用于电信实用机柜的基于空气的地热冷却系统的制作方法

文档序号:8191994阅读:314来源:国知局
专利名称:用于电信实用机柜的基于空气的地热冷却系统的制作方法
用于电信实用机柜的基于空气的地热冷却系统
相关申请案的交叉参考本发明要求2010年11月3日由佩德罗.费尔南德斯等人递交的发明名称为“用于电信系统的地下换热器温度控制系统”的第61/409,810号美国临时专利申请案的在先申请优先权,该在先申请的内容以全文引入的方式并入本文本中。
关于由联邦资助的研发的声明不适用。
参考缩微胶片附录不适用。
背景技术
节能策略是电信运营商和电信部门优先考虑的事情之一。具体而言,冷却技术对电信设备的总体电能消耗有很大影响,而且冷却技术需要优化,以便提高总体性能、降低资本支出(CAPEX) /运营成本(0ΡΕΧ),并且降低环境影响。电子设备对运作环境温度的要求通常较为严格。如果电子设备在运作时放热,且放出的热量聚集在设备周围的环境中,那么电子设备的运作环境温度便会升高。当运作环境温度升高到超过某一阈值时,电子设备可能无法正常工作。因此,通常会为电子设备配备制冷机构、空调或其他冷却设备。类似地,如果环境温度过低,则电子设备的运作也将受影响。因此,可能需要对置于低温环境中的电子设备加热。针对中小功率的室外设备,可实施自然冷却方案。为了提高室外机柜的冷却能力,并降低室外设备的功耗水平,可在现有室外设备的顶部设置绝热层和/或遮阳罩。此外,室外机柜可采用波状壁结构,从而有效地增加散热区域,进而提高室外机柜的自然热交换能力。由耗能设备加热的空气常常在机柜内部循环,而且热量经由机柜的壁与外部环境进行交换,以维持布置在机柜内部的设备的正常运作温度。由于所设计的电子设备功能日益强大而且电子部件数量日益增加,因此,对提高电子设备的冷却能力(例如,在环境友好和节能的前提下)的需求也逐渐增加。

发明内容
在一项实施例中,本发明包括一种用于电信实用机柜的基于空气的地热冷却系统。所述基于空气的地热冷却系统包含多个热交换管道,用于延伸到地下环境中。所述基于空气的地热冷却系统还包含输入/输出(I/O)歧管,所述I/O歧管耦接到所述多个热交换管道,而且在所述多个热交换管道与所述电信实用机柜之间提供通气道(airway)。从结合附图和权利要求书进行的以下详细描述中可更清楚地理解这些和其他特征。


为了更完整地理解本发明,现在参考以下结合附图和详细描述进行的简要描述,其中相同参考标号表不相同部分。图1A示出根据本发明的一项实施例的系统。图1B示出图1A的系统的局部视图,其中示出了气流。图1C示出图1A的系统的另一局部视图,其中示出了气流。图1D到图1G示出根据本发明的一项实施例的用于图1A的系统的电池底座布置。图1H和图1I不出根据本发明的一项实施例的用于图1A的系统的另一电池底座布置。图1J示出根据本发明的一项实施例的用于基于空气的地热冷却系统的改进布置。图2A示出根据本发明的一项实施例的基于空气的地热冷却系统。图2B示出根据本发明的一项实施例的基于空气的地热冷却系统,其中热交换管道采用V形布置。图3A和图3B不出根据本发明的一项实施例的另一基于空气的地热冷却系统。图4A和图4B不出根据本发明的一项实施例的另一基于空气的地热冷却系统。图4C到图4F示出根据本发明的多项实施例的基于空气的地热冷却系统的布置,其中该系统具有用于受影响土壤体积的近似值(approximation)。图4G和图4H示出根据本发明的多项实施例的基于空气的地热冷却系统的六件(six-pack)布置。图41示出根据本发明的一项实施例的用于相邻的基于空气的地热冷却系统的位置平面图。图5A到图5C示出根据本发明的一项实施例的另一基于空气的地热冷却系统。图6示出根据本发明的一项实施例的另一基于空气的地热冷却系统。图7A示出根据本发明的一项实施例的另一基于空气的地热冷却系统。图7B到图7D示出与电信实用机柜一起使用的图7A的基于空气的地热冷却系统。图8示出根据本发明的一项实施例的系统,该系统具有与基于空气的地热冷却系统一起使用的升高的电信实用机柜。图9示出不同基于空气的地热冷却系统的运作空间曲线图。图10示出根据本发明的一项实施例的用于电信实用机柜的方法。图11示出根据本发明的一项实施例的用于维护基于空气的地热冷却系统的方法。
具体实施例方式首先应理解,尽管下文提供一项或多项实施例的说明性实施方案,但所揭示的系统和/或方法可使用任何数目的技术来实施,不管该技术是当前已知还是现有的。本发明决不应限于下文所说明的说明性实施方案、附图和技术,包括本文所说明并描述的示例性设计和实施方案,而是可在所附权利要求书的范围以及其等效物的完整范围内进行修改。本文揭示的是布置成具有基于空气的地热冷却的电信实用机柜。所揭示的基于空气的地热冷却利用相对于地上温度的地下温度(例如,夏天时地下温度比地上温度低,但冬天时地下温度比地上温度高),以便为电气设备提供独立的集成式热交换系统。运作时,电信实用机柜内的电子设备所产生的热负荷通过以下方式消散:通过安装在地下的基于空气的地热冷却系统使空气在电信实用机柜内循环。具体而言,电信实用机柜内的设备所产生的热空气会流过基于空气的地热冷却系统,接着返回到电信实用机柜,这时空气温度已降低。所揭示的技术可大大降低运作成本、维护成本,并且减少冷却电信实用机柜对环境的影响。图1A示出根据本发明的一项实施例的系统100。如图1A所示,系统100包含电信实用机柜102以及用于电信实用机柜102的基于空气的地热冷却系统104。基于空气的地热冷却系统104可安装在,例如,土壤130中,与电信实用机柜102隔开。在基于空气的地热冷却系统104安装之后,电信实用机柜102与基于空气的地热冷却系统104对准,从而使得电信实用机柜102与基于空气的地热冷却系统104之间可能产生气流。根据至少一些实施例,电信实用机柜102包括多个室,例如,设备室、电源室和配线室。如本文所述,那些产生热量的电信实用机柜102的室(例如,设备室、电源室等)可进行布置,使得用于每个产热室的气流循环穿过基于空气的地热冷却系统104。图1B示出图1A的系统100的局部视图,其中示出了气流。在图1B中,暴露出电信实用机柜102的导管侧(例如,通过移除或省略盖来暴露)。如图所示,电信实用机柜102包含热负荷室106,其容纳产生热量的电气设备。运作时,热负荷室106内的热空气穿过引气导管108,进入基于空气的地热冷却系统104的进气导管118。