冷阴极管点灯装置、其使用的管电流检出电路和管电流控制方法

文档序号:8134459阅读:135来源:国知局
专利名称:冷阴极管点灯装置、其使用的管电流检出电路和管电流控制方法
技术领域
本发明涉及冷阴极管点灯装置、该冷阴极管点灯装置中使用的管电流检出电路和管电流控制方法,特别涉及适合用于对液晶显示装置的背光源中使用的多个冷阴极管的两侧的输入端用逆变器进行驱动时的冷阴极管点灯装置、该冷阴极管点灯装置中使用的管电流检出电路和管电流控制方法。
背景技术
液晶显示装置在最近几年,不仅作为个人计算机的显示器,也作为液晶电视等多种显示器件而使用,特别是在液晶电视等中,液晶面板在不断地大型化。因此,液晶显示装置中使用的背光源也变成大型,背光源中使用的冷阴极管也变长了。使该冷阴极管点灯时,对于短的冷阴极管,是以一边的输入端为低压侧,从另一边的高压侧的输入端输入驱动脉冲,而当它是长的冷阴极管或冷阴极管的直径小时,因为该冷阴极管的阻抗变高,如果从该冷阴极管的单侧的输入端(高压侧)输入驱动脉冲进行驱动,则高压侧的输入管的附近变亮,低压侧的输入端的附近变暗,从而产生亮度梯度。因此,采用从冷阴极管的两侧的输入管以互相相反的相位施加驱动脉冲而使其点灯的两侧高压驱动法,可以防止亮度梯度。另外,为了改善背光源的效率,除了冷阴极管的形状为例如“U”型或“コ”型时以外,冷阴极管的直径小等情况下也可以采用两侧高压驱动法。另外,有用一个逆变器使多个冷阴极管点灯的方法,但是该方法在冷阴极管长的情况下,如果不从冷阴极管的两侧的输入端输入高压,冷阴极管也会产生亮度梯度。
冷阴极管的亮度因该冷阴极管中流过的管电流而定,对于在冷阴极管的单侧的输入端上施加驱动脉冲的单侧高压驱动法,是在不施加驱动脉冲的低压侧设置用电阻等构成的电流检出电路,并根据检出的电流值进行控制,使冷阴极管的亮度保持一定,而对于两侧高压驱动法,由于在冷阴极管的两输入端施加的驱动脉冲均为高压,不能插入电阻等的电流检出电路,所以检出该冷阴极管的管电流很困难。
以往,作为此种技术,有例如下述文献中记载的内容。
在专利文献1中记载的压电变压器的驱动装置,如图12所示,由电源11、驱动电路12、可变振荡电路13、振荡控制电路14、压电变压器15、电压检出电路16、电流检出电路17、相位差检出电路18、有效电流检出电路19构成。另外,在压电变压器15和电流检出电路17之间,连接着冷阴极管20。在冷阴极管20的近旁,设有进行了接地的反射板21,在该冷阴极管20和反射板21之间,形成了浮游电容Cx。在该压电变压器的驱动装置中,冷阴极管20的管电流(压电变压器15的输出电流)由电流检出电路17检出,压电变压器15的输出电流和电压的相位差由相位差检出电路18检出。根据该相位差,由有效电流检出电路19检出冷阴极管20中流过的有效电流,压电变压器15通过振荡控制电路14、可变振荡电路13和驱动电路12被驱动控制,使该有效电流和预定的设定值相等。
在专利文献2中记载的多灯点灯的放电管用逆变器电路中,从一个逆变器通过分流变压器对多个放电管(冷阴极管)施加驱动脉冲,使各冷阴极管点灯。分流变压器具有高于冷阴极管的负电阻特性的电感。对电感进行调整,各冷阴极管中流过的管电流就会变得均匀。
在专利文献3中记载的冷阴极管调光装置中,来自逆变器的高压侧的驱动脉冲通过镇流电容,施加在多个冷阴极管的单侧(高压侧)的输入端。
在逆变器的低压侧,设置由电阻构成的电流检出电路,根据检出的电流值,控制驱动脉冲的功率(duty),进行控制而使冷阴极管的亮度保持一定。
在专利文献4中记载的他励式逆变器中,设有一次绕组为推挽构成的逆变变压器、对该一次绕组的两端进行开关控制的两个开关元件和时钟信号产生电路,该时钟信号产生电路对两个开关元件供给相位互相相反的时钟信号。因此,可自由地设定振荡频率,而不被逆变变压器的谐振频率所束缚。
在专利文献5记载的放电灯点灯装置中,在作为光源而使用了冷阴极管的影像设备中,来自逆变器的高压侧的驱动脉冲施加在一个冷阴极管的单侧(高压侧)的输入端。在逆变器的低压侧,设置由电阻构成的电流检出电路,根据所检出的电流值,由PWM(Pulse WidthModulation)进行冷阴极管的管电流的控制,该PWM的分辨率由比特换算电路放大。
在专利文献6记载的冷阴极管点灯装置中,采用在多个冷阴极管上至少各连接着一个的多个镇流件和共用的低阻抗电源,以共用的电源使多个冷阴极管一样而且稳定地点灯。
在专利文献7记载的灯驱动装置中,在灯的外部电极的近旁,设置温度传感器,监视灯的状态。从而,如果灯的温度成为临界温度范围,则管电流下降,如果温度超过临界温度范围,对灯的电源供给就成为关闭状态。
专利文献1特开2002-017090号公报(说明书摘要、图1)专利文献2特开2004-335443号公报(说明书摘要、图1)专利文献3实用新型第3096242号公报(说明书摘要、图1)专利文献4特开2001-052891号公报(说明书摘要、图1)专利文献5特开2004-235123号公报(说明书摘要、图1)
