路基板的方法。
由于含铅焊料和无铅焊料都是以锡为主成分的,因此在光泽上的差别极小,用目视难以区分。为此,例如在日本专利特开2000-269614号公报中公开了如下的方法通过在电路基板设置识别标志或条形码等,甄别使用了含铅焊料的电路基板和使用了无铅焊料的电路基板。
但是,利用识别标志和条形码等的甄别方法存在如下问题,即,在要求轻量化、薄型化、小型化的电气·电子产品中,有时无法确保用于在电路基板设置识别标志和条形码等所需的空间。此外,还必须考虑到识别标志和条形码等小,难以识别的情况。而且,在电路基板的制造工序中,必须要有设置识别标志和条形码等的工序,从而使制造成本增高。
在拆卸不再使用的电气·电子产品,分离其中的构件,取出电路基板的作业中,许多制造公司的产品和电路基板混杂在一起。为此,日本专利特开2000-269614号公报中公开的甄别方法是,识别标志和条形码必须标准化。但是,这样的标准化不是很容易就能够实现的,因此可以说该方法不是一个能够迅速实现的切合实际的方法。
此外,即使是无铅焊料,在电路部件中也存在大量的引线镀有含铅焊料的部件。要将它们在短时间内同时全部更换为无铅是不现实的。因此,可以认为镀含铅焊料的电路部件和镀无铅焊料的部件将同时存在。但是,仅用识别标志和条形码来表示它们事实上是不可能。
此外,对废电路基板而言,除了铅的问题,在废弃物的焚烧处理阶段还存在关于会产生二肟的溴的问题。
电路基板中的搭载有电路部件的印刷线路板通常采用以合成树脂为主成分的绝缘性材料。一般为了使用时的安全性,满足例如UL标准(美国的安全标准)所规定的难燃性的要求标准,大多数该绝缘性材料中含有含溴的卤素系阻燃剂(溴化二苯醚系化合物或溴化联苯化合物等)。在将电路基板作为废弃物焚烧时,这种含溴的卤素系阻燃剂可能会因为不完全燃烧产生二肟。为此,对这种含溴的电路基板或不作焚烧处理而进行填埋处理,或必须按照不产生二肟的要求来严格控制燃烧条件而进行焚烧处理。
近年来,不含溴的无卤素的印刷线路板的开发正日趋深入。采用这种印刷线路板不必担心焚烧时产生二肟。但是,在已经制成使用的电气·电子产品中,存在大量的使用了含溴的卤素系阻燃剂的产品。因此,在拆卸不再使用的电气·电子产品,分离其中的构件,取出电路基板的作业现场,不可避免地存在使用了含溴的卤素系阻燃剂的电路基板和无卤素的电路基板混杂在一起的现象。
如果在无卤素的电路基板中混入了使用含溴的卤素系阻燃剂的电路基板,则在焚烧时可能会产生二肟。此外,如果进行防止产生二肟的处理,则将增加处理成本。
为此,从防止二肟的产生于未然以及降低处理成本的观点出发,最好在电路基板的废弃处理阶段,将含溴的电路基板和不含溴的电路基板区分开后再进行废弃处理。
以往的废弃物的区分方法众所周知的是采用荧光X射线的区分方法。例如在日本专利特开平10-267868号公报中提出了一种部件识别装置,该装置通过向废弃物照射一次X射线,根据从废弃物中产生的固有X射线来识别废弃物。此外,在日本专利特开2002-310952号公报中提出了如下的方法用荧光X射线分析装置对废电路基板表面进行分析,根据该分析结果判定有无含铅,区分含有铅的废电路基板和表面不含有特定元素的废弃物的方法。这些以往的装置都是通过在密闭室内分析传送带上的废弃物进行识别的大型装置。
在日本专利特开2000-258347号公报中公开了ICP(Inductively CoupledPlasma高频电感耦合等离子体)发光分析技术。在该发光分析技术中,将作为分析对象的焊料制成试样备用。通过使混入了所制成的焊料试样的载气在管中流动,并在卷绕于该管外侧的线圈中通高频电流,形成等离子体,再使该试样发光而进行分光分析。
但是,在上述以往的分析技术中存在以下问题分析操作的程序复杂,分析处理需要较长的时间,而且需要有昂贵的分析设备。此外,由于分析需要真空处理,因此需要有坚固的真空容器及用于其的真空泵,由此就存在装置大型化的问题。

发明内容
鉴于上述以往技术中存在的问题,本发明的目的是提供分析操作的程序简单,能在短时间内完成分析,并且能够以低成本实现分析处理的成分分析方法和成分分析装置。
为了达到上述目的,本发明的成分分析方法具有对特定元素设定在大气压下照射等离子体时的波长和发光强度的关系的设定工序;根据前述设定工序中所设定的关系,选定具有发光强度的峰值的特定的波长的选定工序;在大气压下向被分析对象物体照射等离子体,在由前述选定工序选定的波长下,测定前述被分析对象物体的发光强度的检测工序;将在前述检测工序中测得的发光强度和前述设定工序中的波长的发光强度相比较,判定前述被分析对象物体中有无含有前述元素的判定工序。
采用具有上述处理工序的本发明的成分分析方法,分析操作的程序简单,能在短时间内完成分析,并且能够实现成本低廉的分析。此外,采用本发明的成分分析方法,能够简便、而且准确地进行被分析对象物体的甄别。
为了达成上述目的,本发明的成分分析装置具备载放被分析对象物体的试样台;内部具有气体流路的放电电极;向前述放电电极供给气体的气体供给部;向前述放电电极供给电力的电源;具有靠近产生于前述放电电极和前述被分析对象物体之间的等离子体而配置的发光输入部的由透光材料形成的透光部,该透光材料可透过由等离子体的照射所产生的来自前述被分析对象物体的光;只允许从前述透光部出来的光中的特定波长的光透过的滤光器;测定透过前述滤光器的光的发光强度,判定前述被分析对象物体中有无含有特定的元素的控制装置。
采用以上所述构成的本发明的成分分析装置,分析操作的程序简单,能在短时间内完成分析,并且能实现低成本的分析。


图1为本发明的实施例1中所采用的第1成分分析装置的结构简图。
