蓝光电致发光聚合物和使用其的有机电致发光器件的制作方法

文档序号:8030471阅读:218来源:国知局
专利名称:蓝光电致发光聚合物和使用其的有机电致发光器件的制作方法
技术领域
本发明涉及蓝光电致发光聚合物和使用其的有机电致发光器件,更特别地,涉及到具有在聚亚芳基骨架中的基于吩噁嗪单元的蓝光电致发光聚合物和有机电致发光器件,该有机电致发光器件通过使用该蓝光电致发光聚合物作为光发射组分而具有改善的发光效率和色纯度。
背景技术
有机电致发光器件是一种有源矩阵发射型显示器件,其中,当电流施加到荧光或磷光有机化合物层(以下称作有机层)时,电子和空穴在有机层中结合而发光。有机电致发光器件重量轻和含有简单的组成元件因而能以简单工艺制造,还提供宽的视角和高的图像品质。而且,它们能够显示高质量的活动图像,具有高的色纯度,和能够适用于低功耗和低驱动电压的便携式电子器件。
依赖于有机层中使用材料的分子量,所述有机电致发光器件可以分为低分子量有机电致发光器件和高分子量有机电致发光器件。
在低分子量有机电致发光器件中,有机层能通过真空沉积形成,该光发射材料能容易地纯化为高纯度,且色象素能容易地获得。然而,对于低分子量有机电致发光器件的实际应用而言,量子效率和色纯度必须进一步改善,以及薄膜的结晶必须防止。
在高分子量的有机电致发光器件中,有机层能容易地通过旋涂或印刷形成,从而该聚合物有机电致发光器件能以简单的方式低成本地制造。而且,有机层显示良好的机械性能。
然而,高分子量有机电致发光器件具有低的色纯度和短寿命。为克服这些问题,美国专利号6,169,163描述了含芴聚合物的共聚方法以改善高分子量有机电致发光器件的电致发光特性。然而,所获得的改善不能令人满意。
而且,韩国专利公开号2003-0097658描述了在聚亚芳基骨架中具有吩噁嗪单元的蓝光电致发光聚合物和含有该蓝光电致发光聚合物的有机层的有机电致发光器件。然而,器件的色纯度和寿命应该增加。
因此,对开发吩噁嗪单体以改善色纯度同时保持器件的寿命存在增加的需求。

发明内容
本发明提供光发射化合物,其能容易地传输电荷和结构稳定,更具体地,由于其中含有吩噁嗪单体,其具有在蓝光区域改善的色坐标特性,以及提供具有改善的驱动特性的有机电致发光器件,更具体地,其通过使用该光发射化合物具有改善的色纯度。
根据本发明的一个方面,提供基于吩噁嗪的聚合物,其由1-99摩尔%具有式1的重复单元和99-1摩尔%具有式2的重复单元构成,并且其聚合度为5-2000-Ar- ...(1) 其中每个Ar和L独立地选自取代或未取代的C6-C30亚芳基和取代或未取代的C2-C30杂亚芳基,X是O、CH2、CH=CH、CH2-CH2、或S,和每个R1到R7独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C1-C30烷氧基、取代或未取代的C6-C30芳基、取代或未取代的C6-C30芳烷基、取代或未取代的C6-C30芳氧基、取代或未取代的C5-C30杂芳基、取代或未取代的C5-C30杂芳烷基、取代或未取代的C5-C30杂芳氧基、取代或未取代的C5-C20环烷基,和取代或未取代的C5-C30杂环烷基。
根据本发明的另一方面,提供包括在一对电极之间的有机层的有机电致发光器件,其中该有机层含有基于吩噁嗪的聚合物。


通过参照附图对其示例性的实施方式进行详细描述,本发明以上和其他的优势将更加清楚,其中图1A-1F为根据本发明实施方式的有机电致发光器件的示意性横截面图;图2和3分别为在合成实施例1中获得的聚合物的UV吸收光谱和光致发光光谱;图4和5分别为在合成实施例2中获得的聚合物的UV吸收光谱和光致发光光谱;图6是在实施例1中获得的有机电致发光器件的电流密度对亮度的图;图7是在实施例1中获得的有机电致发光器件的电压对效率的图;图8是在实施例2中获得的有机电致发光器件的电流密度对亮度的图;图9在实施例2中获得的有机电致发光器件的电压对效率的图;图10是在实施例1中获得的有机电致发光器件的电致发光光谱;和图11是在实施例2中获得的有机电致发光器件的电致发光光谱。
具体实施例方式