在至少一些实施例中,弓丨气导管108和进气导管118对应于隔开的导管,所述隔开的导管形成通畅的通气道,以便于热空气从电信实用机柜102被引入到基于空气的地热冷却系统104。例如,柔性连接系统112可用于连接引气导管108和进气导管118。此外或作为替代,引气导管108和进气导管118中的至少一者为可为柔性的,和/或可设计成部分地装配在另一者内(例如,引气导管108可略小于进气导管118,反之亦然)。类似地,电信实用机柜102的排气导管110和基于空气的地热冷却系统104的回气导管120可对应于隔开的导管,所述隔开的导管形成通畅的通气道,以便于冷却空气从基于空气的地热冷却系统104返回到电信实用机柜102。同样,柔性连接系统112可用于连接排气导管110和回气导管120。此外或作为替代,排气导管110和回气导管120中的至少一者可为柔性的,和/或可设计成部分地装配在另一者内(例如,排气导管110可略小于回气导管120,反之亦然)。在图1B中,热空气从进气导管118循环到基于空气的地热冷却系统104的输入/输出(I/O)歧管114。在至少一些实施例中,I/O歧管114由板126或其他构件分为两个室,本文中称为“歧管进气室”122和“歧管回气室”124。在图1B中,热空气穿过歧管进气室122,进入热交换管道或管路116,其中因热交换管道116与土壤接触而发生地热冷却。空气循环经过穿过热交换管道116的通道并进行冷却,然后穿过I/O歧管114的歧管回气室124,经由回气导管120和排气导管110前往电信实用机柜102。图1C示出图1A的系统100另一局部视图,其中示出了气流。具体而言,图1C的视图示出电信实用机柜102的相反侧,从而暴露出热负荷室106。如图所示,气流109 (表示热空气)穿过热负荷室106中的间隔107到达引气导管108,所述引气导管通过隔板等而至少部分与热负荷室106隔开。进入引气导管108的气流109循环至基于空气的地热冷却系统104的进气导管118和I/O歧管114 (例如,歧管进气室122)。穿过基于空气的地热冷却系统104的空气经冷却,并经由I/O歧管114 (例如,歧管回气室124)和回气导管120返回到电信实用机柜102。在图1C中,气流111 (表示冷却空气)经由排气导管110进入热负荷室106,所述排气导管在图1C中不可见。在至少一些实施例中,设置回气风扇113,以促进基于空气的地热冷却系统104与电信实用机柜102的热负荷室106之间的空气循环。通过热负荷室106与基于空气的地热冷却系统104之间的空气循环,热负荷室106中的空气温度维持在合适的阈值。例如,与电信实用机柜102 —起使用的特定基于空气的地热冷却系统104可具有预定的冷却能力,而且经选择以将热负荷室106中的空气温度维持在预定阈值以下。因此,具有不同冷却能力的基于空气的地热冷却系统可与具有不同冷却要求的不同电信实用机柜相匹配。在至少一些实施例中,基于空气的地热冷却系统104还可包括布置在空气循环回路中的散热器。散热器可包含延伸到土壤或地下水中的材料,而且由高密度聚乙烯(HDPE)、陶器、不锈钢或外表面上涂有塑料或聚脲的成形材料制成。图1D到图1I示出用于系统100的电池底座布置140A和140B。具体而言,图1D示出电池底座布置140A的俯视图,图1E示出电池底座布置140A的正视图,图1F示出与电池底座布置140A相关的底板150,图1G示出电池底座布置140A的侧视图,图1H示出处于冷却状态期间的电池底座布置140B的俯视图,以及图1I示出处于加热状态期间的电池底座布置140B的俯视图。在图1D中,针对电池底座布置140A示出包含多个电池142A到142D的电池室141。为了冷却电池室141,气流导管144存在于排气室110内,而且耦接到电池室141。气流导管144与排气室110的任何连接处均进行密封,从而防止来自基于空气的地热冷却系统104的冷却空气发生泄漏。在至少一些实施例中,气流导管144存在于排气室110内的那部分包含热交换盘管(即,散热器)146,从而有助于对前往电池室141的气流进行冷却。一个或多个风扇148还可沿着气流导管144设置,以便对进入电池室141的气流进行控制。如图1E所示,来自气流导管144的冷却空气可在靠近底座的位置进入电池室141,其中风扇148控制气流。在靠近电池室141的顶部的位置,热空气进入气流导管144,而且在再次进入电池室141之前,往回循环穿过排气室110和热交换盘管146。如图1F和图1G所示,电池142A到142D放置在电池底板150上,所述电池底板促进空气经由气孔152而在电池下方、之间或周围循环。在图1H和图1I中,示出了电池底座布置140B,其中有可能出现冷却状态和加热状态。具体而言,图1H示出处于冷却状态期间的电池底座布置140B,而图1I示出处于加热状态期间的电池底座布置140B。为了对电池室141中的电池142A到142D进行冷却或加热,气流导管145延伸穿过排气室110和引气室108。气流导管145与排气室110和引气室108的任何连接处均进行密封,从而防止来自基于空气的地热冷却系统104的空气发生泄漏。虽然仅示出一个气流导管145,但应理解,可使用两个隔开的气流导管来代替一个气流导管。在电池底座布置140B中,阀154可控制何时采用冷却状态或加热状态。例如,阀154可对进入电池室141的热空气或冷却空气的气流进行控制,方式为让气流从气流导管145的加热侧(对应于存在于引气导管108中的那部分)进入电池室141,但不让气流从气流导管145的冷却侧(对应于存在于排气导管110中的那部分)进入电池室141,反之亦然。在至少一些实施例中,气流导管145存在于排气室110内的那部分包含热交换盘管146A,从而有助于对前往电池室141的气流进行冷却。类似地,气流导管145存在于引气室108内的那部分包含热交换盘管146B,从而有助于对前往电池室141的气流进行加热。一个或多个风扇148还可沿着气流导管145设置,以便与阀154 —起对进入电池室141的气流进行控制。图1J示出根据本发明的一项实施例的用于基于空气的地热冷却系统的改进布置160。在图1J中,电信实用机柜161先前已在不具有基于空气的地热冷却系统的情况下进行安装。改进布置160安装基于空气的地热冷却系统166而不是移除电信实用机柜161,这样,先前安装的电信实用机柜161和底座168发生偏移。