图2A为本发明的实施例1的第1成分分析装置中产生等离子体的部分的放大剖面图。
图2B为实施例1的第1成分分析装置的另一种结构的放大剖面图。
图3为本发明的实施例1中所采用的第2成分分析装置的结构简图。
图4为对采用铅焊料安装电子元件的印刷线路板进行分析时的发光光谱。
图5为对采用无铅焊料安装电子元件的印刷线路板进行分析时的发光光谱。
图6为本发明的实施例2的成分分析装置中产生等离子体的部分的放大剖面图。
图7为本发明的实施例3的成分分析装置的结构简图。
图8为本发明的实施例4的成分分析装置中产生等离子体的部分的放大剖面图。
图9为本发明的实施例5的成分分析装置的结构简图。
图10为本发明的实施例6所采用的成分分析装置中产生等离子体的部分的放大剖面图。
图11为本发明的实施例7的成分分析装置中产生等离子体的部分的放大剖面图。
图12为本发明的实施例8的成分分析装置中产生等离子体的部分的放大剖面图。
图13为本发明的实施例9的成分分析装置中产生等离子体的部分的放大剖面图。
图14为本发明的实施例9的成分分析装置的结构示意图。
图15为本发明的实施例9的成分分析装置的另一种结构的示意图。
图16为本发明的实施例10的成分分析装置中产生等离子体的部分的放大剖面图。
图17为本发明的实施例11的成分分析装置中产生等离子体的部分的放大剖面图。
恳请注意的是,附图中的一部分或全部是为了图示的目的而作的简要的描述,其中所示的构成部件并不一定是严格按照相对实际的大小和位置来描述的。
具体实施例方式
以下,参照

本发明的成分分析方法和应用该成分分析方法的原理制成的成分分析装置的较佳实施例。
实施例1以下,参照附图1~图5说明本发明的实施例1。
图1为本发明的实施例1中所采用的第1成分分析装置的结构简图。图2A为实施例1的第1成分分析装置中产生等离子体的部分的放大剖面图。在实施例1中,对检查对象为电路基板中的印刷线路板的情况进行说明,但检查对象为薄膜基板时也是相同的。
图1是用实施例1的第1成分分析装置200对作为检查对象的被废弃的印刷线路板1进行焊料的成分分析检查的状态的示意图。如图1所示,第1成分分析装置200由使等离子体产生的等离子体产生部200A和受到等离子体的照射进行成分分析的成分分析部200B构成。等离子体产生部200A具备大气压等离子体源2、气体供给装置3、电源4和排气装置55。成分分析部200B具备透光部6、滤光器7、光电二极管8、控制装置9、扬声器10和指示器11。此外,在实施例1中为在大气压下使等离子体产生的结构,这里的大气压是指0.8气压~1.2气压[atm]。在以下的实施例中也是如此。
如图2A所示,等离子体产生部200A的大气压等离子体源2的内部具有气体流路14,实际具备呈圆筒状的放电电极13、覆盖该放电电极13的顶端的电介质12、包覆放电电极13的外周面的绝缘体53、覆盖绝缘体53的金属制罩54。该大气压等离子体源2和气体供给装置3之间通过不锈钢管71相连,形成不锈钢管71内的气体流路73与大气压等离子源2内的气体流路14连通的结构。大气压等离子体源2的放电电极13和不锈钢管71隔着绝缘物由螺栓50相连接。螺栓50贯穿安装在不锈钢管71的凸缘处的陶瓷衬套51、和不锈钢管71的凸缘与放电电极13的凸缘之间的陶瓷环52,旋入放电电极13中。此外,在陶瓷环52的中央部分设置有多孔质的具有通气性的多孔质陶瓷72。这样,由于设置了多孔质陶瓷72,因此大气压等离子体源2具有防止在配管内放电的效果。其结果是,不锈钢管71的凸缘和放电电极13的凸缘以绝缘状态互相牢固地结合在一起。实施例1中的陶瓷环52和多孔质陶瓷72的材料使用了氧化铝(Al2O3)。但是,陶瓷环52和多孔质陶瓷72的材料也可以使用其它的陶瓷,例如可以采用氧化锆(ZrO2)、氮化铝(AlN)、氮化硅(SiN)和碳化硅(SiC)形成。作为能够使防止在大气压等离子体源2和不锈钢管71的接头附近的配管内放电的效果进一步提高的结构,有图2B所示的结构。在图2B中,和图2A所示的结构不同之处是,多孔质陶瓷72A的形状。如图2B所示,设置于陶瓷环52的中央部分的多孔质的具有通气性的多孔质陶瓷72A的一个端部向放电电极13的内部突出。多孔质陶瓷72A的另一端部向不锈钢管71的内部突出。这种结构的多孔质陶瓷72A在接头附近的配管内具有优良的防止放电的效果。
大气压等离子体源2的放电电极13与电源4相连,由该电源4提供高频电力。另一方面,将作为大气压等离子体源2的外壳的罩54接地,同时不锈钢管71也接地。这样,大气压等离子体源2的结构就具有优良的操作性,即,检查人员能够用手拿着对作为检查对象的印刷线路板1进行检测,易于配置在印刷线路板1的所希望的位置。
如图2A所示,成分分析部200B中的透光部6由光学纤维6A、包覆其外周面的缓冲涂层6B和金属制的罩6C构成。上述构成的透光部6具有弯曲性,检查人员能够直接用手拿着放置到所希望的位置。
接着,说明使用上述构成的实施例1的第1成分分析装置200,进行被废弃的印刷线路板1中的焊料的成分分析检查的方法。将作为检查对象的被废弃的印刷线路板1放置在试样台18上。该试样台18为传送带,按照将作为检查对象的印刷线路板1依次输送至检查位置的要求构成。
如图2A所示,在印刷线路板1安装有电子元件16,电子元件16的端子通过焊料17与印刷线路板1的焊接区15相连接。将该焊料17作为被分析对象物体,检查人员将大气压等离子体源2的顶端靠近附着有焊料17的焊接区15而配置。此外,透光部6的顶端也靠近焊接区15配置。这时,排气装置55的排气嘴也朝焊接区15的方向配置。将印刷线路板1按照焊料17向上的状态放置在试样台18上。采用该试样台18由树脂制成的示例进行说明,但也可以是导电体的结构。在这种情况下,要将试样台18接地后使用。
