无辅助绕组的原边控制led驱动电路及其pfc恒流控制电路的制作方法

文档序号:8079597阅读:463来源:国知局
无辅助绕组的原边控制led驱动电路及其pfc恒流控制电路的制作方法
【专利摘要】本实用新型提供了一种无辅助绕组的原边控制LED驱动电路及其PFC恒流控制电路,该LED驱动电路包括:PFC恒流控制电路;第一电容,第一端连接PFC恒流控制电路的电源端口,第二端连接地端口;第一电阻,第一端连接PFC恒流控制电路的采样端口,第二端连接该地端口;分压网络,对该地端口和地之间的电压进行分压,输出端连接PFC恒流控制电路的反馈端口;变压器,原边绕组的异名端连接该地端口,原边绕组的同名端接地;副边二极管,正极连接副边绕组的同名端;输出电容,第一端连接副边二极管的负极,第二端连接副边绕组的异名端。本实用新型能够省去辅助绕组,有利于降低成本,提高输出电压范围,提高整机的兼容性。
【专利说明】无辅助绕组的原边控制LED驱动电路及其PFC恒流控制电路
【技术领域】
[0001]本实用新型涉及LED驱动电路技术,尤其涉及一种无辅助绕组的原边控制LED驱动电路及其PFC恒流控制电路。
【背景技术】
[0002]图1为传统的高功率因数原边控制LED驱动电路系统,包括:整流电路,该整流电路包括二极管Dl?D4以及输入电容Cin ;启动及供电电路,该启动及供电电路包括电阻Rl、电容Cl、辅助绕组供电二极管D5 ;变压器Tl,该变压器Tl包括原边绕组NP、副边绕组NS及辅助绕组NA ;M0S管Ml ;分压电阻R2和R3 ;补偿电容C2 ;采样电阻R4 ;输出续流二极管D6 ;输出电容C3 ;LED负载以及功率因数校正(PFC)控制电路100。其中,电阻Rl的一端接收输入电压Vin,电阻Rl的另一端与电容Cl的一端、辅助绕组供电二极管D5的一端以及控制电路100的电源管脚VCC相连;电容Cl的另一端接地,辅助绕组供电二极管D5的另一端接变压器Tl的辅助绕组NA以及分压电阻R2的一端,变压器Tl的辅助绕组NA的另一端接地,分压电阻R2的另一端接PFC控制电路100的反馈管脚FB,并且与分压电阻R3的一端相连,分压电阻R3的另一端接地。变压器Tl的原边绕组NP的一端接收输入电压Vin,另一端连接MOS管Ml的漏端,MOS管Ml的栅端接PFC控制电路100的驱动管脚DRV,M0S管Ml的源端接PFC控制电路100的采样管脚CS,并且与分压电阻R3的一端相连,分压电阻R3的另一端接地。采样电阻R4的一端连接MOS管Ml的源极,另一端接地。
[0003]其中,PFC控制电路100的恒流控制模块101接采样管脚CS、反馈管脚FB及补偿管脚C0MP,补偿管脚COMP接电容C2的一端,电容C2的另一端接地;UVL0和基准模块102接电源管脚VCC,恒流控制模块101的输出端接驱动模块103,驱动模块103的输出端接驱动管脚DRV。变压器Tl的副边绕组NS的一端接输出续流二极管D6的正端,输出续流二极管D6的负端接输出电容C3的一端,并且与LED负载的正端相连,输出电容C3的另一端与LED负载的负端连接在一起。
[0004]参考图1,该高功率因数原边控制LED驱动电路系统的工作原理如下:当PFC控制电路100工作正常时,驱动管脚DRV输出逻辑高电平,MOS管Ml导通,变压器Tl的原边电流由零开始上升,采样管脚CS的电压上升,反馈管脚FB的电压为逻辑低电平,恒流控制模块101接收采样管脚CS和反馈管脚FB的信号,通过检测采样管脚CS上的信号幅值及通过反馈管脚FB检测副边二极管导通时间,计算出输出电流,然后通过计算控制导通时间,达到系统要求的导通时间后,驱动管脚DRV输出逻辑低电平,变压器Tl通过副边放电,把能量传导至输出端。整个系统通过检测采样管脚CS和反馈管脚FB的电压,通过环路进行控制,使得输出电流恒定,并且有较高的功率因数值。其中,补偿管脚COMP连接系统补偿网络,通过外围电容或者电阻电容网络维持系统的稳定。