下文中,将详细描述本发明的具体实施方式

根据本发明实施方式的蓝光电致发光聚合物具有的结构是,其中能够提供高的电荷传输能力,特别是空穴传输能力和蓝光发射性能的吩噁嗪单元被引入到聚亚芳基骨架中。由于该特征性化学结构,该蓝光电致发光聚合物具有优异的蓝光发射性能。
该基于吩噁嗪的聚合物是由1-99摩尔%具有式1的重复单元和99-1摩尔%具有式2的重复单元构成,并且其聚合度为5-2000-Ar-...(1)
其中Ar、L、X、和R1-R7如上述所定义。
该蓝光电致发光聚合物可由80-99摩尔%具有式1的重复单元和20-1摩尔%具有式2的重复单元构成。
式1中亚芳基(Ar)单元和式2中的L单元可各自独立地选自下列式(1a)-(1q)
其中每个R8和R9独立地选自氢原子、取代或未取代的C1-C12烷基、取代或未取代的C1-C12烷氧基,和取代或未取代的氨基。
优选地,构成根据本发明实施方式的聚合物骨架的该亚芳基(Ar)单元由具有螺芴结构的下式(1p)表示,因为它增加热稳定性和防止与相邻的链形成激基缔合物,从而增加发光效率和色纯度 其中R8和R9如上述所定义。
优选地,式2中的L单元由下列式(1a)和(1m)之一表示,因为它通过控制聚合过程中聚合物的不利间隙(bad gap)增加色纯度
其中R8和R9如上述所定义。
根据本发明实施方式的聚合物的具体例子包括聚合物,该聚合物由1-99摩尔%具有式3的重复单元和99-1摩尔%具有式4和5之一的重复单元构成,且其聚合度为5-2000 上述聚合物可由80-99摩尔%具有式3的重复单元和20-1摩尔%具有式4和5之一的重复单元构成。
现将描述根据本发明实施方式基于吩噁嗪的聚合物的合成方法,其中该Ar单元具有螺芴结构。
首先,如示意图1中所示合成基于吩噁嗪的化合物D示意图1 其中L如式2中所定义,和每个X1和X2是卤原子。
参照示意图1,通过钯催化剂,吩噁嗪衍生物A与具有L单元的卤化物B反应(J.Am.Chem.Soc.,1996,118,7217),从而获得化合物C。紧接着,通过在极性有机溶剂(例如,氯仿和二甲基甲酰胺)存在下向C处加入等当量的卤素,化合物C被卤化,从而获得化合物D。
接着,化合物D与以下的螺芴化合物E一起聚合得到基于吩噁嗪的聚合物 其中R8和R9如上述所定义,和X3是卤原子。
根据本发明实施方式的其他基于吩噁嗪的聚合物可以与上述方法相似的途径合成。
根据本发明实施方式的蓝光电致发光聚合物的重均分子量(Mw)是决定该聚合物成膜性能和有机电致发光器件寿命的重要因素。在前述文中,该蓝光电致发光聚合物可具有的Mw为约10,000-2,000,000。如果蓝光电致发光聚合物的Mw小于10,000,当该器件制造和驱动时可能出现薄膜的结晶。如果蓝光电致发光聚合物的Mw大于2,000,000,难以使用Pd(O)或Ni(O)-作中介的芳基耦合反应的常规合成条件制造该聚合物,并且在该有机电致发光器件制造时不能容易地形成薄膜。
较窄的光发射聚合物的分子量分布(MWD)对电致发光特性(具体地,器件的寿命)有利。根据本发明实施方式的蓝光电致发光聚合物可具有的MWD优选为1.5-5.0,更优选1.5-3.0。
作为根据本发明实施方式的聚合物中取代基的未取代烷基的实例包括甲基、乙基、丙基、异丁基、仲丁基、戊基、异戊基、己基等。其中该烷基的至少一个氢原子可被以下取代卤原子、羟基、硝基、氰基、取代或未取代的氨基,(如-NH2、-NH(R)、或-N(R′)(R″),其中R、R′和R″各自独立地为C1-C10烷基)、脒基、肼、腙、羧基、磺酸基、膦酸基、C1-C20烷基、C1-C20卤代烷基、C1-C20烯基、C1-C20炔基、C1-C20杂烷基、C6-C20芳基、C6-C20芳烷基、C6-C20杂芳基、或C6-C20杂芳烷基。