专利文献6特开2005-063941号公报(说明书摘要、图1)专利文献7特开2005-063970号公报(说明书摘要、图3)发明内容但是,在上述现有技术中,存在如下所述的问题点。
即,在专利文献1中记载的压电变压器的驱动装置中,因为压电变压器15的输出电压为高压,所以需要使被施加该输出电压的部品为高耐压部品,成本会变高,这是存在的问题点。另外,因为是在冷阴极管20的单侧检出管电流,所以因压电变压器15或冷阴极管20的端子的离散而不能准确地检出该管电流,这是存在的问题点。
另外,在专利文献2记载的放电管用逆变器电路中,各冷阴极管中流过的管电流虽然均匀,但不能进行管电流的值的变更等,所以不能进行使该冷阴极管的亮度保持一定的控制。专利文献3中记载的冷阴极管调光装置是由单侧高压驱动法驱动各冷阴极管的装置,其宗旨或构成和本发明不同。专利文献4中记载的他励式逆变器,是对多个冷阴极管分别独立进行调光的装置,其宗旨或构成和本发明不同。
专利文献5中记载的放电灯点灯装置是由单侧高压驱动法驱动冷阴极管的装置,其宗旨或构成和本发明不同。专利文献6中记载的冷阴极管点灯装置是由单侧高压驱动法驱动多个冷阴极管的装置,其宗旨或构成和本发明不同。专利文献7中记载的灯驱动装置是由温度传感器检出灯的温度来控制对该灯的电源供给的装置,其宗旨或构成和本发明不同。
本发明正是鉴于上述情况而提出的,其目的在于提供一种由逆变器对多个冷阴极管进行两侧高压驱动时,该冷阴极管中流过的管电流一定,亮度不会变化的冷阴极管点灯装置、该冷阴极管点灯装置中使用的管电流检出电路和管电流控制方法。
为了解决上述课题,技术方案1所述的发明涉及一种冷阴极管点灯装置,该冷阴极管点灯装置在多个冷阴极管的各两侧的输入端上通过用于使上述各冷阴极管的管电流均匀化的各镇流元件以互相相反的相位施加从逆变器输出的驱动脉冲,使其点灯,其特征在于,设有管电流控制单元,该管电流控制单元根据上述各镇流元件中流过的电流来检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
技术方案2所述的发明涉及技术方案1所述的冷阴极管点灯装置,其特征在于,上述逆变器由第1和第2他励式逆变器构成,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各他励式逆变器设定上述各驱动脉冲的功率,使得该管电流成为上述预定值。
技术方案3所述的发明涉及技术方案1所述的冷阴极管点灯装置,其特征在于,上述各逆变器由第1和第2他励式逆变器构成,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各他励式逆变器设定上述各驱动脉冲的频率,使得该管电流成为上述预定值。
技术方案4所述的发明涉及技术方案1所述的冷阴极管点灯装置,其特征在于,上述各逆变器由第1和第2自励式逆变器构成,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各自励式逆变器控制输出上述各驱动脉冲的时间幅度,使得该管电流成为上述预定值。
技术方案5所述的发明涉及技术方案1、2、3或4所述的冷阴极管点灯装置,其特征在于,上述各镇流元件由线圈分别构成,而且,设置了第1和第2减压用线圈,这两个减压用线圈与设置在上述多个冷阴极管中的一个冷阴极管的两侧的输入端上的上述各线圈分别感应耦合而产生低于上述各线圈的两端的电压的电压,上述管电流控制单元构成为根据上述各减压用线圈中产生的电压,检出上述各线圈中流过的电流。
技术方案6所述的发明涉及技术方案1所述的冷阴极管点灯装置,其特征在于,设置了温度检出单元,该温度检出单元检出上述各冷阴极管的温度,上述管电流控制单元构成为根据上述各镇流元件中流过的各电流和由上述温度检出单元检出的上述冷阴极管的温度,检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
技术方案7和8所述的发明涉及技术方案1或6所述的冷阴极管点灯装置,其特征在于,设有电压监视单元,该电压监视单元检出上述各冷阴极管的各输入端上施加的上述各驱动脉冲的电压,当至少一个驱动脉冲的电压产生了异常时,停止上述各逆变器的动作。
技术方案9所述的发明涉及一种管电流检出电路,用于在多个冷阴极管的各两侧的输入端上通过用于使上述各冷阴极管的管电流均匀化的各镇流元件以互相相反的相位施加从逆变器输出的各驱动脉冲而使其点灯的冷阴极管点灯装置,根据上述各镇流元件中流过的各电流,检出上述各冷阴极管中流过的管电流,其特征在于包括分别构成上述各镇流元件的各线圈;和与设置在上述多个冷阴极管中的一个冷阴极管的两侧的输入端的上述各线圈分别感应耦合而产生低于上述各线圈的两端的电压的电压的第1和第2减压用线圈。