[0005]图1所示的电路正常工作时,供电电路通过辅助绕组NA、辅助绕组供电二极管D5和电容Cl给PFC控制电路100供电,并且反馈管脚FB通过辅助绕组NA及分压电阻R2、R3检测开关信号,用于传输至PFC控制电路100,因此在此系统中,辅助绕组NA是必不可少的,需要用于供电及信号检测。
[0006]变压器Tl的辅助绕组NA在生产时会占用一定的成本,辅助绕组供电二极管D5及电阻Rl也会占用一定成本,并且辅助绕组NA的匝数需要与副边绕组NS的匝数相匹配,而电源端口 VCC的电压与PFC控制电路100的耐压相关,一般电源端口 VCC的正常工作电压范围有限,输出电压的范围与电源端口 VCC的电压范围有一定的对应关系,所以用辅助绕组NA供电会导致输出电压范围无法做到宽电压范围,不利于对不同输出电压规格的产品做到兼容。
实用新型内容
[0007]本实用新型要解决的技术问题是提供一种无辅助绕组的原边控制LED驱动电路及其PFC恒流控制电路,可以省去辅助绕组,有利于降低成本,提高输出电压范围,提高整机的兼容性。
[0008]为解决上述技术问题,本实用新型提供了一种PFC恒流控制电路,具有电源端口、地端口、采样端口、输入端口和反馈端口,该PFC恒流控制电路包括:
[0009]用于检测所述电源端口的电源电压并根据该电源电压导通或断开所述电源端口和输入端口之间的连接的供电模块;
[0010]功率管,其漏极连接所述输入端口,其栅极连接所述电源端口 ;
[0011]源极驱动管,其漏极连接所述功率管的源极,其源极连接所述采样端口 ;
[0012]恒流控制模块,其第一输入端与所述采样端口相连并从所述采样端口接收采样信号,其第二输入端与所述反馈端口相连并从所述反馈端口接收反馈信号,根据其输出端驱动信号,该驱动信号与所述采样信号和反馈信号相关联,该驱动信号经由驱动模块传输至所述源极驱动管的栅极,用以控制所述源极驱动管的导通和关断。
[0013]根据本实用新型的一个实施例,所述供电模块包括:
[0014]供电控制模块,其输入端连接所述电源端口,用于检测所述电源端口的电源电压,在所述电源电压高于该预设值时,其输出端输出逻辑高电平,在所述电源电压低于该预设值时,其输出端输出逻辑低电平;
[0015]耗尽型NMOS晶体管,其漏极连接所述输入端口,其源极连接所述电源端口,其栅极连接所述供电控制模块的输出端。
[0016]根据本实用新型的一个实施例,所述PFC恒流控制电路还具有补偿端口,该补偿端口连接补偿网络的第一端,该补偿网络的第二端连接所述地端口,所述恒流控制模块还从该补偿端口接收补偿信号,并根据该补偿信号、采样信号和反馈信号产生所述驱动信号。
[0017]根据本实用新型的一个实施例,该PFC恒流控制电路还包括:基准模块,其输入端连接所述电源端口,用以产生多种基准信号供所述供电模块和/或恒流控制模块使用。
[0018]本实用新型还提供了一种无辅助绕组的原边控制LED驱动电路,包括:
[0019]上述任一项所述的PFC恒流控制电路,其输入端口接收输入电压;
[0020]第一电容,其第一端连接所述PFC恒流控制电路的电源端口,其第二端连接所述PFC恒流控制电路的地端口 ;
[0021 ] 第一电阻,其第一端连接所述PFC恒流控制电路的采样端口,其第二端连接所述PFC恒流控制电路的地端口 ;