为了使电信实用机柜161与基于空气的地热冷却系统166之间能够进行空气循环,使用柔性导管163和164。在将柔性导管163和164连接在电信实用机柜161中的通气道与基于空气的地热冷却系统166之间后,可安装盖162,以保护柔性导管163和164。应理解,改进布置160可涉及对电信实用机柜161的机箱(chassis)进行修改,从而提供通气道,便于空气经由柔性导管163和164在电信实用机柜161与基于空气的地热冷却系统166之间循环。图2A示出根据本发明的一项实施例的基于空气的地热冷却系统200A。如图所示,基于空气的地热冷却系统200A包含输入/输出(I/O)导管206,其可对应于针对图1B和图1C所述的进气导管118和回气导管120。I/O导管206在电信实用机柜与基于空气的地热冷却系统200A的地下部件之间提供气流接口。在至少一些实施例中,I/O歧管204位于I/O导管206与热交换管道202之间。I/O歧管204分成(例如,由隔板208分成)歧管进气室210和歧管回气室212。歧管进气室210将从电信实用机柜接收到的热空气进一步向地下导向热交换管道202。因热交换管道202与地下土壤接触而对所循环的热空气进行冷却。如图所示,各个热交换管道202形成回路,从而使得每个热交换管道202的一端耦接到歧管进气室210,且另一端耦接到歧管回气室212。在至少一些实施例中,I/O歧管204确保每个热交换管道202接收相同量的气流,因此在空气循环期间,基于空气的地热冷却系统200A的摩擦损耗量可减少。此外,I/O歧管204使得基于空气的地热冷却系统200A能够提供足够的流量,即使在空气循环速度较慢的情况下也能如此(从而降低功率消耗和噪音水平)。具体而言,降低了与基于空气的地热冷却系统200A —起实施的风扇/鼓风机的旋转速度和/或数目,从而提高冷却性能系数(COP)并降低噪音水平(与其他电信实用机柜冷却方案相比)。图2B示出根据本发明的一项实施例的基于空气的地热冷却系统2B,其中热交换管道采用V形布置。如图所示,基于空气的地热冷却系统200B包含I/O歧管204、I/O导管206、隔板208、歧管进气室210,以及歧管回气室212,这些部件实质上采用与图2A所示的基于空气的地热冷却系统200A的那些部件类似的方式布置。基于空气的地热冷却系统200A与基于空气的地热冷却系统200B之间的不同之处在于,热交换管道222A和222B成角形(倒V形)布置。换言之,与如图2A所示的热交换管道202实质上垂直设置不同,用于基于空气的地热冷却系统200B的热交换管道222A和222B设置成实质上呈倒V形布置,从而使热交换管道222A和222B的底端比热交换管道222A和222B的顶部实质上水平分开得更远。采用这种方式布置热交换管道222A和222B会减少热交换管道222A与222B之间的热交换(与使用实质上垂直的热交换管道布置相比),因为增加了供热量释放用的土壤的体积。虽然仅示出两个热交换管道222A和222B,但应理解,额外的热交换管道可类似地采用V形布置而成角形。在至少一些实施例中,例如针对管道222A和222B所示的那些成角形的热交换管道或者可采用以下方式布置:3角锥布置、4角锥布置或圆锥形布置,以便通过增加热交换管道之间土壤量来减少热交换管道之间的热交换。图3A和图3B不出根据本发明的一项实施例的另一基于空气的地热冷却系统300。具体而言,图3A示出基于空气的地热冷却系统300的截面图,图3B示出基于空气的地热冷却系统300的等距视图。如图3A和图3B所示,基于空气的地热冷却系统300包含先前所述的进气导管118和回气导管120。在至少一些实施例中,基于空气的地热冷却系统300意图安装在一个洞中,使得只有进气导管118和回气导管120高于土壤线。在基于空气的地热冷却系统300安装之后,通过将电信实用机柜的通气道(例如,图1B中的引气导管108和排气导管110)与进气导管118和回气导管120耦接(即,形成空气循环回路),电信实用机柜(例如,机柜102)可与基于空气的地热冷却系统300成整体。基于空气的地热冷却系统300还包含I/O歧管板302,其在进气导管118和回气导管120与多个热交换管道之间形成通气道。具体而言,用于基于空气的地热冷却系统300的多个热交换管道包括外部热交换管道304以及位于外部热交换管道304内部的内部热交换管道306。如图所示,外部热交换管道304比内部热交换管道306进一步向地下延伸,并且直接耦接到I/O歧管板302和底板312。同时,内部热交换管道306位于外部热交换管道304内,而且未直接耦接到I/O歧管板302或底板312。在基于空气的地热冷却系统300中,外部热交换管道304与内部热交换管道306之间的间隔308形成用于空气循环的通气道。间隔308经过尺寸调整,例如,以将所循环的空气压力维持在预定范围内。在基于空气的地热冷却系统300的底座处,底板312耦接到外部热交换管道104,而且经由回气孔314将气流导入回气管道316。进入回气管道316的空气接着朝向土壤表面往回循环。在至少一些实施例中,回气管道316包含偏移部分318,所述偏移部分使回气管道316与回气导管120对准。偏移部分318位于,例如,I/O歧管板302与内部热交换管道306的顶端之间。在至少一些实施例中,绝缘套管310位于内部热交换管道306与回气管道316之间,以将回气管道316与热空气隔开,所述热空气在外部热交换管道304与内部热交换管道306之间穿过。通过这种方式,回气管道316中的气流并未从流过间隔308的热空气中吸收很多热量(如果吸收的话),所述间隔位于外部热交换管道304与内部热交换管道306之间。图4A和图4B不出根据本发明的一项实施例的另一基于空气的地热冷却系统400。具体而言,图4A示出基于空气的地热冷却系统400的截面图,图4B示出基于空气的地热冷却系统400的等距视图。如图4A和图4B所示,基于空气的地热冷却系统400包含先前所述的进气导管118和回气导管120。在至少一些实施例中,基于空气的地热冷却系统400意图安装在一个洞中,使得只有进气导管118和回气导管120高于土壤线。在基于空气的地热冷却系统400安装之后,通过将电信实用机柜的通气道(例如,图1B中的引气导管108和排气导管110)与进气导管118和回气导管120耦接(即,形成空气循环回路),电信实用机柜(例如,机柜102)可与基于空气的地热冷却系统400成整体。