一种一维纳米材料的制备方法

文档序号:8045015阅读:370来源:国知局
专利名称:一种一维纳米材料的制备方法
技术领域
本发明属于纳米材料的制备领域,具体涉及例如Si-0-N、Si02、Si3N4和SiC等一维纳米材料的制备方法。
背景技术
纳米材料,由于具有优越的机械、物理、化学性能及潜在的应用价值而备受关注。 近20年来,纳米材料的制备研究取得了显著的进展,含Si纳米材料的制备以及发光性能的研究也已成为研究的热点之一。自1991年发现一维材料纳米碳管以来,碳纳米管等一维纳米材料,如硅纳米线、 碳化硅纳米纤维、氮化硅纳米纤维和氧化硅纳米纤维等,由于具有优越的机械、物理、化学性质及潜在应用前景而备受关注。一维纳米材料又是研究电子传输行为、光学特性和力学性能等物理性质的尺寸和维度效应得理想系统,在构筑纳米电子和光电子器件等集成线路和功能性元件中充当非常重要的角色,是当前纳米材料领域的研究热点。一维纳米材料在光致发光、低维波导及光学器件纳米埋层连接等方面具有重要意义,在近场光学显微镜和集成光学器件的连接上有望得到应用。近年来,人们应用不同的方法,如化学气相沉积、激光刻蚀和碳辅助法等,分别制备出了多种形貌、高度定向排列的氧化硅纳米线、氮化硅纳米线以及碳化硅纳米线等,并对这些一维纳米材料的发光性能、压电特性进行了研究。威格(Karine Saulig-ffenger) 等人在其论文"Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom" (Journal of Materials Chemistry, 2003,13,3058-3061)中,利用碳辅助的原理,将氧化硅纳米粉末和石墨混合加热制备出长度为500微米,直径为100-300nm的氧化硅纳米纤维。蒋最敏(Z. Jiang)等人在其论文"Catalytic synthesis and photo luminescence of silicon oxide nanowires and nanotubes,,(Applied Physics A,2005,81,477-479)中采用 Fe-Co-Ni 合金作为催化剂制备出了长度为100微米直径为100纳米的氧化硅纳米纤维。王峰(Feng Wang)等人在论文 “Temperature—controlled synthesis of Si3N4 nanomaterials via direct nitridation of Si powders" (Physica E,2010,42,2033-2035)中使用硅粉末在氮气氛围中高温合成Si3N4纳米纤维,具有方法简单的特点。哈克(S. K. Hark)等人在论文 "Fabrication and Optical Properties of Erbium-Doped Silicon-Rich Silicon Oxide Nanofibers”(Journal of Physics and Chemistry C,2007,111,4083-4086)中使用气象化学沉积的方法,利用溅射在已清洗的硅基底上的Au作为催化剂,采用40°C /min的速率快速升温到900°C,通入一定流量的氨气,继续加热至1150°C,保持一定时间自然冷却即可得到 Si-O-N 纳米纤维。张亚非(Ya-Fei Zhang)等人在论文 “SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black”(Nanoscale Research Letters,2009,4,153-156)中,使用离子弧光放电预处理过的SiO和炭黑的粉末作为起始原料,通入氩气加热到特定温度范围并维持一定时间,即可获得亮蓝色的SiC纳米纤维。但是,这些制备一维纳米材料的方法存在着缺陷无法利用相同的设备简便快捷的切换,进行多种类纳米纤维的大批量快速制备。