如图2A所示,在大气压等离子体源2中,最靠近作为被分析对象物体的焊料17,并与等离子体5接触的部分由电介质12构成。该电介质12设置在放电电极13的等离子体侧顶端,使被供给高频电力的放电电极13不直接面对被分析对象物体。来自气体供给装置3的惰性气体,例如氦气按照箭头的方向在不锈钢管71的气体流路73、具有通气性的多孔质陶瓷72和放电电极13内的气体流路14中流动。
如上所述,配置大气压等离子体源2、透光部6和排气装置55的排气嘴后,从气体供给装置3向大气压等离子体源2以1000sccm(最好是100sccm以上10slm以下)的量供给惰性气体,例如氦气。由电源4提供频率13.56MHz的高频电力200W(最好是10W以上500W以下)。由此,在大气压等离子体源2和焊接区15之间产生等离子体5。从被等离子体5照射的被分析对象物体发出的光,通过透光部6的光学纤维6A,被导入可透过波长666nm的光的滤光器7。通过滤光器7的光被导入光电二极管8,进行检测。透光部6的光学纤维6A的等离子体侧的顶端成为从被等离子体5照射的被分析对象物体发出的光入射的发光输入部100。
通过光学纤维6A,经光电二极管8进行了光电变换的信号被送入成分分析部200B的控制装置9中。控制装置9根据等离子体5的发光判别作为被分析对象物体的焊料17中所含的元素。重金属元素如果被加热到高温则会受到激发而发光。其波长是该元素固有的波长,其强度与含量成比例关系。因此,通过对焊料17被激发所产生的等离子体5的光进行分光分析,来判别被分析对象物体是含铅的焊料还是无铅焊料。即,特定波长的等离子体5的发光强度如果比预先规定的值高,则判定作为被分析对象物体的焊料17中含有铅。同时,如果判定焊料含有铅,则从扬声器10发出检出音,并且指示器11点亮,将该信息通知检查者。即,图1所示的第1成分分析装置200中的成分分析部200B具有在检测出特定的元素例如铅时,用声音及/或指示光将该信息通知检查者的报知部。
图1所示的第1成分分析装置200能够用于要判定在被分析对象物体中是否含有的元素的发光峰预先已明确的情况。第1成分分析装置200采用由滤光器7提取特定波长的光、测定该光的发光强度的方法。因此,第1成分分析装置200能够以极低的成本构成成分分析装置,同时还是操作简单的小型装置。
为了预先明确在被分析对象物体中所要判定的元素的发光峰,采用图3所示的第2成分分析装置300。第2成分分析装置300和前述第1成分分析装置200的不同之处是成分分析部300B的结构。因此第2成分分析装置300的等离子体发光部300A和第1成分分析装置200的等离子体发光部200A的结构相同。所以,在第2成分分析装置300中,对和第1成分分析装置200的构成部件具有相同功能的部件标记相同的符号,并省略其说明。
在图3所示的第2成分分析装置300中,来自透光部6的光学纤维的光被直接提供给分光装置19,测定比第1成分分析装置200大的波长范围的发光强度。此外,第2成分分析装置300也可以用于成分完全未知的物体的成分分析。
图4是用第2成分分析装置300对采用含铅的焊料安装电子元件的印刷线路板进行分析时的发光光谱。图5是用第2成分分析装置300对采用无铅焊料(主成分为锡-银-铜)安装电子元件的印刷线路板进行分析时的发光光谱。将图4和图5相比较可知,有若干仅在含铅的焊料的情况下才能观察到的发光峰。即,波长为427nm(图4中由“A”圈所围的峰)、666nm(图4中由“B”圈所围的峰)、730nm(图4中由“C”圈所围的峰)。可以认为这些波长都是铅特有的发光。因此,通过对这些波长中的任意一个进行检测,能够判别作为检查对象的印刷线路板中所使用的焊料是含有铅还是无铅焊料。为了更简便地进行该判别,可以采用图1所示结构的装置,将滤光器7的透过波长定为427nm、666nm或730nm。
图5中没有出现银和铜的发光峰,其原因可以认为是由于银和铜的沸点比铅高,因此在等离子体中挥发的量少。铅的沸点为175℃、银的沸点是2184℃、铜的沸点是2580℃。
作为判定在被分析对象中是否含有特定的元素的判定标准,采用在某个特定波长的预先确定的发光强度的值。例如,根据测得的发光强度的值大于或小于预先确定的阈值来判别是否含有特定的元素。或者可以测定2种以上的波长的发光强度,根据它们的发光强度比大于或小于预先确定的阈值,来判别是否含有特定的元素。这种情况下,作为发光强度比的基准的发光峰可以采用由气体供给装置3供给的惰性气体,例如氦气的发光峰((706nm等)。这时,采用2条光学纤维,2个滤光器,2个光电二极管,测定2种波长下的发光强度。或者可以将收入一条光学纤维6的光用光分配器分成2支,使用滤光器、光电二极管对它们分别进行检测。这样计算出发光强度比时,可以在指示器显示其大小。
此外,以惰性气体的发光峰作为基准时,由于其发光强度的值不会为零,因此通过算出发光强度比,能够判定放电是否正常发生。所以具有成分分析的可靠性高的优点。
实施例2以下,参照图6说明本发明的实施例2的成分分析装置。
图6为本发明的实施例2的成分分析装置中产生等离子体的部分的放大剖面图。在实施例2中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。实施例2的成分分析装置和实施例1的成分分析装置的不同之处是大气压等离子体源2A的结构。