在至少一些实施例中,I/O歧管402将回气导管120和进气导管118与热交换管道404隔开。I/O歧管402有助于确保热交换管道404接收相同量的气流,而且存在足够的流量,即使在空气循环速度较慢的情况下也是如此。I/O歧管402由回气管道316分开,从而使回气管道316外部的气流导向热交换管道404,而且回气管道316内部的气流导向回气导管120。在至少一些实施例中,回气管道316的偏移部分318存在于I/O歧管402中,用于将回气管道316与回气导管120对准。基于空气的地热冷却系统400的热交换管道404围绕回气管道316间隔开,而且与土壤接触,以使循环穿过热交换管道404的热空气的热量能够传递到土壤。在基于空气的地热冷却系统400的底座处,底座歧管室412在热交换管道404与回气管道316之间提供通气道。空气到达基于空气的地热冷却系统400的底座歧管室412后,经由回气孔314进入回气管道316,而且朝向土壤表面往回循环。在基于空气的地热冷却系统400中,多个热交换管道404在I/O歧管402与底座歧管室412之间布置成径向结构。此种布置为传送热空气的热交换管道404提供更多的土壤接触。在至少一些实施例中,基于空气的地热冷却系统400将单个回气管道316用于该基于空气的地热冷却系统400的中间,所述单个回气管道比热交换管道404大。用于基于空气的地热冷却系统400的回气管道布置将气压维持在所需的范围内,而且与热交换管道404间隔开,以减少从热交换管道到回气管道316的热传递。较大的回气管道316还提供方便的维护通道,以便于在基于空气的地热冷却系统400的底座处安装、定位或移除设备。此类设备的实例包括,但不限于,检查相机、井泵部件和/或液体传感器。图4C到图4F示出根据本发明的多项实施例的基于空气的地热冷却系统的布置,其中该系统具有用于受影响土壤体积的近似值。在图4C中,布置421示出基于空气的地热冷却系统401,其具有直径约2英尺且深度约40英尺的地热系统。基于空气的地热冷却系统401的运作产生的受影响土壤体积对应于土壤圆柱(soil cylinder)420,所述土壤圆柱的深度为约40英尺,直径为约12英尺(B卩,受影响的土壤从基于空气的地热冷却系统401的热交换管道向外延伸约6英尺)。基于空气的地热冷却系统401与土壤圆柱420相结合单独提供约1100瓦的冷却能力(不考虑电信实用机柜容量的冷却能力)。在图4D中,布置423示出土壤圆柱422,其对应于80英尺的基于空气的地热冷却系统。如图所示,土壤圆柱422深度为约80英尺,直径为约12英尺。因此,与布置421的土壤圆柱420相比,布置423的土壤圆柱422的深度是其两倍。如在布置423中,将基于空气的地热冷却系统和受影响的土壤圆柱422的深度加倍,可将冷却能力提高约60% (与布置421相比)。因此,布置423提供约1700瓦的冷却(与用于图4C的布置421的1100瓦相比)。同时,为了与布置421维持相同气流,布置423的风扇功率要求大约加倍。在图4E中,布置425示出相邻的土壤圆柱424和426,它们对应于相邻的40英尺基于空气的地热冷却系统。如图所示,每个相邻土壤圆柱424和426的深度为约40英尺,直径为约12英尺。通过适当地间隔开相邻的土壤圆柱424和426 (相邻但不重叠),相邻的土壤圆柱424和426之间的热交换得以最小化,从而使图4E的布置425的总冷却能力为约2200瓦(B卩,图4C的布置421的冷却能力的两倍)。同时,与图4C的布置421的风扇功率要求相比,图4E的布置425的风扇功率要求大约加倍。在图4F中,布置429示出相邻的土壤圆柱428和430,它们对应于80英尺的基于空气的地热冷却系统。如图所示,每个相邻土壤圆柱428和430的深度为约80英尺,直径为约12英尺。通过适当地间隔开相邻的土壤圆柱428和430 (相邻但不重叠),相邻土壤圆柱428和430之间的热交换得以最小化,从而使图4F的布置429的总冷却能力为约3400瓦(即,图4D的布置423的冷却能力的两倍)。同时,与图4D的布置423相比,布置429的风扇功率要求大约加倍。在图4G中,示出相邻的基于空气的地热冷却系统434A到434F以及对应的土壤圆柱432A到432F的“六件”布置431。每个相邻的基于空气的地热冷却系统434A到434F以及对应的土壤圆柱432A到432F可具有约40英尺或80英尺的深度。此外,每个土壤圆柱432A到432F具有约12英尺的直径。通过适当地间隔开相邻的土壤圆柱432A到432F (相邻但不重叠),相邻的土壤圆柱432A到432F之间的热交换得以最小化,从而使图4G的布置431的总冷却能力为40英尺单元约6600瓦且80英尺单元约10200瓦。在图4H中,示出相邻的基于空气的地热冷却系统434A到434F以及对应的土壤圆柱432A到432F的另一“六件”布置435。六件布置435包括相同的基于空气的地热冷却系统434A到434F以及土壤圆柱432A到432F,如针对图4G的六件布置431所揭示。此外,图4H的六件布置435使用导管436和438A到438C,以将基于空气的地热冷却系统434A到434F中的至少一些系统连接在一起。导管436和438A到438C促进基于空气的地热冷却系统434A到434F之间的空气循环,从而使六件布置435的能力更均匀地分布,而且可被导向设备连接器440。设备连接器440的位置可变化,而且可与用于每个基于空气的地热冷却系统434A到434F的单独I/O导管隔开。虽然图4C到图4H示出针对成比例的基于空气的地热冷却系统的若干布置,但是应理解,也可能有其他布置。针对图4C到图4H的布置所述的深度、直径、受影响土壤形状,以及冷却能力仅仅是示例性的,而且并不将本发明的实施例限于任何特定的深度、直径、受影响土壤形状,以及冷却能力。图41示出根据本发明的一项实施例的用于相邻的基于空气的地热冷却系统的位置平面图450。对于位置平面图450,每个基于空气的地热冷却系统占据2英尺的洞452A到452D,而且与相邻的基于空气的地热冷却系统间隔开约6英尺。通过位置平面图450,估计每个基于空气的地热冷却系统和对应的电信实用机柜使用100CFM的空气(约8瓦的功率)来提供700到1500瓦的冷却。图5A到图5C不出根据本发明的一项实施例的另一基于空气的地热冷却系统500。