技术方案10所述的发明涉及一种管电流控制方法,其特征在于,用于在多个冷阴极管的各两侧的输入端上通过用于使上述各冷阴极管的管电流均匀化的各镇流元件以互相相反的相位施加从逆变器输出的各驱动脉冲而使其点灯的冷阴极管点灯装置,根据上述各镇流元件中流过的各电流,检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
另外,装置各单元优选的是用一芯片式半导体集成电路来构成。
根据本发明的构成,借助管电流控制单元,根据各镇流元件中流过的各电流,检出各冷阴极管中流过的管电流,将该管电流控制成预定值,所以能够使该各冷阴极管的亮度一定。
另外,借助管电流控制单元,检出多个冷阴极管的各两侧的镇流元件中流过的各电流,根据该各电流的相加值求出管电流,对他励式逆变器设定各驱动脉冲的功率,使该管电流成为预定值,所以能够使该各冷阴极管的亮度一定。
另外,借助管电流控制单元,检出多个冷阴极管的各两侧的镇流元件中流过的各电流,根据该各电流的相加值求出管电流,对他励式逆变器设定各驱动脉冲的频率,使该管电流成为预定值,所以能够使该各冷阴极管的亮度一定。
另外,借助管电流控制单元,检出多个冷阴极管的各两侧的镇流元件中流过的各电流,根据该各电流的相加值求出管电流,对他励式逆变器设定输出各驱动脉冲的时间幅度,使该管电流成为预定值,所以能够使该各冷阴极管的亮度一定。另外,借助管电流控制单元,根据各减压用线圈中产生的电压,检出作为镇流元件的各线圈中流过的电流,所以该管电流控制单元能够使用低电压规格的部品来构成。另外,借助管电流控制单元,根据各镇流元件中流过的各电流和由温度检出单元检出的冷阴极管温度,检出各冷阴极管中流过的管电流,将该管电流控制成预定值,所以能够更高精度地使该各冷阴极管的亮度一定。
另外,借助电压监视单元,检出各冷阴极管的各输入端上施加的各驱动脉冲的电压,当至少一个驱动脉冲的电压产生了异常时,使各逆变器的动作停止,所以能够使该各冷阴极管的亮度一定,并且能够防止因驱动脉冲的电压变得过大而导致的事故。
本发明提供一种冷阴极管点灯装置,该冷阴极管点灯装置检出多个冷阴极管的各两侧的作为镇流元件的线圈中流过的各电流,根据该各电流的相加值求出该冷阴极管中流过的管电流,设定驱动脉冲的功率或频率,使该管电流成为预定值,从而使该冷阴极管的亮度一定。


图1是表示作为本发明的第1实施例的冷阴极管点灯装置的要部的电气构成的框图。
图2是将图1中的变压器驱动电路33、34、变压器35、36、谐振电容37、38和冷阴极管41、42抽出来的图。
图3是说明图2的动作的时序图。
图4是表示作为本发明的第2实施例的冷阴极管点灯装置的要部的电气构成的框图。
图5是表示作为本发明的第3实施例的冷阴极管点灯装置的要部的电气构成的框图。
图6是表示作为本发明的第4实施例的冷阴极管点灯装置的要部的电气构成的框图。
图7是表示作为本发明的第5实施例的冷阴极管点灯装置的要部的电气构成的框图。
图8是表示作为本发明的第6实施例的冷阴极管点灯装置的要部的电气构成的框图。
图9是表示使用了三只冷阴极管时的线圈的连接状态的图。
图10是表示使用了四只冷阴极管时的线圈的连接状态的图。
图11是表示变压器的变形例的图。
图12是表示专利文献1中记载的压电变压器的驱动装置的电气构成的框图。
标号说明31、31A振荡器(逆变器的一部分)32DUTY(功率)控制部(管电流控制单元的一部分)33、34变压器驱动电路(逆变器的一部分)35、36、100变压器(逆变器的一部分)37、38、39、40谐振电容(逆变器的一部分)39、40、39A、40A、92、93、95、96线圈(镇流元件)39c、40c减压用线圈41、42、91、94冷阴极管43、44、43A、44A电压检出部(管电流控制单元的一部分)45、46、45A、46A除法器(管电流控制单元的一部分)47、47A加法器(管电流控制单元的一部分)48延迟电路(管电流控制单元的一部分)49电压控制振荡器(逆变器的一部分)50频率检出部(管电流控制单元的一部分)51乘法器(管电流控制单元的一部分)61积分器(管电流控制单元的一部分)62振荡器(逆变器的一部分)63比较器(管电流控制单元的一部分)64开关(管电流控制单元的一部分)65电源(逆变器的一部分)66谐振电容(逆变器的一部分)67谐振电路(逆变器的一部分)71背光源温度检出部(温度检出单元的一部分)72电压变换部(温度检出单元的一部分)
81、82、83、84电压检出部(电压监视单元的一部分)85OR电路(电压监视单元的一部分)具体实施方式
实施例1图1是表示作为本发明的第1实施例的冷阴极管点灯装置的要部的电气构成的框图。
该例的冷阴极管点灯装置如该图所示,由振荡器31、DUTY(功率)控制部32、变压器驱动电路33、34、变压器35、36、谐振电容37、38、线圈39、40;冷阴极管41、42、电压检出部43、44、除法器45、46和加法器47构成。振荡器31产生预定频率的矩形波或三角波等输出信号p,该振荡频率固定地设定在由变压器35、36的二次侧35b、36b的电感和谐振电容37、38构成的谐振电路的谐振频率附近。DUTY控制部32输入振荡器31的输出信号p,控制成和来自加法器47的管电流值α相对应的功率,输出高频脉冲pa、pb。