如图6所示,在大气压等离子源2A的最接近被分析对象物体(焊料17)的部分,即与等离子体5接触的部分设置被供给高频电力的放电电极13。即,在实施例2中是在放电电极13的顶端部不形成电介质的结构。
在实施例2的成分分析装置中,惰性气体按照箭头的方向在放电电极13内的气体流路14中流动,从其开口部分直接喷向焊料17。作为检查对象的印刷线路板1上所安装的电子元件16的端子通过焊料17与形成于印刷线路板1的焊接区15相接合。此外,印刷线路板1放置在试样台18上。
在以上构成的实施例2的成分分析装置中,所产生的等离子体5具有易电弧放电的特性。电弧放电因其不稳定性而难以控制。但是,通过采用电弧放电,接合所用的焊料17的一部分较大量地飞溅到等离子体5中,具有能够提高分析灵敏度的优点。但是,为了防止高放电电流对大气压等离子体源2和电源4的损伤,连续放电时间最好控制在1秒以下。在成分分析中,即使是这样短的时间也能够进行充分的分析。
在实施例2的成分分析装置中,大气压等离子体源2A的放电电极13与电源4相连,被供给高频电力。另一方面,将相当于大气压等离子体源2A的外壳的罩54接地。这样,大气压等离子体源2A就具有检查人员能够用手拿着移向作为检查对象的印刷线路板1、易于配置在印刷线路板1的所希望的位置的结构。
实施例3以下,参照图7说明本发明的实施例3的成分分析装置。图7为本发明的实施例3的成分分析装置的结构简图。在实施例3中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。在实施例3的成分分析装置400中,和实施例1的成分分析装置200的不同之处是成分分析部400B的结构。大气压等离子体源400A的结构与实施例1的大气压等离子体源200A相同。
如图7所示,在实施例3的成分分析装置400中,透光部6A的出口分成了3个。各出口设置滤光器20、22、24与各自的光轴相接合,通过各滤光器20、22、24的光被分别导入光电二极管21、23、25进行检测。经光电二极管21、23、25进行了光电变换的信号被送入成分分析部400B的控制装置9中。实施例3的成分分析装置400中,3个滤光器20、22、24是使各自不同波长的光通过的滤光器,控制装置9能够根据等离子体5的发光的3种波长下的发光强度,判别被分析对象物体中有无这3种元素。如果被分析对象物体被判定为含有各个元素,则从对应的扬声器26、28、30发出检出音,同时对应的指示器27、29、31点亮。
以下,说明如上所述构成的实施例3的成分分析装置400的具体动作。
如图7所示,将印刷线路板1上的焊料作为被分析对象物体,靠近附着有该焊料的焊接区配置大气压等离子体源2B。从气体供给装置3向大气压等离子体源2B供给1000sccm的惰性气体,例如氦气,并由电源4提供频率13.56MHz的高频电力200W。由此,在大气压等离子体源2B和焊接区15之间产生等离子体5。所产生的等离子体5的光被导入透光部6的光学纤维,在途中被分成3支。通过光学纤维导入第1滤光器20的光通过第1滤光器20到达第1光电二极管21进行检测。
通过光学纤维导入第2滤光器22的光通过第2滤光器22到达第2光电二极管23进行检测。通过光学纤维导入第3滤光器24的光通过第3滤光器24到达第3光电二极管25进行检测。此外,光学纤维的等离子体侧的顶端部为发光输入部100。经各光电二极管21、23、25进行了光电变换的信号被送入成分分析部400B的控制装置9中。由控制装置9根据等离子体5的光判定被分析对象物体中所含的元素。这里,通过使用透过波长不同的3个滤光器20、22、24,能够判别有无3种元素。如果判定含有某种特定的元素,则第1扬声器26发出检出音,同时第1指示器27点亮,通知检查者含有该元素。如果检测出另一元素,则第2扬声器28发出检出音,同时第2指示器29点亮,通知检查者含有该元素。如果再检测出其它的元素,则第3扬声器30发出检出音,同时第3指示器31点亮,通知检查者含有该元素。
此外,采用实施例3的成分分析装置400也能够检测出被分析对象物体是否含有特定的一种元素,例如铅。即,如果在特定的3种波长的等离子体5的发光强度分别高于预先所确定的值,则能够判定被分析对象物体中确实含有该特定的元素。例如,如果被分析对象物体为焊料,判定元素为铅,则3种波长为427nm(图4中的“A”)、666nm(图4中的“B”)、730nm(图4中的“C”)。这样,通过在3种波长下的发光强度判定被分析对象物体,判定精度能够更高。
实施例4以下,参照图8说明本发明的实施例4的成分分析装置。图8为本发明的实施例4的成分分析装置中产生等离子体的部分的放大剖面图。在实施例4中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。在实施例4的成分分析装置中,和实施例1的第1成分分析装置200的不同之处是等离子体产生部中的大气压等离子体源2C的结构。实施例4的成分分析装置中,在大气压等离子体源2C设置透光部。
在图8中,大气压等离子体源2C的最靠近物体、与等离子体5接触的顶端部分32由透明材料,例如石英玻璃等形成。该顶端部分32固定在放电电极13的等离子体侧端部,电力被供给至该放电电极13。惰性气体,例如氦气按照箭头的方向在放电电极13内的气体流路14中流动。定位安装在设置于印刷线路板1上的焊接区15的电子元件16的端子通过焊料17与焊接区15相接合。印刷线路板1放置在试样台18上。在放电电极13的周围设置透明筒33。顶端部分32具有作为发光输入部100的功能,透明筒33具有作为光路的功能。入射到透明筒33中的由等离子体5发出的光被导入与该透明筒33相连的无图示的光学纤维中。接着,被导入光学纤维中的光通过滤光器到达光电二极管,进行光电变换。进行了光电变换的信号被输入至控制装置,测定特定波长的发光强度。或者还可以形成如下的结构,即,将被导入光学纤维中的光引入分光装置,能够检测较大波长范围的发光强度。