具体而言,图5A示出基于空气的地热冷却系统500的截面图,图5B示出基于空气的地热冷却系统500的等距视图,其中电信实用机柜设备506被降低且覆盖,且图5C示出基于空气的地热冷却系统500的等距视图,其中电信实用机柜设备506未被覆盖且升高。基于空气的地热冷却系统500与基于空气的地热冷却系统200、300和400不同,因为基于空气的地热冷却系统500包括用于电信实用机柜设备506的空间,所述电信实用机柜设备位于基于空气的地热冷却系统500的可密封地下歧管室501的内部。在基于空气的地热冷却系统500中,不存在地上电信实用机柜。此外,电信实用机柜设备506可省略与地上电信实用机柜有关的至少一些封装材料。在图5A到图5C中,歧管室501下方的部件对应于基于空气的地热冷却系统400的I/O歧管402下方的部件。因此,不会对这些部件做进一步的描述。在至少一些实施例中,提升架508与歧管室501形成整体,以便于将电信实用机柜设备506降低到歧管室501中,随后将相同设备506提升到歧管室501之外(例如,用于维修)。在歧管室501的底座处,I/O歧管502为热交换管道404提供通气道。I/O歧管402有助于确保每个热交换管道404接收相同量的气流,而且存在足够的流量,即使在空气循环速度较慢的情况下也是如此。循环穿过热交换管道404和回气管道316的空气由歧管室501内部的回气歧管504接收。在至少一些实施例中,回气歧管504包含至少一个风扇505,用于对基于空气的地热冷却系统500的空气循环速率进行控制。穿过回气歧管504的气流由电信实用机柜设备506接收,所述电信实用机柜设备位于完成空气循环回路的室内。密封后,歧管室501成为用于基于空气的地热冷却系统500的空气循环回路的一部分。在图5A和图5B中,示出防水盖510,所述防水盖用来覆盖歧管室501及其容纳的东西。防水盖510可与锁环512等相配,如图5B所示。在图5C中,防水盖510已移除,而且提升架508示为处于升高位置,这允许接近电信实用机柜设备506。基于空气的地热冷却系统104、200、300、400和500的实施例对应于热交换管道的垂直配置。此类垂直配置的好处在于:相对于其他配置,受这种基于空气的地热冷却系统的安装和使用影响的表面区域较小。此外,用于垂直配置的安装深度利用越来越低的地下周围温度。因此,如在基于空气的地热冷却系统104、200、300、400和500中,热交换管道的垂直配置比热交换管道的水平配置更有效(即,提供相同冷却能力需要的材料更少)。由于位置限制、岩层和/或其他挖掘困难,基于空气的地热冷却系统(例如,系统104、200、300、400和500)的垂直配置并不总是可能的。在这些情况下,热交换管道可使用浅层水平配置。图6示出根据本发明的一项实施例的另一基于空气的地热冷却系统600,其中基于空气的地热冷却系统600使用热交换管道604的水平配置。如图所示,基于空气的地热冷却系统600包含先前所述的进气导管118和回气导管120。在至少一些实施例中,基于空气的地热冷却系统600意图安装在一个洞中,使得只有进气导管118和回气导管120高于土壤线。在基于空气的地热冷却系统600安装之后,通过将电信实用机柜的通气道(例如,图1B中的引气导管108和排气导管110)与进气导管118和回气导管120耦接(即,形成空气循环回路),电信实用机柜(例如,机柜102)可与基于空气的地热冷却系统600成整体。为了完成空气循环回路,进气导管118耦接到进气室602。空气从进气室602穿过多个热交换管道604,进入回气室606。如图所示,热交换管道604采用水平配置,而且与土壤接触,以冷却所循环的热空气。空气从回气室606循环回到回气导管120。热交换管道604的数量、形状、尺寸和布置可根据所需的冷却能力和效率考虑而变化。此外,供基于空气的地热冷却系统600安装到其中的洞的深度和形状可根据基于空气的地热冷却系统600的尺寸和形状而变化。图7A不出根据本发明的一项实施例的基于空气的地热冷却系统700的另一项实施例。如图7A所示,基于空气的地热冷却系统700包含先前所述的进气导管118和回气导管120。在至少一些实施例中,基于空气的地热冷却系统700意图安装在一个洞中,使得只有进气导管118和回气导管120高于土壤线。在基于空气的地热冷却系统700安装之后,通过将电信实用机柜的通气道(例如,图1B中的引气导管108和排气导管110)与进气导管118和回气导管120耦接(S卩,形成空气循环回路),电信实用机柜(例如,机柜102)可与基于空气的地热冷却系统700成整体。
在至少一些实施例中,I/O歧管702将回气导管120和进气导管118与热交换管道710隔开。I/O歧管702有助于确保每个热交换管道710接收相同量的气流,而且存在足够的流量,即使在空气循环速度较慢的情况下也是如此。I/O歧管702被分成(例如,被隔板704分成):歧管进气室(用箭头705表示),用于将气流从进气导管118导入热交换管道710中的一些热交换管道;以及歧管回气室(用箭头707表示),用于将循环穿过热交换管道710的气流往回导向回气导管120。基于空气的地热冷却系统700的热交换管道710间隔开而且与土壤接触,以使得能够传递来自循环穿过热交换管道710的热空气中的热量。在基于空气的地热冷却系统700的底座处,底座歧管室712在朝向基于空气的地热冷却系统700的底座向下传送空气的热交换管道710与朝向回气导管120向上传送空气的其他热交换管道710之间提供通气道。换言之,热交换管道710耦接在所分开的I/O歧管702与打开的底座歧管室712之间,以完成用于基于空气的地热冷却系统700的空气循环回路。在至少一些实施例中,基于空气的地热冷却系统700包含泄漏检测维护管道706和/或泵接入维护管道708。泄漏检测维护管道706从I/O歧管702上方的点向下延伸到底座歧管室712,而且使得能够对底座歧管室712中的泄漏检测传感器进行安装、维修和监测。例如,泄漏检测器可用于检测超过阈值量的液体何时聚集在底座歧管室712中。在这种情况下,泵启动,经由泵接入维护管道708抽出液体。与泄漏检测维护管道706类似,泵接入维护管道708从I/O歧管702上方的点向下延伸到底座歧管室712。泵接入维护管道708使得能够对底座歧管室712中的泵部件进行安装、维修和监测,如果基于空气的地热冷却系统700中发生泄漏,则液体最有可能积聚在所述底座歧管室中。如图所示,泵接入维护管道708延伸到底座歧管室712中的那部分包含孔,用来使液体从底座歧管室712流到土壤表面。