[0022]分压网络,对PFC恒流控制电路的地端口和地之间的电压进行分压,其输出端连接所述PFC恒流控制电路的反馈端口 ;
[0023]变压器,其原边绕组的异名端连接所述PFC恒流控制电路的地端口,其原边绕组的同名端接地;
[0024]副边二极管,其正极连接所述变压器的副边绕组的同名端;
[0025]输出电容,其第一端连接所述副边二极管的负极,其第二端连接所述变压器的副边绕组的异名端。
[0026]根据本实用新型的一个实施例,所述分压网络包括:
[0027]第二电阻,其第一端连接所述PFC恒流控制电路的地端口,其第二端连接所述PFC恒流控制电路的反馈端口 ;
[0028]第三电阻,其第一端连接所述第二电阻的第二端,其第二端接地。
[0029]根据本实用新型的一个实施例,该原边控制LED驱动电路还包括:
[0030]整流桥,对交流信号进行整流产生所述输入信号;
[0031]输入电容,其第一端连接所述整流桥的输出端,其第二端接地。
[0032]与现有技术相比,本实用新型具有以下优点:
[0033]本实用新型实施例的无辅助绕组的原边控制LED驱动电路可以采用高压直接供电,无需经过辅助绕组,而且PFC恒流控制电路连接为浮地控制方式,使得反馈信号可以通过原边绕组检测获得,也无需经过辅助绕组,从而可以彻底省去辅助绕组,同时还一并省去了用于启动的电阻以及供电二极管,能够降低外围电路成本,而且省去辅助绕组有利于加宽输出电压的范围,提高整机的兼容性。
【专利附图】

【附图说明】
[0034]图1是现有技术中一种高功率因数原边控制LED驱动电路系统的电路结构示意图;
[0035]图2是本实用新型实施例的无辅助绕组的原边控制LED驱动电路的电路结构示意图。
【具体实施方式】
[0036]下面结合具体实施例和附图对本实用新型作进一步说明,但不应以此限制本实用新型的保护范围。
[0037]参考图2,本实施例的原边控制LED驱动电路包括:整流桥、输入电容Cin、PFC恒流控制电路200、第一电容Cl、第一电阻R1、补偿电容C2、分压网络206、变压器Tl、副边二极管D6和输出电容C3。其中,输出电容C3可以配置为与LED负载并联。
[0038]进一步而言,整流桥对输入的交流信号(AC INPUT)进行整流,得到输入信号Vin,该整流桥的输出端连接输入电容Cin的第一端,该输入电容Cin的第二端接地。该整流桥可以包括二极管Dl?D4,其中,二极管Dl的正极连接二极管D2的负极并连接正输入端,二极管Dl的负极连接二极管D3的负极并且连接输入电容Cin的第一端,二极管D2的正极和二极管D4的正极接地,二极管D3的正极连接二极管D4的负极以及负输入端。[0039]整流桥和输入电容Cin形成了输入整流电路,本领域技术人员应当理解,该原边控制LED驱动电路也可以不包含整流桥和输入电容Cin,例如可以采用外接的输入整流电路。
[0040]第一电容Cl的第一端连接PFC恒流控制电路200的电源端口 VCC,第一电容Cl的第二端连接PFC恒流控制电路200的地端口 GND。第一电阻Rl的第一端连接PFC恒流控制电路200的采样端口 CS,第一电阻Rl的第二端连接PFC恒流控制电路200的地端口 GND。分压网络206的一端连接PFC恒流控制电路200的地端口 GND,另一端接地,分压网络206对地端口 GND和地之间的电压进行分压,其输出端连接PFC恒流控制电路200的反馈端口FB。变压器Tl的原边绕组NP的异名端连接PFC恒流控制电路200的地端口 GND,原边绕组NP的同名端接地。副边二极管D6的正极连接变压器Tl的副边绕组NS的同名端。输出电容C3的第一端连接副边二极管D6的负极,输出电容C3的第二端连接副边绕组NS的异名端。补偿电容C2的第一端连接PFC恒流控制电路200的补偿端口 C0MP,补偿电容C2的第二端连接PFC恒流控制电路200的地端口 GND。