作为根据本发明实施方式的聚合物中取代基的芳基是指含有至少一个芳香环的碳环芳香族体系,其中该芳香环可以用侧基方式相互附着或可以稠合。该芳基的实例包括芳族基团如苯基、萘基、和四氢化萘基等。在该芳基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的杂芳基是指含有一个、两个或三个选自N、O、P和S的杂原子并且具有至少一个环的5-30元的芳香环体系,其中该环可以用侧基方式相互附着或可以稠合。在该杂芳基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的烷氧基是指原子团-O-烷基,其中该烷基如上述所定义。该烷氧基的实例包括甲氧基、乙氧基、丙氧基、异丁氧基、仲丁氧基、戊氧基、异戊氧基、和己氧基等,其中该烷氧基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的芳烷基是指上述定义的芳基,其中氢原子被低级烷基取代,例如,甲基、乙基或丙基。该芳烷基的实例包括苯甲基和苯乙基等。该芳烷基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的杂芳烷基是指上述定义的杂芳基,其中氢原子被低级烷基取代。该杂芳烷基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的芳氧基是指原子团-O-芳基,其中芳基如上述所定义。该芳氧基的实例包括苯氧基、萘氧基、蒽氧基、菲氧基、芴氧基、和茚氧基等。该芳氧基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的杂芳氧基是指原子团-O-杂芳基,其中杂芳基如上述所定义。该杂芳氧基的实例包括苯甲氧基和苯乙氧基等。该杂芳氧基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的环烷基是指C5-C30单价单环体系,其中至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的杂环烷基是指含有一个、两个或三个选自N、O、P和S的杂原子5-30元的单价环状体系。该杂环烷基的至少一个氢原子能够由上述用于烷基的任意取代基取代。
作为根据本发明实施方式的聚合物中取代基的氨基是指-NH2、-NH(R)、或-N(R′)(R″)其中每个R′和R″是C1-C10烷基。
现将描述使用根据本发明实施方式的蓝光电致发光聚合物的有机电致发光器件和该器件的制造方法,该蓝光电致发光聚合物由具有式1的重复单元和具有式2的重复单元构成。
图1A-1F是说明根据本发明实施方式的有机电致发光器件的层叠结构的示意性横截面图。
参照图1A,在第一电极10上形成含蓝光电致发光聚合物的光发射层12,和在该光发射层12上形成第二电极14。
参照图1B,在第一电极10上形成含蓝光电致发光聚合物的光发射层12,在该光发射层12上形成空穴阻挡层(HBL)13,和在HBL 13上形成第二电极14。
图1C中说明的有机电致发光器件具有与图1B中所示相同的层叠结构,除了在第一电极10和光发射层12之间进一步形成空穴注入层(HIL)11(也被称为缓冲层)外。
图1D中说明的有机电致发光器件具有与图1C中所示相同的层叠结构,除了在光发射层12上形成电子传输层(ETL)15而不是HBL 13外。
图1E中说明的有机电致发光器件具有与图1C中所示相同的层叠结构,除了在光发射层12上形成具有HBL 13和ETL 15顺序层叠的双层而不是HBL13外。
图1F中说明的有机电致发光器件具有与图1E中所示相同的层叠结构,除了在HIL 11和光发射层12之间进一步形成空穴传输层(HTL)16外。该HTL16防止HIL 11中的杂质穿透进入到光发射层12中。
根据本发明实施方式的有机电致发光器件可通过常规的方法制造。但是可使用其他方法。
现将描述制造根据本发明实施方式的有机电致发光器件的方法。
首先,在基底(未示出)上图案化第一电极10。该基底可以是用于有机电致发光器件的常规基底,且可以是玻璃基底或透明塑料基底,其具有优异的透明度、表面光滑性、易于处理性、和优异的防水性。基底可具有0.3-1.1mm的厚度。
当第一电极10是阳极时,它可以是由能够容易地注入空穴的导电金属或其氧化物制成。第一电极10材料的实例包括,ITO(氧化铟锡)、IZO(氧化铟锌)、镍(Ni)、铂(Pt)、金(Au)、和铱(Ir)。