图7B到图7D示出与电信实用机柜701 —起使用的图7A的基于空气的地热冷却系统700。在图7B中,电信实用机柜701位于基于空气的地热冷却系统700的上方,从而通过将进气导管118与电信实用机柜701的排气导管718接合,以及将回气导管120与电信实用机柜701的引气导管720接合,形成空气循环回路。具体而言,排气导管718将热空气从热负荷室703传送到基于空气的地热冷却系统700,而引气导管720将冷却空气从基于空气的地热冷却系统700传送回到热负荷室703。图7B所示与基于空气的地热冷却系统700有关的其他部件已针对图7A描述,因此不会做进一步描述。在图7C中,示出基于空气的地热冷却系统700相对于电信实用机柜701的定位。如图7C所示,基于空气的地热冷却系统700与电信实用机柜701的热负荷室703对准,从而有助于完成热负荷室703与基于空气的地热冷却系统700之间的空气循环回路。在图7D中,从另一角度不出基于空气的地热冷却系统700相对于电信实用机柜701的定位。如图7D所示,基于空气的地热冷却系统700略偏离电信实用机柜701,从而有助于接近泄漏检测维护管道706和泵接入维护管道708。图8示出根据本发明的一项实施例的系统800,该系统具有与基于空气的地热冷却系统820 —起使用的升高电信实用机柜802。升高的电信实用机柜802安装到,例如,架空平台810上,所述架空平台由从地面向上延伸的杆812支撑。通过架空平台810,与地面或地下安装相比,升高的电信实用机柜802的安装灵活性得以提高。为了便于将升高的电信实用机柜802安装到架空平台810,升高的电信实用机柜802可包括安装接口部件813(例如,螺栓、紧固件、螺纹接口等)。在至少一些实施例中,升高的电信实用机柜802容纳设备804、功率调节和转换部件806,或其他产生热量的部件。升高的电信实用机柜802中的热空气导向位于升高的电信实用机柜802底座处的地热冷却空气传递装置808。地热冷却空气传递装置808耦接到将气流导向地下的导管814,基于空气的地热冷却系统820安装在地下。如图所示,导管814将气流导向I/O歧管822的歧管进气室侧826。空气从歧管进气室侧826循环穿过热交换管道828中的一些热交换管道,所述热交换管道间隔开而且与土壤接触,以使得能够传递来自循环穿过热交换管道828的热空气中的热量。在基于空气的地热冷却系统820的底座处,底座歧管室830在朝向基于空气的地热冷却系统820的底座向下传送空气的热交换管道828与朝向I/O歧管822的歧管回气室侧824向上传送空气的其他热交换管道828之间提供通气道。换言之,热交换管道828耦接在所分开的I/O歧管822与打开的底座歧管室830之间,以完成用于基于空气的地热冷却系统820的空气循环回路。气流从歧管回气室侧824经由导管816导向升高的电信实用机柜802。根据至少一些实施例,地热冷却空气传递装置808对穿过基于空气的地热冷却系统820的空气循环速率进行控制。例如,地热冷却空气传递装置808可对应于风扇,其中风扇的旋转速度是可控制的(例如,风扇可处于“关闭”模式、半速模式、全速模式或其他速度)。升高的电信实用机柜802还包含内部循环空气传递装置807,以促进气流从热空气通道809回到热负荷室811,所述热负荷室中安置有设备804和功率调节部件806。换言之,内部循环空气传递装置807使热空气在热空气通道809与升高的电信实用机柜802的内部之间循环。 根据本发明的多项实施例,系统800的运作可结合用于地热冷却空气传递装置808和内部循环空气传递装置807的控制策略来描述。例如,控制策略可由控制模块803实施,所述控制模块与温度传感器(未示出)、地热冷却空气传递装置808以及内部循环空气传递装置807通信。在至少一些实施例中,环境空气温度(Ta)和参考温度(Ttl)用作标准,以确定是否启动地热冷却空气传递装置808和/或内部循环空气传递装置807。此外,可考虑可允许的设备温度(Te)和最大设备温度(Tmax)。如果TaXTtl,则控制模块803启动地热冷却空气传递装置808 (例如,全速),而内部循环空气传递装置807不启动。在设备804运作期间,控制模块803监测并计算Te和Tmax。如果Te〈Tmax,则控制模块803根据内置的旋转速度调整策略来对地热冷却空气传递装置808的旋转速度进行控制。如果TeXTmax,则控制模块803可使地热冷却空气传递装置808以全速运转。如果T^Ttl而且Te〈Tmax,则控制模块803可使用自然冷却方案:使用电信实用机柜内的内部空气循环,从而使用升高的电信实用机柜802的机柜壁,以进行热交换。这与来自基于空气的地热的气流结合使用,以便在极其寒冷的时候进行额外加热。自然冷却方案依据的可能是位于升高的电信实用机柜802顶部的绝热层和/或遮阳罩。此外,升高的电信实用机柜802可采用波状壁结构,从而增加散热区域,进而增强升高的电信实用机柜802的自然热交换能力。通过使空气在升高的电信实用机柜802内循环,升高的电信实用机柜802的壁与外部环境之间的自然热交换得以提高。因此,在使用自然冷却方案期间,控制模块803启动内部循环空气传递装置807(例如,全速),而地热冷却空气传递装置808不启动。如果Te>Tmax(S卩,自然冷却方案无法将Te维持在Tmax以下),则控制模块803可一起启动基于空气的地热冷却系统820和自然冷却方案。如果在使用自然冷却方案和基于空气的地热冷却系统820期间,Te<Tmax,则地热冷却空气传递装置808的旋转速度会根据内置的旋转速度调整策略进行调整。否则,控制模块803使地热冷却空气传递装置808以全速运作。总而言之,基于对Te的监测并将其与预定Tmax值相比和/或基于对Ta的监测并将其与预定Ttl值相比,控制模块803可选择性地启动基于空气的地热冷却系统820、自然冷却方案或这两者。用于系统800的控制方案还可与地面电信实用机柜一起使用。此外,选择性地运作风扇以控制气流循环速率可与本文所述的任一基于空气的地热冷却系统一起使用。根据多项实施例,此类风扇受控制,从而使得用以运作基于空气的地热冷却系统的功耗较为有效。换言之,风扇将仅根据需要运作,以维持电信实用机柜内所需的温度范围。在至少一些实施例中,多余的风扇用于地热冷却空气传递装置808和内部循环空气传递装置807中的每一者。