变压器驱动电路33、34由例如MOSFET缓冲器等构成,根据来自DUTY控制部32的高频脉冲pa、pb,输出和变压器35、36的一次侧35a、36a相对应的电平的高频脉冲pc、pd。变压器35、36将来自变压器驱动电路33、34的高频脉冲pc、pd输入到一次侧35a、36a,并从二次侧35b、36b的高压侧以互相相反的相位输出驱动脉冲e1、e2。该驱动脉冲e1、e2设定成足够用于使冷阴极管41、42点灯的值。谐振电容37、38靠和变压器35、36的二次侧35b、36b的电感的组合分别构成谐振电路。由该变压器驱动电路33、34、变压器35、36和谐振电容37、38构成两个他励式逆变器。
线圈39、40分别由线圈39a、39b和线圈40a、40b构成,和冷阴极管41、42的两侧的输入端(电极)连接,是用于使该冷阴极管41、42的管电流均匀化的镇流元件。在此,从一个变压器(逆变器)对多个冷阴极管施加驱动脉冲时,如果不按每个冷阴极管在变压器的输出侧和该冷阴极管之间插入由线圈或电容形成的镇流元件的话,因该冷阴极管的负电阻特性,就会只有特定的一个冷阴极管点灯。因此,对每个冷阴极管需要连接镇流元件。电压检出部43、44检出线圈39b、40b的两端的电压va、vb,生成电压检出信号vc、vd。除法器45、46将来自电压检出部43、44的电压检出信号vc、vd除以预先设定的线圈39b、40b的阻抗(2πfL,L电感、f驱动脉冲电压e1、e2的频率)的值而生成线圈39b、40b的电流值ia、ib。加法器47将电流值ia和电流值ib相加而生成冷阴极管42的管电流值α。上述DUTY控制部32针对来自振荡器31的输出信号p,对功率进行控制,使来自加法器47的管电流值α成为预定的值,输出高频脉冲pa、pb。上述电压检出部43、44、除法器45、46、加法器47和DUTY控制部32构成管电流控制单元,另外,它们作为一个芯片的集成电路而构成。
图2是将图1中的变压器驱动电路33、34、变压器35、36、谐振电容37、38和冷阴极管41、42抽出来的图。
如该图2所示,变压器驱动电路33具有p沟道型MOSFET(下面称为“pMOS”)33a和n沟道型MOSFET(下面称为“nMOS”)33b。pMOS33a由从DUTY控制部32输出的高频脉冲pa的pch(沟道)脉冲1进行开关控制,nMOS33b由该高频脉冲pa的nch脉冲1进行开关控制。变压器驱动电路34具有pMOS34a和nMOS34b。pMOS34a由从DUTY控制部32输出的高频脉冲pb的pch脉冲2进行开关控制,nMOS34b由该高频脉冲pb的nch脉冲2进行开关控制。
图3是说明图2的动作的时序图。
参照该图,就该例的冷阴极管点灯装置中使用的管电流控制方法的处理内容进行说明。
在该冷阴极管点灯装置中,在冷阴极管41、42的各两侧的输入端,通过线圈39、40以互相相反的相位施加驱动脉冲e1、e2,根据该线圈39、40中的线圈39b、40b中流过的各电流,检出冷阴极管42中流过的管电流,控制驱动脉冲e1、e2的功率,使该管电流成为预定值。
即,从振荡器31产生预定频率的输出信号p,输入给DUTY控制部32。从DUTY控制部32输出被控制成和管电流值α相对应的功率的高频脉冲pa、pb。从变压器驱动电路33、34,根据高频脉冲pa、pb,输出高频脉冲pc、pd。高频脉冲pc、pd输入到变压器35、36的一次侧35a、36a,并从二次侧35b、36b的高压侧输出相位互相相反的驱动脉冲e1、e2。驱动脉冲e1、e2通过线圈39、40施加到冷阴极管41、42,使该冷阴极管41、42点灯。
由电压检出部43、44检出线圈39、40中的线圈39b、40b的两端的电压va、vb,生成电压检出信号vc、vd。由除法器45、46把该电压检出信号vc、vd除以线圈39b、40b的阻抗(2πfL)的值而生成该线圈39b、40b的电流值ia、ib。电流值ia和电流值ib由加法器47相加,生成冷阴极管42的管电流值α。由DUTY控制部32针对来自振荡器31的输出信号p,对功率进行控制,使管电流值α成为预定的值。
即,DUTY控制部32,如图3(a)所示,使pch脉冲1、2的脉冲幅a和nch脉冲1、2的脉冲幅b同比率地变化,使pMOS33a、34a和nMOS33b、34b的关闭时间相等,和从加法器47输出的管电流值α相对应地对该关闭时间进行控制,从而使冷阴极管41、42的管电流成为预定值。例如,当增加管电流时,就如图3(b)所示,延长关闭时间,减少管电流时,就如图3(c)所示,缩短关闭时间。通过该控制,使冷阴极管41、42的管电流成为预定值,使该冷阴极管41、42的亮度保持一定。