将其上形成有第一电极10基底进行清洗和接着用UV/O3处理。当清洗该基底时,使用有机溶剂如异丙醇(IPA)或丙酮。
选择性地在清洗后的基底的第一电极10上形成HIL 11。当HIL 11在第一电极10上形成时,在第一电极10和光发射层12之间的接触电阻降低,和同时第一电极10向光发射层12传输空穴的能力提高,从而改善器件的驱动电压和寿命。形成HIL 11的材料可以是本领域中普通使用的任意材料。形成HIL 11的材料的实例包括{聚(3,4-亚乙基二氧基噻吩)}(PEDOT)/聚对磺苯乙烯(PSS)、Starburst-基化合物、铜酞菁、聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯、或这些化合物的衍生物。在第一电极10上旋涂用于HIL 11的材料并干燥,从而形成HIL 11。HIL 11可具有300-2000的厚度,优选500-1100。如果HIL 11的厚度不在上述范围之内,空穴注入能力差。干燥可在100-250℃下进行。
通过在HIL 11上旋涂形成光发射层的组合物并干燥该涂层形成光发射层12。该光发射层形成组合物包括0.5-20重量%根据本发明实施方式的蓝光电致发光聚合物和99.5-80重量%的溶剂。
任何能够溶解光发射聚合物的溶剂可以用作该组合物中的溶剂。该溶剂的实例包括甲苯、氯苯、二甲苯等。
在某些情况下,光发射层形成组合物可以进一步包括掺杂剂。组合物中的掺杂剂浓度可根据用于形成光发射层12的材料变化,可为30-80重量份,基于100重量份用于光发射层12的材料(即,基于100重量份主体和掺杂剂的总重量)。如果掺杂剂浓度在不在上述范围之内,电致发光器件的光发射性能退化。掺杂剂实例包括芳基胺、苝基化合物、吡咯化合物、腙化合物、咔唑化合物、二苯乙烯化合物、Starburst化合物、和噁二唑化合物等。
通过在旋涂期间控制光发射层形成组合物的浓度和旋涂速度,调节光发射层12厚度为100-1000,优选为500-1000。如果光发射层12的厚度小于100,器件发射效率降低。如果光发射层12的厚度大于1000,器件驱动电压可增加。
可以选择性地在HIL 11和光发射层12之间形成HTL 16。任何具有空穴传输能力的材料能够用作形成HTL 16的材料。形成HTL 16的材料的实例包括是聚三苯胺等。HTL 16具有100-1000的厚度。
HBL 13和/或ETL 15通过蒸发或旋涂在光发射层12上形成。HBL 13用来防止在光发射材料中生成的激子移动到ETL 15或防止空穴移动到ETL 15。
形成HBL 13材料的实例包括LiF、BaF2、MgF2、菲咯啉化合物,例如,UDC Co.,Ltd.制造的BCP、咪唑化合物、三唑化合物、噁二唑化合物,例如,PBD、和UDC Co.,Ltd.制造的铝配合物、和Balq,如下列式所示 含菲咯啉的有机化合物
含咪唑的有机化合物 含三唑的有机化合物 含噁二唑的有机化合物 BAlq形成ETL 15的材料的实例包括噁唑化合物、异噁唑化合物、三唑化合物、异噻唑化合物、噁二唑化合物、噻二唑化合物、苝化合物、铝配合物(例如,Alq3(三(8-羟基喹啉)-铝)、BAlq、SAlq、或Almq3)、和镓配合物(例如,Gaq′2OPiv、Gaq′2OAc、或2(Gaq′2)),如下列式所示
苝化合物
2(Gaq′2)HBL 13可具有100-1000的厚度,和ETL 15可具有100-1000的厚度。如果HBL 13和ETL 15厚度不在以上范围之内,空穴阻挡能力和电子传输能力差。
然后,在所得产物上形成第二电极14,接着通过封装从而完成有机电致发光器件。
用于第二电极14的材料不具体限定,第二电极14可通过沉积低功函数的金属形成,例如,Li、Ca、Ca/Al、LiF/Ca、BaF2/Ca、LiF/Al、Al、Mg、和Mg合金。第二电极14的可具有50-3000的厚度。
在制造该有机电致发光器件中,根据本发明实施方式的聚合物不但可以用作形成光发射层的材料,而且可以用作形成HTL的材料。而且,该聚合物可用作在生物领域内的中间体。