多余风扇的默认模式可能是,例如,一起以约半速或更小的速度运作。如果多余的风扇中有一个风扇出现故障,则剩下的风扇会以更快的速度运作。图9示出用于不同基于空气的地热冷却系统的运作空间曲线图900。曲线图900表明在热天,地下环境比地面温度低达20 °F左右,具体取决于深度。类似地,曲线图900表明在冷天,地下环境比地面温度高达20 T,具体取决于深度。换言之,地下环境可用来维持稳定的温度而且在热天和冷天最有效(与平均情况相比)。如曲线图900所示,地下温度还根据土壤的湿度而变化。众所周知,空气温度随季节和时间而改变。在炎热的季节,例如夏季,对可靠冷却的需求因大气温度较高而增加。为了温度稳定而实施本文所述的基于空气的地热冷却系统在电池室中尤其有用,其中电池充电和放电特性取决于周围温度,而且维持稳定温度可显著延长电池寿命。如图所示,水平运作空间902 (指代具有水平热交换管道配置的地热冷却系统)在地下4到8英尺之间,其中温度为约10 °F,比热天的地面温度低。同时,垂直运作空间904(指代具有垂直热交换管道配置的地热冷却系统)在地下20到30英尺之间,其中温度为约20 T,比热天的地面温度低。图10示出根据本发明的一项实施例的用于电信实用机柜的方法1000。方法1000包含将空气从电信实用机柜的热负荷室排放到基于空气的地热冷却系统(块1002)。所述方法还包含将空气从基于空气的地热冷却系统引入到热负荷室(块1004)。在至少一些实施例中,经由柔性引气导管和柔性排气导管来进行如块1002和块1004中的排气和引气。方法1000还可包含额外的步骤,所述额外的步骤可单独或一起实施。例如,在至少一些实施例中,方法1000可包含在排气步骤(块1002)之后且在引气步骤(块1004)之前使空气穿过散热器。此外,方法1000可包含选择性地控制地热冷却空气传递装置和内部循环空气传递装置,以调整排气步骤(块1002)和引气步骤(块1004)的速率。此外,方法1000可包含选择性地运作风扇,以基于环境空气温度测量值与预定的环境空气温度阈值的比较,调整排气步骤(块1002)和引气步骤(块1004)的速率。此外,方法1000可包含选择性地运作风扇,以基于设备空气温度测量值与预定的设备空气温度阈值的比较,调整排气步骤(块1002)和引气步骤(块1004)的速率。如果确定设备空气温度高于预定阈值,则方法1000可使风扇以全速运作。此外,方法1000可包含运作位于热负荷室中生热电子设备下方的多余风扇。在默认模式下,多余的风扇可一起以约半速或更小的速度运作。此外,方法1000可包含运作排气导管中的多个多余风扇,所述排气导管将空气从基于空气的地热冷却系统引导到电信实用机柜的热负荷室。图11示出根据本发明的一项实施例的用于维护基于空气的地热冷却系统的方法1100。方法1100包含检测基于空气的地热冷却系统中是否发生泄漏(块1102)。方法1100还包含响应于检测到的泄漏,启动用于基于空气的地热冷却系统的液泵(块1104)。例如,泄漏检测步骤(块1102)可包含监测位于基于空气的地热冷却系统的底座处的泄漏检测器。此外或作为替代,泄漏检测步骤(块1102)可包含经由与对应于基于空气的地热冷却系统的多个热交换管道隔开的泄漏检测器维护管道,监测位于基于空气的地热冷却系统的底座处的泄漏检测器。此外或作为替代,泄漏检测步骤(块1102)可包含经由对应于基于空气的地热冷却系统的回气管道,监测位于基于空气的地热冷却系统的底座处的泄漏检测器。此外或作为替代,泄漏检测步骤(块1102)可包含监测位于基于空气的地热冷却系统的底座歧管室中的泄漏检测器。同时,泵启动步骤(块1104)可包含启动液泵,以便从基于空气的地热冷却系统的底座中抽出液体。此外或作为替代,泵启动步骤(块1104)可包含经由与对应于基于空气的地热冷却系统的多个热交换管道隔开的泵接入维护管道,从基于空气的地热冷却系统的底座中抽出液体。此外或作为替代,泵启动步骤(块1104)可包含经由对应于基于空气的地热冷却系统的多个热交换管道中的一个热交换管道来抽出液体。此外或作为替代,泵启动步骤(块1104)可包含从基于空气的地热冷却系统的底座歧管室中抽出液体。虽然所揭示的基于空气的地热冷却系统被描述成与电信实用机柜一起使用,但是其他需要冷却的电子设备将同样受益。所揭示的基于空气的地热冷却系统的一些好处(与传统冷却系统相比)包括,但不限于,安装占地面积较小、设计可伸缩、构造更可靠、成本较低(CAPEX和0ΡΕΧ)、功耗较低,以及噪音水平较低。虽然实施例可变化,但是所揭示的基于空气的地热冷却系统中的至少一些系统为电信实用机柜提供高达1500瓦的冷却能力。此外,所揭示的基于空气的地热冷却系统中的至少一些系统提供介于110与290之间的冷却性能系数(C0P)。此外,所揭示的基于空气的地热冷却系统中的至少一些系统在噪音水平低于45dBA的情况下运作。此外,所揭示的基于空气的地热冷却系统中的至少一些系统具有小于5平方英尺的表面区域占地面积。此夕卜,所揭示的基于空气的地热冷却系统中的至少一些系统延伸到地下20到40英尺的深度。此外,所揭示的基于空气的地热冷却系统中的至少一些系统包含用于空气循环的风扇,其中风扇在60° C下超过150K小时的情况下较为可靠,而且支持单个风扇出现故障(即,提供多余的风扇)。根据实施例,所揭示的基于空气的地热冷却系统的所有部件或其中一些部件(例如,歧管、热交换管道、泄漏检测维护管道、泵接入维护管道等)由高密度聚乙烯(HDPE)构造。HDPE部件熔合在一起,而且具有达到2英寸的壁厚度。所使用的HDPE类型可对应于根据ASTM D3350规范的PE3406/3608。虽然可使用其他材料,但是HDPE得益于-110° C到130° C的运作范围、抗压特性、化学惰性(碳氢化合物除外),以及长达50年或更久的可靠性。此外,HDPE在熔合时保留完整的长度,而且无需涂漆或抛光(能直接安装)。此外,可在使用留于适当位置的套管的地方完成对HDPE基于空气的地热冷却系统的维修,所述套管熔融以接合两个HDPE管道。例如,可在15分钟左右完成对两个3英寸的HDPE管道的准备和接合。在至少一些实施例中,进气导管118和回气导管120可由不锈钢而不是HDPE构造,而且用螺栓固定到基于空气的地热冷却系统的I/O歧管上。取决于制造过程和/或安装过程,可能进行变化。现有设备有助于针对所揭示的基于空气的地热冷却系统进行钻洞。例如,使用现有的车载钻机可在30分钟左右钻出直径为24英寸的40英尺洞。