如上所述,在该第1实施例中,是检出冷阴极管41、42的各两侧的线圈39、40中的线圈39b、40b中流过的各电流,根据该各电流的相加值求出冷阴极管42中流过的管电流值α,设定驱动脉冲e1、e2的功率,使该管电流值α成为预定值,所以该冷阴极管41、42的亮度就会一定。
实施例2图4是表示作为本发明的第2实施例的冷阴极管点灯装置的要部的电气构成的框图,对和表示第1实施例的图1中的要素共用的要素赋予共用的标号。
在该例的冷阴极管点灯装置中,如该图4所示,删除了图1中的振荡器31和DUTY控制部32,设有延迟电路48、电压控制振荡器49、频率检出部50和乘法器51。另外,代替图1中的除法器45、46,设有具有不同功能的除法器45A、46A。延迟电路48在例如该冷阴极管点灯装置的电源投入时等冷阴极管41、42中电流开始稳定地流动之前,不送出从加法器47输出的管电流值α,在该冷阴极管41、42中电流开始稳定地流动后,将该管电流值α作为管电流值αb送出到电压控制振荡器49。
电压控制振荡器49设定振荡频率,使从延迟电路48送出的管电流值αb成为预定值,输出高频脉冲pe、pf。频率检出部50检出高频脉冲pe、pf的频率,生成频率检出信号ve。乘法器51将频率检出信号ve和线圈39b、40b的电感L相乘,算出相当于一个线圈的阻抗(2πfL,L电感、f驱动脉冲电压e1、e2的频率),生成阻抗值vz。除法器45A、46A将来自电压检出部43、44的电压检出信号vc、vd除以阻抗值vz,生成线圈39b、40b的电流值ia、ib。另外,变压器驱动电路33、34根据来自电压控制振荡器49的高频脉冲pe、pf,输出和变压器35、36的一次侧35a、36a相对应的电平的高频脉冲pc、pd。其余构成和图1相同。上述电压检出部43、44、除法器45A、46A、加法器47、延迟电路48、电压控制振荡器49、频率检出部50和乘法器51构成管电流控制单元,另外,它们作为一个芯片的集成电路而构成。
在该冷阴极管点灯装置中使用的管电流控制方法中,在冷阴极管41、42的各两侧的输入端,通过线圈39、40以互相相反的相位施加驱动脉冲e1、e2,根据该线圈39、40中的线圈39b、40b中流过的各电流,检出冷阴极管42中流过的管电流,控制驱动脉冲e1、e2的频率,使该管电流成为预定值。
即,电压控制振荡器49在紧接电源投入后,以预定的频率振荡,高频脉冲pe、pf被送出到变压器驱动电路33、34。变压器驱动电路33、34根据高频脉冲pe、pf输出高频脉冲pc、pd。和该高频脉冲pc、pd的频率相对应地驱动变压器35、36。另外,频率检出部50检出高频脉冲pe、pf的频率,频率检出信号ve被输出到乘法器51。乘法器51把频率检出信号ve和线圈39b、40b的电感L相乘,算出相当于一个线圈的阻抗(2πfL),生成阻抗值vz。
除法器45A、46A把来自电压检出部43、44的电压检出信号vc、vd除以阻抗值vz,生成线圈39b、40b的电流值ia、ib。加法器47把电流值ia和电流值ib相加,生成冷阴极管42的管电流值α。管电流值α在电流在冷阴极管41、42中开始稳定地流过后,通过延迟电路48,作为管电流值αb被送出到电压控制振荡器49。电压控制振荡器49设定振荡频率,使管电流值αb成为预定值,输出高频脉冲pe、pf。通过反复进行该动作,冷阴极管41、42的亮度就会一定。
实施例3图5是表示作为本发明的第3实施例的冷阴极管点灯装置的要部的电气构成的框图,对和表示第1实施例的图1中的要素共用的要素赋予共用的标号。
在该例的冷阴极管点灯装置中,如该图5所示,代替图1中的线圈39、40和电压检出部43、44,设有不同构成的线圈39A、40A和电压检出部43A、44A。在线圈39A、40A中,设有减压用线圈39c、40c,该减压用线圈39c、40c分别和线圈39b、40b感应耦合,产生低于该线圈39b、40b的两端的电压va、vb的电压vf、vg。此时,减压用线圈39c、40c形成为和线圈39b、40b共有磁芯的构成。用该线圈39A、40A构成管电流检出电路。电压检出部43A、44A检出减压用线圈39c、40c的两端的电压vf、vg,生成电压检出信号vc、vd。其余构成和图1相同。上述电压检出部43A、44A、除法器45、46、加法器47和DUTY控制部32构成管电流控制单元,另外,它们作为一个芯片的集成电路而构成。
在该冷阴极管点灯装置中使用的管电流控制方法中,由减压用线圈39c、40c产生低于线圈39b、40b的两端的电压va、vb的电压vf、vg。因此,除了第1实施例的优点,电压检出部43A、44A能够由低电压规格的部品构成。
实施例4图6是表示作为本发明的第4实施例的冷阴极管点灯装置的要部的电气构成的框图。
在该例的冷阴极管点灯装置中,如该图6所示,删除了图1中的振荡器31、DUTY控制部32、变压器驱动电路33、34和谐振电容37、38,设有积分器61、振荡器62、比较器63、开关64、电源65和谐振电容66。谐振电容66经和变压器35、36的一次侧35a、36a的各电感的组合,构成谐振电路67。该谐振电容66和变压器35、36构成自励式逆变器。该自励式逆变器在电源65的电源电压vh通过开关64施加到变压器35、36的一次侧35a、36a时,由谐振电路67开始振荡。