以上构成的实施例4的成分分析装置,无需将大气压等离子体源2C斜着贴近被分析对象物体,同时能够使发光输入部100更充分地接近等离子体5。这样,采用实施例4的成分分析装置能够使分析结果的可靠性进一步提高。
实施例5以下,参照图9说明本发明的实施例5的成分分析装置。图9为本发明的实施例5的成分分析装置的结构简图。
在实施例5中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。在实施例5的成分分析装置中,和实施例1的第1成分分析装置200的不同之处是等离子体产生部中的大气压等离子体源的结构。在实施例5的成分分析装置中,大气压等离子体源是配置在框体内的结构。
在图9中,将作为被分析对象物体的印刷线路板1放置在真空容器34内。以1000sccm向真空容器34内供给作为惰性气体的氦气,同时由作为排气装置的泵35从真空容器34内排气,由电源4向试样电极18提供频率13.56MHz的高频电力300W。由此在真空容器34内产生等离子体5。等离子体5的发光被导入透光部6的光学纤维中,再通过光学纤维被导入能透过波长666nm的光的滤光器7。通过滤光器7的光被导入光电二极管8中,进行检测。光学纤维的等离子体侧的顶端部设置在形成于真空容器34的壁面的孔内。该设置于真空容器34的壁面的孔中的光学纤维的顶端部为发光输入部100。
经光电二极管8进行了光电变换的信号被送入成分分析部的控制装置9,控制装置9根据等离子体5的光判定被分析对象物体中所含的元素。即,发光强度如果比预先确定的值高,则判定被分析对象物体含有某种特定的元素,例如铅。如果判定含有某种特定的元素,则从扬声器10发出检出音,并且指示器11点亮,将该信息通知检查者。即,实施例5的分分析装置具有在检测出特定的元素时、用声音或指示光将该信息通知检查者的报知部。
实施例5的成分分析装置的结构,虽然失去了使用大气压等离子体时的优点,即,无需密闭容器和泵、成本极低、局部分析简单、能够在短时间内完成分析等,但是具有能够对任意形状的被分析对象物体稳定地产生等离子体5的优点。即,实施例5的成分分析装置无需根据被分析对象物体设定大气压等离子体源和发光输入部100的位置,对被分析对象物体能够稳定地、并且容易地生成等离子体5,从而进行可靠性高的成分分析。
实施例6以下,参照图10说明本发明的实施例6的成分分析装置和成分分析方法。实施例6的成分分析装置的结构和前述实施例1的成分分析装置相同,和实施例1不同之处是使用成分分析装置进行的成分分析的方法。因此和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。
图10中,在大气压等离子体源2的最靠近作为被分析对象物体的焊料的部分,即与等离子体5接触的部分设置电介质12。该电介质12设置在放电电极13的等离子体侧端部。高频电力被供给至放电电极13。惰性气体,例如氦气按照箭头的方向在放电电极13内的气体流路14中流动。形成将作为检查对象的印刷线路板1输送、放置到试样台18上的结构。定位安装在设置于印刷线路板1上的焊接区15的电子元件16的端子通过焊料17与焊接区15相接合。
在实施例6的成分分析方法中,首先对作为被分析对象物体的焊料17进行研磨,在该焊料17的表面形成研磨屑36(研磨工序)。接着,如前述实施例1中所说明的那样,采用成分分析装置激发作为被分析对象物体的焊料17,使等离子体5发光。在实施例6的成分分析方法中,由于在研磨工序中,研磨屑36附着在焊料17的表面,因此如图10所示,焊料17表面的研磨屑36被激发,使等离子体发光。
如上所述,在使用实施例6的成分分析装置的成分分析方法中,与等离子体5接触的被分析对象物体的表面积增大,检测灵敏度进一步提高。此外,在实施例6的成分分析方法中,对使用实施例1的成分分析装置进行操作的示例进行了说明。但也可以使用前述实施例2~实施例4和后述实施例8~实施例11的成分分析装置进行。
实施例7以下,参照图11说明本发明的实施例7的成分分析装置和成分分析方法。实施例7的成分分析装置的结构和前述实施例1的成分分析装置相同,和实施例1不同之处是使用成分分析装置进行的成分分析的方法。因此和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。
图11中,在大气压等离子体源2的最靠近作为被分析对象物体的焊料的部分,即与等离子体5接触的部分设置电介质12。该电介质12设置在放电电极13的等离子体侧端部。高频电力被供给至放电电极13。惰性气体,例如氦气按照箭头的方向在放电电极13内的气体流路14中流动。
在实施例7中不是直接检查作为检查对象的印刷线路板1,而是将研磨印刷线路板1上的作为被分析对象物体的焊料后所得的研磨屑作为检查对象。
在实施例7的成分分析方法中,首先对作为被分析对象物体的焊料进行研磨(研磨工序)。在该研磨工序中所采用的研磨垫37的表面形成研磨屑36。这里所使用的研磨垫37是布或磨板,但也可以使用不含铅的磨石。
接着,如图11所示,使用大气压等离子体源2对形成于研磨垫37的表面的研磨屑36生成等离子体5。为了生成该等离子体5,将电介质12设置在放电电极13的等离子体侧端部,向放电电极13提供电力。此外,惰性气体,例如氦气按照箭头的方向在放电电极13内的气体流路14中流动。对由该等离子体5的生成所产生的光进行分光分析,检查被分析对象物体。