发明内容
为解决现有制备方法中工艺复杂、产量小、制备不同产物工艺差别巨大、成本高昂的问题,本发明提供一维纳米材料的制备方法,只使用同一套设备,通过简单地改变工艺参数达到大批量制备不同种类纳米纤维的目的,且可以在特定的工艺参数条件下同时制备出多种纳米纤维。—种一维纳米材料的制备方法,具体为将高分子有机物图形化在硅片上,然后置于氢气与氮气混合或氢气与氩气混合的气体环境中,对气体环境加热,生成一维纳米材料。进一步地,所述氢气与氮气的体积比1 5 20或氢气与氩气的体积比1 1 10。进一步地,以升温速率5 20°C /min加热到1000 1300°C,保温1 4小时。进一步地,所述一维纳米材料为Si-O-N纳米纤维材料或S^2纳米纤维材料或 Si3N4纳米纤维材料或SiC纳米纤维材料。本发明的技术效果体现在本发明仅需使用同一套设备,包括退火炉、气体混合器、真空泵等,利用相同的简单易得的原料,包括高分子有机物作为碳源,普通硅片表面固有的一层氧化硅薄膜作为硅和氧的来源,采用成分包括氢气、氩气、氮气的气氛,通过调节各种气氛的比例和采用不同的升温曲线,即可得到多种类的纳米纤维。本发明中主要利用的是气象化学沉积的原理在高温条件下,高分子有机物会分解释放出多种有机气体;在高温条件下,硅片表面的薄层氧化硅会蒸发为SiO2和SiO的蒸汽;而气氛中各种气体的也起着至关重要的作用,氩气和氢气主要作为保护气体,防止高分子有机物热解释放出的氧元素与其他成分发生反应,氢气可优先与氧元素产生反应将其消耗,氢气还可以加速SiA和SiO蒸汽的形成,增加反应速率,氮气可以与热解释放的有机气体和Si02、SiO蒸汽产生气象化学沉积的反应,生成所需的纳米材料。综上所述,本发明中的制备方法与现有的制备方法相比具有如下优点工艺简单、 产量得到了提升、制备不同纳米纤维时工艺调整简单,不需要更换设备,甚至在需要的时候可以同时制备出多种不同比例的纳米纤维,且成本较为低廉,适于大规模生产。制备出的纳米材料除具有耐高温、高强度、低密度、低热膨胀系数、化学稳定等特性外,还具有特殊的荧光特性和压电特性、在可见光范围内具有高反射率,在超级电容行业和军事设备的隐身材料领域中具有广泛的应用前景。


图1 (a)为Si-O-N纳米纤维材料SEM图片;图1 (b)为Si-O-N纳米纤维材料TEM图片;图2为SW2纳米纤维材料SEM图片;图3 (a)为Si3N4纳米纤维材料SEM图片;
图3 (b)为Si3N4纳米纤维材料TEM图片;图4为SiC纳米纤维材料SEM图片。
具体实施例方式以下结合实施例对本发明进一步说明。实例1将SU8光刻胶通过MEMS工艺例如光刻将其图形化在硅片上,将其置于退火炉中, 采用真空泵使其真空度满足要求,然后采用不同流量和比例的氮气和氢气混合气体、不同的升温速率使其升温到300°C,保温一小时以消除各种热应力,防止高分子有机物发生脱落,继续升温到不同的最高温度,保温不同的时间,然后在氮气和氢气的混合气流中降温至室温,得到白色非晶的Si-O-N纳米纤维,如图1(a)和图1(b)所示。相应的工艺参数如表 1所示,结果显示采用工艺参数不同时,Si-O-N纳米纤维的产量也不同,其中各因素中温度的影响最大,当采用1200°C时,所得产物产量最高。表 权利要求
1.一种一维纳米材料的制备方法,具体为将高分子有机物图形化在硅片上,然后置于氢气与氮气混合或氢气与氩气混合的气体环境中,对气体环境加热,生成一维纳米材料。
2.根据权利要求1所述的一维纳米材料的制备方法,其特征在于,所述氢气与氮气的体积比1:5 20或氢气与氩气的体积比1 :1 10。
3.根据权利要求1所述的一维纳米材料的制备方法,其特征在于,以升温速率5 200C /min加热到1000 1300°C,保温1 4小时。
4.根据权利要求1所述的一维纳米材料的制备方法,其特征在于,所述一维纳米材料为Si-O-N纳米纤维材料或S^2纳米纤维材料或Si3N4纳米纤维材料或SiC纳米纤维材料。
全文摘要
本发明提供了一种一维纳米材料的制备方法,使用高分子有机物作为碳源,硅片表面的一层极薄的氧化硅作为氧和硅的来源,置于特定流量的氢气和氮气或者氢气和氩气的混合气体环境中,按照特定的升温曲线加热,即可制备出多种类的线性纳米材料。本发明只需使用同一套设备,调节升温曲线和气体流量,便可制备出的不同种类和产量的纳米材料。制备出的纳米材料除具有耐高温、高强度、低密度、低热膨胀系数、化学稳定等特性外,还具有特殊的荧光特性和压电特性、在可见光范围内具有高反射率,在超级电容行业和军事设备的隐身材料领域中具有广泛的应用前景。
文档编号C30B29/62GK102154706SQ201110066629
公开日2011年8月17日 申请日期2011年3月18日 优先权日2011年3月18日
发明者习爽, 刘丹, 史铁林, 张雷, 汤自荣 申请人:华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1