积分器61对来自加法器47的管电流值α进行积分,从而检出预定的单位时间内冷阴极管42中流过的电流的实效值,生成电流检出信号(电压值)αc。振荡器62比谐振电路67足够地滞后,以眼睛感觉不到闪烁的频率振荡,由未图示的F/V(频率/电压)转换器生成和该频率相对应的基准电压pg。比较器63对电流检出信号αc和基准电压pg进行比较,并向开关64送出开关控制信号sc,使预定的单位时间内冷阴极管42中流过的电流成为预定的值。开关64根据开关控制信号sc,将电源65的电源电压vh作为电源电压vj、vk断续地施加到变压器35、36的一次侧35a、36a。图6中的电压检出部43、44、除法器45、46、加法器47、积分器61、振荡器62、比较器63和开关64构成管电流控制单元,另外,它们作为一个芯片的集成电路而构成。
在该冷阴极管点灯装置中使用的管电流控制方法中,在冷阴极管41、42的各两侧的输入端,通过线圈39、40以互相相反的相位施加驱动脉冲e1、e2,根据该线圈39、40中的线圈39b、40b中流过的各电流,检出冷阴极管42中流过的管电流,控制对上述自励式逆变器输出驱动脉冲e1、e2的时间幅度,使该管电流成为预定值。
即,来自加法器47的管电流值α由积分器61进行积分,从而检出在预定的单位时间内冷阴极管42中流过的电流的实效值,从该积分器61输出电流检出信号αc。电流检出信号αc和来自振荡器62的基准电压pg由比较器63进行比较,由开关64输出开关控制信号sc。根据开关控制信号sc,电源65的电源电压vh通过开关64,作为电源电压vj、vk被断续地施加在变压器35、36的一次侧35a、36a,冷阴极管41、42受到PWM(Pulse Width Modulation)驱动,使管电流值α成为预定值。从而,在预定时间内冷阴极管41、42中流过的电流就会一定,该冷阴极管41、42的亮度就会一定。
实施例5图7是表示作为本发明的第5实施例的冷阴极管点灯装置的要部的电气构成的框图。
在该例的冷阴极管点灯装置中,如该图7所示,代替图1中的加法器47,设有具有不同功能的加法器47A,并设有背光源温度检出部71和电压变换部72。背光源温度检出部71检出冷阴极管42的管壁温度t。电压变换部72将用背光源温度检出部71检出的冷阴极管42的管壁温度t变换成电压值u。加法器47A将电压值u、来自除法器45的电流值ia和来自除法器46的电流值ib相加,输出电压α。其余构成和图1相同。另外,由电压检出部43、44、除法器45、46、加法器47、DUTY控制部32、背光源温度检出部71和电压变换部72构成管电流控制单元,另外,它们作为一个芯片的集成电路而构成。
在该冷阴极管点灯装置中使用的管电流控制方法中,根据线圈39、40中的线圈39b、40b中流过的各电流和由背光源温度检出部71检出的冷阴极管42的温度,检出该冷阴极管中流过的管电流,控制驱动脉冲e1、e2的功率,使该管电流成为预定值。即,由背光源温度检出部71检出冷阴极管42的管壁温度t。管壁温度t由电压变换部72变换成电压值u。电压值u、来自除法器45的电流值ia和来自除法器46的电流值ib由加法器47相加,输出电压α。之后,进行和第1实施例同样的处理。从而,冷阴极管41、42中流过的电流的变化和因温度变化而导致的该冷阴极管41、42的亮度变化得到抑制,该冷阴极管41、42的亮度就会一定。
实施例6图8是表示作为本发明的第6实施例的冷阴极管点灯装置的要部的电气构成的框图。
在该例的冷阴极管点灯装置中,如该图8所示,代替图1中的振荡器31,设有具有不同功能的振荡器31A,并设有电压检出部81、82、83、84和OR电路85。电压检出部81由例如比较电路等构成,将线圈39a和冷阴极管41的连接点的电压v1和预定的基准电压进行比较,当该电压v1大于该基准电压时,生成异常电压检出信号m1。电压检出部82将线圈39b和冷阴极管42的连接点的电压v2和预定的基准电压进行比较,当该电压v2大于该基准电压时,生成异常电压检出信号m2。电压检出部83将线圈40a和冷阴极管41的连接点的电压v3和预定的基准电压进行比较,当该电压v3大于该基准电压时,生成异常电压检出信号m3。电压检出部84将线圈40b和冷阴极管42的连接点的电压v4和预定的基准电压进行比较,当该电压v4大于该基准电压时,生成异常电压检出信号m4。
OR电路85在异常电压检出信号m1、m2、m3和m4之中至少生成了一个时,生成异常检出信号m5。振荡器31A当OR电路生成了异常检出信号m5时,停止动作。上述电压检出部81、82、83、84和OR电路85构成电压监视单元。另外,电压检出部43、44、除法器45、46、加法器47、DUTY控制部32、电压检出部81、82、83、84和OR电路85作为一个芯片的集成电路而构成。