虽然存在各种回填材料,但是至少一些所揭示的基于空气的地热冷却系统可在没有特殊回填混合物的情况下进行安装(即,土壤本身便足够)。虽然垂直的洞用于安装大多数所揭示的基于空气的地热冷却系统,但是也可能有非垂直的洞布置。因此,在一些实施例中,可将倾斜的洞布置用于安装所揭示的垂直式基于空气的地热冷却系统。例如,针对相邻的洞可使用倒V形布置,从而使对应的电信实用机柜彼此靠近,但是相对应的基于空气的地热冷却系统在地下远离彼此延伸。在未采用倒V形洞布置的情况下,相邻的基于空气的地热冷却系统将在较大程度上影响彼此的冷却能力。此类倾斜的洞布置可用来避免岩层和/或在表面处最小化电信实用机柜之间的间隔,同时仍在相应的基于空气的地热冷却系统之间提供足够的地下间隔。本文揭示至少一项实施例,且所属领域的技术人员作出的对所述实施例和/或所述实施例的特征的变化、组合和/或修改在本发明的范围内。因组合、合并和/或省略所述实施例的特征而得到的替代实施例也在本发明的范围内。在明确说明数值范围或限制的情况下,此类表达范围或限制应被理解为包括在明确说明的范围或限制内具有相同大小的迭代范围或限制(例如,从约为I到约为10包括2、3、4等;大于0.10包括0.11,0.12,0.13等)。例如,只要揭示具有下限R1和上限Ru的数值范围,则特别揭示落入所述范围内的任何数字。具体而言,特别揭示所述范围内的以下数字=R=Rfl^(Ru-R1),其中k是从1%到100%
以 1% 增量递增的变量,即,k 是 1%、2%、3%、4%、5%、......、50%、51%、52%、......、95%、96%、97%、
98%、99%或100%。此外,还特别揭示由如上文所定义的两个R数字界定的任何数值范围。应将使用“包含”、“包括”和“具有”等范围较大的术语理解为支持“由……组成”、“基本上由……组成”以及“大体上由……组成”等 范围较窄的术语。本文所述的所有文档都以引入的方式并入本文中。
权利要求
1.一种用于电信实用机柜的基于空气的地热冷却系统,所述基于空气的地热冷却系统包含: 多个热交换管道,其用于延伸到地下环境中;以及 输入/输出(I/o)歧管,其耦接到所述多个热交换管道,并且在所述多个热交换管道与所述电信实用机柜之间提供通气道。
2.根据权利要求1所述的基于空气的地热冷却系统,其中所述I/O歧管包含歧管进气室以及与所述歧管进气室隔开的歧管回气室。
3.根据权利要求2所述的基于空气的地热冷却系统,其中所述歧管进气室和所述歧管回气室由将所述I/O歧管分成歧管回气室侧和歧管进气室侧的板隔开。
4.根据权利要求2所述的基于空气的地热冷却系统,其中所述歧管回气室和所述歧管进气室由将所述I/O歧管分开的回气管道隔开,从而使所述回气管道外部的区域对应于所述歧管进气室,且所述回气管道内部的区域对应于所述歧管回气室。
5.根据权利要求2所述的基于空气的地热冷却系统,其中所述多个热交换管道中的每个热交换管道包含连续的管道通气道,所述连续的管道通气道具有耦接到所述歧管进气室的第一端以及耦接到所述歧管回气室的第二端。
6.根据权利要求2所述的基于空气的地热冷却系统,其进一步包含底座歧管室,所述底座歧管室在耦接到所述歧管进气室的至少一个热交换管道与耦接到所述歧管回气室的至少一个其他热交换管道之间提供通气道。
7.根据权利要求6所述的基于空气的地热冷却系统,其中耦接在所述底座歧管室与所述歧管进气室之间的多个热交换管道与耦接在所述底座歧管室与所述歧管回气室之间的多个热交换管道隔开。
8.根据权利要求6所述的基于空气的地热冷却系统,其中耦接在所述底座歧管室与所述歧管进气室之间的多个热交换管道围绕回气管道定位,所述回气管道耦接在所述底座歧管室与所述歧管回气室之间。
9.根据权利要求8所述的基于空气的地热冷却系统,其中所述回气管道包含延伸到所述底座歧管室中的部分。
10.根据权利要求9所述的基于空气的地热冷却系统,其中延伸到所述底座歧管室中的所述回气管道的所述部分包含多个孔。
11.根据权利要求1所述的基于空气的地热冷却系统,其中所述多个热交换管道包含形成通气道的外部热交换管道和内部热交换管道。
12.根据权利要求11所述的基于空气的地热冷却系统,其中所述外部热交换管道耦接到所述I/O歧管并且耦接到底座歧管板,其中所述内部热交换管道并未耦接到所述I/O歧管或所述底座歧管板。
13.根据权利要求12所述的基于空气的地热冷却系统,其进一步包含绝缘套管,所述绝缘套管位于所述内部热交换管道与穿过所述内部热交换管道的回气管道之间。
14.根据权利要求1所述的基于空气的地热冷却系统,其中所述I/O歧管包含歧管室,用于将电信实用机柜设备容纳在密封环境中。
15.根据权利要求14所述的基于空气的地热冷却系统,其中所述歧管室包含用于所述电信实用机柜设备的设备提升架。
16.根据权利要求14所述的基于空气的地热冷却系统,其中所述歧管室包含可移动的防水盖。
17.根据权利要求1所述的基于空气的地热冷却系统,其中所述多个热交换管道和所述I/O歧管由高密度聚乙烯(HDPE)构造。
18.根据权利要求1所述的基于空气的地热冷却系统,其中所述I/O歧管包含至少一个风扇,以控制穿过所述多个热交换管道的气流的速率。
19.根据权利要求1所述的基于空气的地热冷却系统,其中所述多个热交换管道以一定角度延伸,以使得能够针对相邻的基于空气的地热冷却系统形成倒V布置。
20.根据权利要求1所述的基于空气的地热冷却系统,其中所述I/O歧管包含进气导管接口,用于接收来自所述电信实用机柜的热空气,所述I/o歧管还包含回气导管接口,用于将冷却空气返回到所述电信实用 机柜。
全文摘要
在一项实施例中,本发明包括一种用于电信实用机柜的基于空气的地热冷却系统。所述基于空气的地热冷却系统包括多个热交换管道,用于延伸到地下环境中。所述基于空气的地热冷却系统还包括输入/输出(I/O)歧管,所述I/O歧管耦接到所述多个热交换管道,并且在所述多个热交换管道与所述电信实用机柜之间提供通气道。
文档编号H05K7/20GK103181251SQ201180051010
公开日2013年6月26日 申请日期2011年11月3日 优先权日2010年11月3日
发明者佩德罗·费尔南德斯, 池善久, 阿密特·库卡尼, 翟立谦, 凯利·C·约翰逊, 鲁勇, 马哈茂德·埃尔克纳尼 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1