根据本发明实施方式的有机电致发光器件可通过使用光发射聚合物的常规制造方法制造,不需要任何特殊的设备或方法。
下文中,将参照下面的实施例更详细地说明本发明。然而,以下的实施例用作说明的目的,而不是意在限制本发明的范围。
合成实施例1由式3和4的重复单元构成的聚合物的制备对Schlenk烧瓶进行几次抽空和氮气回流以完全地除去水分。接着,660mg(2.4mmol)的双(1,5-环辛二烯)镍(O)[下文中,称作Ni(COD)]和300mg(1.9mmol)的联吡啶加入到手套箱中的该Schlenk烧瓶中,并再进行几次抽空和氮气回流。然后,将5ml无水二甲基甲酰胺、259mg(3.2mmol)的1,5-环辛二烯(COD)、和5ml无水甲苯在氮气流下加入到该烧瓶中。在80℃下搅拌该混合物30分钟后,用5ml甲苯稀释556mg(0.072mmol)的式3化合物和73mg(0.008mmol)式4的化合物,并加入到该混合物中。将5ml甲苯加入到该混合物中,同时洗涤粘附到该Schlenk烧瓶内壁上的材料,然后将该混合物在80℃下搅拌24小时。
反应完成后,将反应混合物的温度冷却到室温。然后,反应混合物倾入到盐酸(HCl)、丙酮、和甲醇(1∶1∶2,体积比)的混合物中以形成沉淀物。将由此形成的沉淀物溶解于氯仿中并在甲醇中再沉淀。对由此形成的沉淀物用索氏萃取器处理得到0.32mg的聚(2’,3’-二辛氧基-6’-叔丁基螺芴-共-2,7-双(N-吩噁嗪基)-9,9-二辛基芴)(摩尔比90∶10)。将所获得的聚合物通过凝胶渗透色谱(GPC)分析。GPC分析表明Mw为150000和MWD为2.63。
合成实施例2由式3和5的重复单元构成的聚合物的制备对Schlenk烧瓶进行几次抽空和氮气回流以完全地除去水分。接着,660mg(2.4mmol)的Ni(COD)和300mg(1.9mmol)的联吡啶充入到手套箱中的该Schlenk烧瓶内,并再进行几次抽空和氮气回流。接着,将5ml无水二甲基甲酰胺、259mg(3.2mmol)的1,5-环辛二烯(COD)、和5ml无水甲苯在氮气流下加入到该烧瓶中。在80℃下搅拌该混合物30分钟后,用5ml甲苯稀释556mg(0.072mmol)的式3化合物和24mg(0.008mmol)式5的化合物,并加入到该混合物中。将5ml甲苯加入到该混合物中,同时洗涤粘附到该Schlenk烧瓶内壁上的材料,然后将该混合物在80℃下搅拌24小时。
反应完成后,将反应混合物的温度冷却到室温。然后,反应混合物倾入到盐酸(HCl)、丙酮、和甲醇(1∶1∶2,体积比)的混合物中以形成沉淀物。将由此形成的沉淀物溶解于氯仿中并在甲醇中再沉淀。接着,对由此形成的沉淀物用索氏萃取器处理得到0.32mg的聚(2’,3’-二辛氧基-6’-叔丁基螺芴-共-1,4-双(N-吩噁嗪基)苯)(摩尔比90∶10)。将所获得的聚合物通过GPC分析。GPC分析表明Mw为120000和MWD为2.24。
测试合成实施例1和2中获得的聚合物的UV吸收光谱和光致发光光谱并在图2-5中示出。
参照图2-5,合成实施例1和2获得的聚合物具有蓝光电致发光特性。这些聚合物具有高的色纯度(0.14,0.20)。
实施例1有机电致发光器件的制造使用合成实施例1中获得的聚合物制造电致发光器件。
首先,清洗涂布有ITO(氧化铟锡)的玻璃的透明电极基底。接着,使用光刻胶树脂和刻蚀剂图案化该ITO基底,并再次清洗所得的基底。将BatronP 4083(得自Bayer)作为导电缓冲层涂布到该基底上形成约800的厚度。和接着在180℃下焙烤约1小时。在99重量份的甲苯中溶解1重量份的合成实施例1中获得的聚合物,接着用0.2mm的滤膜过滤,制备出用于光发射层的组合物。该光发射层组合物旋涂到上述缓冲层上。该涂布的基底焙烤后,在真空烘箱中除去溶剂以形成薄的电致发光聚合物膜。在旋涂中,通过控制聚合物溶液浓度和旋涂速度将聚合物薄膜的厚度调节至约80nm。
然后,在4×10-6托或更低的真空下使用真空沉积器在聚合物薄膜上顺序沉积BaF2、Ca和Al。在沉积时,使用晶体传感器控制薄膜的厚度和生长速率。