在该冷阴极管点灯装置中使用的管电流控制方法中,由电压监视单元检出冷阴极管41、42的输入端上施加的驱动脉冲e1、e2的电压,在例如因该冷阴极管41、42的连接不良等而该驱动脉冲e1、e2的电压变得过大的场合等,当至少一个驱动脉冲的电压产生了异常时,振荡器31A的动作停止,使各逆变器的动作停止。即,由电压检出部81、82、83、84在电压v1、v2、v3、v4中的至少一个中检出了异常时,就生成异常电压检出信号m1、m2、m3、m4之中的相应的检出信号,并从OR电路85生成异常检出信号m5。然后,振荡器31A的动作停止。从而,冷阴极管41、42的亮度就能保持一定,并且可防止因驱动脉冲e1、e2的电压变得过大而导致的事故。
以上参照附图详述了本发明的实施例,但是具体的构成不限于该实施例,不脱离本发明宗旨的范围的设计变更等都包含在本发明内。
例如,在上述各实施例中,是以由冷阴极管点灯装置使两只冷阴极管41、42点灯为例,在使更多的冷阴极管点灯时,采用和冷阴极管的数量相对应的构成,也能够得到和上述各实施例大致相同的作用和效果。例如,如图9所示,使三只冷阴极管41、42、91点灯时,附加线圈92、93,检出电压va、vb,进行和上述各实施例同样的控制,就能够得到大致相同的作用和效果。另外,如图10所示,使四只冷阴极管41、42、91、94点灯时,附加线圈95、96,检出电压vc、vd,进行和上述各实施例同样的控制,就能够得到大致相同的作用和效果。
另外,在上述各实施例中,变压器35、36分别具有一次侧35a、36a和二次侧35b、36b,但是也可以构成为如图11所示,使变压器100的一次侧100a通用,设置和该一次侧100a进行感应耦合的二次侧100b、100c。使用该变压器100时,在二次侧100b上连接谐振电容37和线圈39,在二次侧100c上连接谐振电容38和线圈40。另外,在一次侧100a上连接变压器驱动电路。此时,变压器驱动电路只需要一个即可,所以和上述各实施例中使用的两个变压器驱动电路33、34相比,能够削减部品的数量。
也可以是代替表示第2实施例的图4中的线圈39、40和电压检出部43、44而设置表示第3实施例的图5中的线圈39A、40A和电压检出部43A、44A的构成。同样,也可以是代替表示第4实施例的图6中的线圈39、40和电压检出部43、44而设置图5中的线圈39A、40A和电压检出部43A、44A的构成。另外,也可以是代替图4、图5或图6中的加法器47而设置表示第5实施例的图7中的加法器47A、背光源温度检出部71和电压变换部72的构成。
另外,也可以是代替图1、图5或图7中的振荡器31而设置表示第6实施例的图8中的振荡器31A、电压检出部81、82、83、84和OR电路85的构成。此时,也可以将上述电压检出部81、82、83、84和OR电路85、图1中的电压检出部43、44、除法器45、46、加法器47和DUTY控制部32作为一个芯片的集成电路而构成。另外,也可以将电压检出部81、82、83、84和OR电路85、图5中的电压检出部43A、44A;除法器45、46、加法器47和DUTY控制部32作为一个芯片的集成电路而构成。另外,也可以将电压检出部81、82、83、84和OR电路85、图7中的电压检出部43、44、除法器45、46、加法器47A、DUTY控制部32、背光源温度检出部71和电压变换部72作为一个芯片的集成电路而构成。
另外,也可以构成为在图4所示的冷阴极管点灯装置中设置电压检出部81、82、83、84和OR电路85,使该图4中的电压控制振荡器49根据来自OR电路85的异常检出信号m5而停止动作。此时,也可以将电压检出部81、82、83、84和OR电路85、图4中的电压检出部43、44、除法器45A、46A、加法器47、延迟电路48、电压控制振荡器49、频率检出部50和乘法器51作为一个芯片的集成电路而构成。另外,也可以构成为在图6所示的冷阴极管点灯装置中设置电压检出部81、82、83、84和OR电路85,使该图6中的振荡器62根据来自OR电路85的异常检出信号m5而停止动作。此时,也可以将电压检出部81、82、83、84和OR电路85、图6中的电压检出部43、44、除法器45、46、加法器47、积分器61、振荡器62、比较器63和开关64作为一个芯片的集成电路而构成。
另外,在上述各实施例中,作为镇流元件使用了线圈,但是除了第3实施例以外,用电容也可得到和上述各实施例大致相同的作用和效果。但是,此时需要更高电压的驱动脉冲e1、e2。
工业实用性本发明可适用于液晶显示装置的背光源中使用的多个冷阴极管的两侧的输入端靠逆变器进行驱动的所有冷阴极管点灯装置。
权利要求