通过使用这种分析方法,由和与等离子体5接触的被分析对象物体相同材料构成的物质(研磨屑)的表面积增大,因此对被分析对象物体的检测灵敏度得到大幅度提高。
实施例8以下,参照图12说明本发明的实施例8的成分分析装置。图12为本发明的实施例8的成分分析装置中产生等离子体的部分的放大剖面图。
在实施例8中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。在实施例8的成分分析装置中,和实施例1的第1成分分析装置200的不同之处是等离子体产生部中的大气压等离子体源2D的结构。
在图12中,实施例8的成分分析装置的大气压等离子体源2D的最靠近被分析对象物体、与等离子体5接触的顶端部32由透明材料、例如石英玻璃等形成。由于石英玻璃含杂质少,因此不会有发光光谱紊乱的现象,能够进行精度高的检查。此外,由于石英玻璃不会被等离子体5腐蚀,因此能够长期使用。由石英玻璃形成的顶端部32被设置在放电电极12的等离子体侧端部,向放电电极13供给电力。惰性气体,例如氦气按照箭头的方向在放电电极13内的气体流路14中流动。定位安装在设置于印刷线路板1上的焊接区15的电子元件16的端子通过焊料17与焊接区15相接合。此外,印刷线路板1被放置在试样台18上。在放电电极13的周围设置有透明的由透光的树脂材料形成的透明筒33,顶端部32和透明筒33具有发光输入部100的功能。通过顶端部32入射到透明筒33的光被导入无图示的光学纤维,再送入检测发光状态的仪器,即图1所示的由滤光器7、光电二极管8和控制装置9等构成的成分分析部200B,或图3所示的由分光装置等构成的成分分析部300B。此外,为了防止入射到透明筒33中的光外泄,在透明筒33的外周面用不同材质的具有透光性的树脂形成涂层56,再在该涂层的外周面设置接地的导体筒38A。
这样构成的实施例8的成分分析装置,由于放电电极13被顶端部32、透明筒33和接地的导体筒38A等包围,因此能够抑制高频噪声的外泄,并且提高对检查者的安全性。
实施例9以下,参照图13说明本发明的实施例9的成分分析装置。图13为本发明的实施例9的成分分析装置中产生等离子体的部分、即大气压等离子体源的放大剖面图。在实施例9中,和前述实施例1中的构成部件具有相同功能、结构的部件标记相同的符号,并省略其说明。实施例9的成分分析装置中的大气压等离子体源2E如图13所示,具有图12所示的本发明的实施例8的成分分析装置中的导体筒38A的顶端延伸出去的形状。即,实施例9的成分分析装置中的导体筒38B形成为向等离子体发生方向突出、与作为检查对象的印刷线路板表面相接触的结构。
如上所述,实施例9的成分分析装置具有大气压等离子体源2E的导体筒38B的顶端与检查对象的表面接触的结构,因此,作为检查对象的印刷线路板1和放电电极13之间一直保持一定的距离(L)。由此,能够将被分析对象物体和放电电极的间距保持在规定的距离,能够以最佳的放电间隙进行等离子体处理。即,实施例9的成分分析装置中的导体筒38B的顶端部分具有作为用于保持规定的放电间隙的间隔物的功能。因此,采用实施例9的成分分析装置具有能够充分并且稳定地进行等离子体处理的优点。
图14为将实施例9的成分分析装置形成为可移动的便携型装置的外观图。图14所示的便携型成分分析装置中的大气压等离子体源2E是检测头,通过挠性缆线70与主体80相连。在挠性缆线70内设置有惰性气体的气体流路、光学纤维的光路及电气配线。在该成分分析装置的主体80中设有作为报知部的扬声器10和指示器11。采用这样构成的便携型成分分析装置,无需选择时间和场所就能够方便地对被分析对象物体进行检查。
图15为在实施例9的成分分析装置的大气压等离子体源2E设置了启动开关120的实例的示意图。如图15所示,在启动开关120设置有向下突出的按钮121。在作为检测头的大气压等离子体源2E与检查对象接触时该按钮121被按下,使成分分析装置进入工作状态。成分分析装置一进入工作状态,则从检测头喷出惰性气体,同时向检测头内的放电电极施加高频电力。在这样构成的成分分析装置中,由于将启动开关120设置在作为大气压等离子体源2E的检测头上,因此在检查人员用手拿着检测头进行操作时,能够可靠、且方便地进行成分分析处理。此外,实施例9的成分分析装置还具有可缩短高价的惰性气体的使用时间、且能够将电力的消耗量减至最小的效果。
实施例10以下,参照图16说明本发明的实施例10的成分分析装置。图16为本发明的实施例10的成分分析装置中产生等离子体的部分的放大剖面图。图16所示的实施例10的成分分析装置是在前述图12所示的本发明的实施例8的成分分析装置中的大气压等离子体源2D设置排气结构的装置。
如图16所示,在实施例10的成分分析装置的大气压等离子体源2F中,在导体筒38A的外侧形成排气路130。大气压等离子体源2F的外周面由树脂制的外筒110构成。该外筒110比由石英玻璃形成的顶端部32更加突出,形成这种结构能够使大气压等离子体源2F的顶端部分与检查对象接触而进行检查。
如上所述,由于实施例10的成分分析装置具有大气压等离子体源2F的外筒110的顶端与检查对象的表面接触的结构,因此,在作为检查对象的印刷线路板1和放电电极13之间一直保持规定的距离。这样,实施例10的成分分析装置能够以最佳的放电间隙进行等离子体处理。即,实施例10的成分分析装置的外筒110形成排气路130,同时其顶端部分具有作为用于保持放电间隙的间隔物的功能。因此,实施例10的成分分析装置具有能够充分地进行排气、同时能够进行稳定的等离子体处理的非常好的优点。