实施例2有机电致发光器件的制造以与实施例1相同的方式制造有机电致发光器件,除了使用合成实施例2中获得的聚合物代替合成实施例1中获得的聚合物外。
评估实施例1中制造的有机电致发光器件的亮度和效率,分别如图6和7所示。而且,评估实施例2中制造的有机电致发光器件的亮度和效率,分别如图8和9所示。评估时,作为直流电压(direct voltage)的正向偏压用作驱动电压。器件展示了典型的整流二极管特性。特别地,器件显示了优异的稳定性,甚至在已重复几次驱动后,初始电压-电流密度特性得以保持。
参照图6-9,实施例1和2中制造的有机电致发光器件具有优异的亮度和效率。
图10和11为实施例1和2中制造的有机电致发光器件的电致发光光谱。参照图10和11,器件展示了高纯度的蓝光发射性能。具体地,即使电压变化器件仍具有恒定的色纯度,和具有良好的颜色稳定性。
如上所述,根据本发明的基于吩噁嗪的聚合物具有蓝光电致发光性能。该基于吩噁嗪的聚合物能容易地制备并具有蓝光发射性能。含有根据本发明基于吩噁嗪的聚合物的有机层的有机电致发光器件具有改善的色纯度、效率和亮度。
虽然参照其示例性的实施方式,已经特别给出和描述了本发明,但是本领域技术人员应当理解,在不脱离如下列权利要求限定的本发明的精神和范围的情况下,可以在形式和细节上进行各种变化。
权利要求
1.基于吩噁嗪的聚合物,其由1-99摩尔%具有式1的重复单元和99-1摩尔%具有式2的重复单元构成,并且其聚合度为5-2000-Ar ...(1) 其中每个Ar和L独立地选自取代或未取代的C6-C30亚芳基和取代或未取代的C2-C30杂亚芳基,X是O、CH2、CH=CH、CH2-CH2、或S,和每个R1-R7独立地选自氢原子、取代或未取代的C1-C30烷基、取代或未取代的C1-C30烷氧基、取代或未取代的C6-C30芳基、取代或未取代的C6-C30芳烷基、取代或未取代的C6-C30芳氧基、取代或未取代的C5-C30杂芳基、取代或未取代的C5-C30杂芳烷基、取代或未取代的C5-C30杂芳氧基、取代或未取代的C5-C20环烷基,和取代或未取代的C5-C30杂环烷基。
2.权利要求1的基于吩噁嗪的聚合物,其中式1中的亚芳基(Ar)单元和式2中的L单元各自独立地选自下列式(1a)-(1q) 其中每个R8和R9独立地选自氢原子、取代或未取代的C1-C12烷基、取代或未取代的C1-C12烷氧基、和取代或未取代的氨基。
3.权利要求1的基于吩噁嗪的聚合物,其中式1中的Ar单元由下式表示 其中每个R8和R9独立地选自氢原子、取代或未取代的C1-C12烷基、取代或未取代的C1-C12烷氧基,和取代或未取代的氨基。
4.权利要求1的基于吩噁嗪的聚合物,其中式2中的L单元由下列式之一表示 其中每个R8和R9独立地选自氢原子、取代或未取代的C1-C12烷基、取代或未取代的C1-C12烷氧基、和取代或未取代的氨基。
5.权利要求1的基于吩噁嗪的聚合物,具有重均分子量(Mw)为10,000-2,000,000和分子量分布(MWD)为1.5-5.0。
6.权利要求1的基于吩噁嗪的聚合物,其由1-99摩尔%具有式3的重复单元和99-1摩尔%具有式4和5之一的重复单元构成,且聚合度为5-2000
7.权利要求6的基于吩噁嗪的聚合物,其具有的Mw为10,000-2,000,000和MWD为1.5-5.0。
8.有机电致发光器件,包括在一对电极之间的有机层,其中该有机层含有权利要求1-6任一项的基于吩噁嗪的聚合物。
9.权利要求8的有机电致发光器件,其中该有机层是光发射层或空穴传输层。
全文摘要
提供蓝光电致发光聚合物,其具有在聚亚芳基骨架中的基于吩噁嗪单元,和使用该聚合物的有机电致发光器件。该有机电致发光器件具有改善的发光效率和色纯度。
文档编号H05B33/14GK1818010SQ20061000601
公开日2006年8月16日 申请日期2006年1月23日 优先权日2005年1月21日
发明者孙准模, 卢泰用, 朴商勋, 朴俊勇, 李泰雨, 金有珍, 姜仁男 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1