1.一种冷阴极管点灯装置,在多个冷阴极管的各两侧的输入端上,通过用于使上述各冷阴极管的管电流均匀化的各镇流元件,以互相相反的相位施加从逆变器输出的驱动脉冲,使其点灯,其特征在于,设有管电流控制单元,该管电流控制单元根据上述各镇流元件中流过的电流,检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
2.根据权利要求1所述的冷阴极管点灯装置,其特征在于,上述逆变器由第1和第2他励式逆变器构成,而且,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各他励式逆变器设定上述各驱动脉冲的功率,使得该管电流成为上述预定值。
3.根据权利要求1所述的冷阴极管点灯装置,其特征在于,上述各逆变器由第1和第2他励式逆变器构成,而且,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各他励式逆变器设定上述各驱动脉冲的频率,使得该管电流成为上述预定值。
4.根据权利要求1所述的冷阴极管点灯装置,其特征在于,上述各逆变器由第1和第2自励式逆变器构成,而且,上述管电流控制单元构成为检出上述多个冷阴极管的各两侧的上述镇流元件中流过的各电流,根据上述各电流的相加值求出上述管电流,对上述各自励式逆变器控制输出上述各驱动脉冲的时间幅度,使得该管电流成为上述预定值。
5.根据权利要求1、2、3或4所述的冷阴极管点灯装置,其特征在于,上述各镇流元件由线圈分别构成,设置了第1和第2减压用线圈,这两个减压用线圈与设置在上述多个冷阴极管中的一个冷阴极管的两侧的输入端上的上述各线圈分别感应耦合而产生低于上述各线圈的两端的电压的电压,而且,上述管电流控制单元构成为根据上述各减压用线圈中产生的电压,检出上述各线圈中流过的电流。
6.根据权利要求1所述的冷阴极管点灯装置,其特征在于,设置了温度检出单元,该温度检出单元检出上述各冷阴极管的温度,而且,上述管电流控制单元构成为根据上述各镇流元件中流过的各电流和由上述温度检出单元检出的上述冷阴极管的温度,检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
7.根据权利要求1所述的冷阴极管点灯装置,其特征在于,设有电压监视单元,该电压监视单元检出上述各冷阴极管的各输入端上施加的上述各驱动脉冲的电压,当至少一个驱动脉冲的电压产生了异常时,停止上述各逆变器的动作。
8.根据权利要求6所述的冷阴极管点灯装置,其特征在于,设有电压监视单元,该电压监视单元检出上述各冷阴极管的各输入端上施加的上述各驱动脉冲的电压,当至少一个驱动脉冲的电压产生了异常时,停止上述各逆变器的动作。
9.一种管电流检出电路,其特征在于,用于在多个冷阴极管的各两侧的输入端上通过用于使上述各冷阴极管的管电流均匀化的各镇流元件以互相相反的相位施加从逆变器输出的各驱动脉冲而使其点灯的冷阴极管点灯装置,根据上述各镇流元件中流过的各电流,检出上述各冷阴极管中流过的管电流,其特征在于包括分别构成上述各镇流元件的各线圈;和与设置在上述多个冷阴极管中的一个冷阴极管的两侧的输入端的上述各线圈分别感应耦合而产生低于上述各线圈的两端的电压的电压的第1和第2减压用线圈。
10.一种管电流控制方法,其特征在于,用于在多个冷阴极管的各两侧的输入端上通过用于使上述各冷阴极管的管电流均匀化的各镇流元件以互相相反的相位施加从逆变器输出的各驱动脉冲而使其点灯的冷阴极管点灯装置,根据上述各镇流元件中流过的各电流,检出上述各冷阴极管中流过的管电流,将该管电流控制成预定值。
11.根据权利要求1至5的任何一项所述的冷阴极管点灯装置,其特征在于,上述管电流控制单元由一芯片式集成电路来构成。
12.根据权利要求6所述的冷阴极管点灯装置,其特征在于,上述温度检出单元和上述管电流控制单元共同由汇集成一芯片的集成电路来构成。
13.根据权利要求7或8所述的冷阴极管点灯装置,其特征在于上述管电流控制单元和上述电压监视单元共同由汇集成一芯片的集成电路来构成。
14.根据权利要求8所述的冷阴极管点灯装置,其特征在于,上述温度检出单元、上述管电流控制单元和上述电压监视单元共同由汇集成一芯片的集成电路来构成。
全文摘要
本发明提供一种从多个冷阴极管的两侧的输入端进行驱动时,可得到稳定的亮度的冷阴极管点灯装置。该冷阴极管点灯装置由电压检出部(43、44)检出冷阴极管(41、42)的各两侧的线圈(39、40)中的线圈(39b、40b)中流过的各电流,由加法器(47)根据该各电流的相加值,求出冷阴极管(42)中流过的管电流值α,由DUTY(功率)控制部(32)设定驱动脉冲(e1、e2)的功率,使该管电流值α成为预定值,从而使该冷阴极管(41、42)的亮度一定。
文档编号H05B41/36GK1921723SQ20061012143
公开日2007年2月28日 申请日期2006年8月22日 优先权日2005年8月23日
发明者本保信明 申请人:Nec液晶技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1