实施例11以下,参照图17说明本发明的实施例11的成分分析装置。图17为本发明的实施例11的成分分析装置中产生等离子体的部分的放大剖面图。
如图17所示,实施例11的成分分析装置的大气压等离子体源2G通过在前述图12所示的本发明的实施例8的成分分析装置的大气压等离子体源2D设置反射镜39而形成。在该大气压等离子体源2G中,经反射镜39反射的来自被分析对象物体的光通过透镜40由CCD41显像。实施例11的成分分析装置中,由反射镜39、透镜40、CCD41构成监测部50。在这样构成的实施例11的成分分析装置中,使用上述监测部50,能够将被分析对象物体的状态、图像和测量值一起储存在控制装置9的存储部(无图示)中。此外,能够直接目视等离子体5的光进行检查。
这种结构的实施例11的成分分析装置由于能够对测定场所进行检测,因此能够对发光状态进行实时测定,并能够将分析结果和图像相组合进行存储。
此外,实施例11的成分分析装置如图14所示,能够将大气压等离子体源2G制成直径为10~50mm的便携型检测头。这种情况下,从检测头导出的光学纤维和电气配线由图14所示的挠性缆线70构成。
在以上所述的本发明的各实施例中,例示了几种结构的等离子体源,但也能够使用其它各种等离子体发生装置。
在各实施例中,例示了放电气体采用惰性气体-氦气的情况,但也可以使用其它的稀有气体,例如氖气、氩气、氙气等稀有气体混合而成的气体。使用稀有气体,具有发光峰单一、易产生大气压等离子体、能够确保安全性等优点。
在各实施例中,例示了采用13.56MHz的高频电力使等离子体产生的情况,但也能够采用数百kHz~数GHz的高频电力使等离子体产生。或者可以向放电电极13供给直流电,也可以供给脉冲电。使用脉冲电,具有在产生大气压等离子体时不需要惰性气体(空气也能放电)的优点。此外,在使用直流电时,最好用导电体形成试样台18,并接地。
在各实施例中,主要例示了向放电电极提供电力的情况,但也能够采用作为试样电极构成试样台、向该试样电极提供电力的结构。此外,还能够直接向被分析对象物体供给电力。
在前述实施例1中,适用于检出铅的发光波长例示了427nm、666nm、730nm。也能够利用其它的波长,例如在ICP发光分析中所采用的220nm等。
在前述实施例3中,例示了将光学纤维分支、分析多种元素的情况。但不将光路分支而通过依次切换透过波长不同的多个滤光器,也能够对多种元素进行分析。
在前述各实施例中,例示了使用大气压等离子体的情况和使用真空等离子体(实施例5)的情况。使用在大气压附近产生的等离子体具有无需密闭容器和泵、成本极低、局部分析简便、能够在短时间内完成分析等优点。
在本发明中,也可以通过研磨被分析对象物体,在该被分析对象物体表面形成研磨屑,将该状态下的被分析对象物体放在真空容器内,使真空容器内产生等离子体,检测等离子体的发光,根据等离子体的发光判定物体中所含的元素。这种情况与不对物体进行研磨而直接放置在真空容器内的情况相比,由于物体与等离子体接触的表面积增大,所以检测灵敏度得到提高。这种情况下,可以采用具有设有研磨垫的研磨部、真空容器、用于将试样放置在真空容器内的试样电极、向试样电极提供电力的电源、发光输入部和发光分析部的成分分析装置。
在各实施例中,例示了对铅进行检测的情况。但也可以将银、铋或铟作为要检测的元素。按照此目的进行检测时,能够对含有这些高价元素的印刷线路板等进行分别回收。
在本发明的成分分析方法和成分分析装置中,所要检测的元素也可以是溴。在这种情况下,被分析对象物体例如是要废弃的电路基板中的绝缘性材料,对该绝缘性材料直接照射等离子体。这样通过进行电路基板等的成分分析,在对废弃的电路基板等进行焚烧处理时,能够对产生二肟的废弃物和不产生二肟的废弃物分别进行回收。
在本发明中,通过在作为检查对象的电路基板的印刷线路板等上形成进行焊料的成分分析而特别设置的分析用焊接区,能够使分析时的操作性得到提高。这种情况下,分析用焊接区的大小最好是大于直径0.5mm的圆但小于直径10mm的圆。分析用焊接区如果太小,则大气压等离子体源的定位困难。如果过大,则在印刷线路板上无用的区域增大,不经济。
在上述各实施例中所采用的光学纤维由具有高折射率的玻璃制内芯和树脂制包层构成,但在本发明中也可以使用塑料光学纤维。例如,可以采用由丙烯酸树脂制内芯和氟系树脂制包层构成的塑料光学纤维。通过采用塑料光学纤维,成分分析装置的成本更低,而且操作性更佳。
在上述各实施例中,作为报知部的指示器11可以由多个发光二极管构成。通过形成这种结构,成分分析结果能够用多个发光二极管显示出规定波长下的发光强度的强弱。如果发光强度弱,则可以对分析对象物体再次进行成分分析处理和确认。
此外,完成成分分析后,通过根据所判别出的元素将原先指定给该元素的特定的标志标记在印刷线路板上,能够将分析结果可靠地保留在检查对象物上。标记可以选择涂布涂料、粘贴封印等简单的方法。
通过对所要分析的部分照射等离子体数秒~数分钟,除去附着在所要分析的部分表面的有机物、焊剂等污垢后进行发光分析,能够提高分析的检测灵敏度或S/N比。这种情况下,通过采用一种大气压等离子体源进行除污(清洗、洗涤)和分光分析两种处理,能够提高分析的简便性。此外,在除去污垢时,通过照射含氧或氟的气体的等离子体,也能够有效地提高除污速度。
综上所述,本发明利用小型的装置,分析操作的程序简单,能够在短时间内完成分析。并且通过使用本发明的成分分析方法和成分分析装置,能够实现低成本的分析。因此,能够在对家电等废弃物进行处理的现场,方便地进行印刷线路板等的甄别。此外,在无需定量分析时,作为简单地对某种元素是否作为主要成分含有作出评价的方法而被广泛使用。
权利要求
1.成分分析方法,其特征在于,具有设定在大气压下对特定元素照射等离子体时的波长和发光强度的关系的设定工序;根据前述设定工序中所设定的关系,选定具有发光强度的峰值的特定的波长的选定工序;在大气压下向被分析对象物体照射等离子体,在由前述选定工序选定的波长下,测定前述被分析对象物体的发光强度的检测工序;将在前述检测工序中测得的发光强度和前述设定工序中的波长的发光强度相比较,判定前述被分析对象物体中有无含有前述元素的判定工序。
2.如权利要求1所述的成分分析方法,其特征还在于,前述特定元素为铅元素,前述特定波长为427nm、666nm或730nm,在前述特定波长下发光强度具有发光峰时,判定前述被分析对象物体含有铅元素。
3.如权利要求1所述的成分分析方法,其特征还在于,在前述检测工序中,利用前述放电电极的电弧放电测定前述被分析对象物体的发光强度。
4.如权利要求1所述的成分分析方法,其特征还在于,在前述检测工序中,测定多种波长下的前述被分析对象物体的各发光强度,在前述判定工序中,判定在前述被分析对象物体中有无含有各个元素。
5.如权利要求1所述的成分分析方法,其特征还在于,在前述检测工序的前阶段,具有研磨前述被分析对象物体的研磨工序,在前述研磨工序中,将研磨粉分散配置在前述被分析对象物体的表面。
6.如权利要求1所述的成分分析方法,其特征还在于,在前述检测工序的前阶段,具有采用研磨工具研磨前述被分析对象物体的研磨工序,在前述检测工序中,向位于前述研磨工序中所使用的前述研磨工具的研磨面上的前述被分析对象物体照射前述等离子体,测定由前述等离子体使前述被分析对象物体发光的发光强度。
7.如权利要求1所述的成分分析方法,其特征还在于,在前述判定工序中判定有无前述元素后,具有根据该判定结果向外部报知的报知工序。
8.如权利要求1所述的成分分析方法,其特征还在于,在前述判定工序中判定有无前述元素后,具有根据该判定结果对被分析对象物体作特定标识的标记工序。
9.如权利要求1所述的成分分析方法,其特征还在于,在前述检测工序的前阶段,具有向被分析对象物体照射等离子体以除去前述被分析对象物体表面的污垢的工序。
10.成分分析装置,其特征在于,具备载放被分析对象物体的试样台;内部具有气体流路的放电电极;向前述放电电极供给气体的气体供给部;向前述放电电极供给电力的电源;具有靠近产生于前述放电电极和前述被分析对象物体之间的等离子体而配置的发光输入部的由透光材料形成的透光部,该透光材料可透过由等离子体的照射所产生的来自前述被分析对象物体的光;只允许从前述透光部出来的光中的特定波长的光透过的滤光器;以及测定透过前述滤光器的光的发光强度,判定前述被分析对象物体中有无含有特定的元素的控制装置。
11.如权利要求10所述的成分分析装置,其特征还在于,前述特定元素为铅元素,前述特定波长为427nm、666nm或730nm,在前述特定波长下发光强度具有发光峰时,前述控制装置判定前述被分析对象物体含有铅元素,并储存该数据。
12.如权利要求10所述的成分分析装置,其特征还在于,前述放电电极是由前述电源供给高频电力的电极,在前述放电电极的与等离子体对向的端部形成有电介质。
13.如权利要求10所述的成分分析装置,其特征还在于,前述透光部形成将从被分析对象物体发出的光分别入射至透过波长不同的多个滤光器中的结构,由前述控制装置对透过前述滤光器的各光测定其发光强度,检测出在前述被分析对象物体中是否含有要检测的各个元素。
14.如权利要求10所述的成分分析装置,其特征还在于,在前述放电电极的外周面设置由透光的材料形成的透光部,并且在前述放电电极的与等离子体对向的端部由透光材料形成发光输入部,使来自前述发光输入部的光通过前述透光部入射至滤光器中。
15.如权利要求10所述的成分分析装置,其特征还在于,设置由透光材料形成的筒状透光部使其包覆前述放电电极的外周面,并且在前述放电电极的与等离子体对向的端部由透光材料形成发光输入部,还设置了接地的导体部使其包覆前述透光部的外周面。
16.如权利要求10所述的成分分析装置,其特征还在于,在前述放电电极设置间隔物,使前述放电电极的与等离子体对向的端部与被分析对象物体具有所希望的距离。
17.如权利要求10所述的成分分析装置,其特征还在于,在前述放电电极的与等离子体对向的端部设置开关,前述开关在检查时与被分析对象物体接触,启动分析处理工作。
18.如权利要求10所述的成分分析装置,其特征还在于,在前述放电电极的外部具有排气路,并且一体形成。
19.如权利要求10所述的成分分析装置,其特征还在于,在前述放电电极的与等离子体对向的端部设置了具有反射镜、透镜和光检测元件的监测部。
20.如权利要求10所述的成分分析装置,其特征还在于,在前述判定工序中判定有无前述元素后,还具有根据该判定结果向外部报知的报知手段。
全文摘要
在本发明的成分分析方法和成分分析装置中,通过向靠近被分析对象物体配置的大气压等离子体源2供给氦气,同时由电源4提供高频电力而产生等离子体5,使被等离子体5照射的被分析对象物体发光。该光通过光学纤维6被导入滤光器7、光电二极管8而进行光电变换。进行了光电变换的信号再被送入控制装置9,由控制装置9判定被分析对象物体中是否含有特定元素。
文档编号H05K1/02GK1648640SQ20051000569
公开日2005年8月3日 申请日期2005年1月17日 优先权日2004年1月15日
发明者奥村智洋, 斋藤光央 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1