[0041]作为一个非限制性的例子,该分压网络206可以包括第二电阻R2和第三电阻R3。其中,第二电阻R2的第一端连接PFC恒流控制电路200的地端口 GND,第二电阻R2的第二端连接PFC恒流控制电路200的反馈端口 FB ;第三电阻R3的第一端连接第二电阻R2的第二端,第三电阻R3的第二端接地。
[0042]更进一步而言,PFC恒流控制电路200主要包括:供电模块201、功率管M2、源极驱动管Ml、恒流控制模块203、基准模块204和驱动模块205,其具有电源端口 VCC、地端口GND、输入端口 DRAIN、采样端口 CS、反馈端口 FB、补偿端口 C0MP。作为一个优选的实施例,地端口 GND采用浮地连接,并未连接到电源地,而是连接至变压器Tl的原边绕组NP的异名端。
[0043]其中,供电模块201用于检测电源端口 VCC的电源电压,在该电源电压大于预设值时将电源端口 VCC和输入端口 DRAIN电连接,在该电源电压小于该预设值时断开电源端口VCC和输入端口 DRAIN之间的连接。
[0044]作为一个优选的实施例,供电模块201包括供电控制模块202和耗尽型NMOS晶体管M3。其中,供电控制模块202的输入端连接电源端口 VCC,用于检测电源端口 VCC的电源电压,在该电源电压高于该预设值时,供电控制模块202的输出端的输出信号DRV3为逻辑高电平,在电源电压低于该预设值时,供电控制模块202的输出端的输出信号DRV3为逻辑低电平。耗尽型NMOS晶体管M3的漏极连接输入端口 DRAIN,耗尽型NMOS晶体管M3的源极连接电源端口 VCC,耗尽型NMOS晶体管M3的栅极连接供电控制模块202的输出端,也就是供电控制模块202的输出信号DRV3用于控制耗尽型NMOS晶体管M3的导通和关断。在耗尽型NMOS晶体管M3导通时,输入端口 DRAIN和电源端口 VCC导通;在耗尽型NMOS晶体管M3断开时,输入端口 DRAIN和电源端口 VCC之间的连接也被断开。
[0045]本领域技术人员应当理解,除上述优选的实施方式之外,供电模块201还可以采用其他适当的实现方式,例如将耗尽型NMOS晶体管M3更换为其他类型的晶体管,并相应调整供电控制模块202的输出信号,从而实现类似的功能。
[0046]功率管M2的漏极连接输入端口 DRAIN,功率管M2的栅极连接电源端口 VCC。源极驱动管Ml的漏极连接功率管M2的源极,源极驱动管Ml的源极连接采样端口 CS。[0047]恒流控制模块203的第一输入端从采样端口 CS接收采样信号,恒流控制模块203的第二输入端从反馈端口 FB接收反馈信号,恒流控制模块203的第三输入端从补偿端口COMP接收补偿信号,根据接收到的采样信号、反馈信号和补偿信号计算输出电流和导通时间并产生驱动信号,该驱动信号经由驱动模块205传输至源极驱动管Ml的栅极,用以控制源极驱动管Ml的导通和关断。其中,驱动模块205用于增强驱动信号的驱动能力,驱动信号经过驱动模块205后转换为调节后的驱动信号DRVl。
[0048]基准模块204的输入端连接电源端口 VCC,用于产生多种基准信号以供其他模块使用。
[0049]PFC恒流控制电路200可以采用集成电路(IC)的方式来实现,也就是将源极驱动管Ml,功率管M2,耗尽型NMOS晶体管M3都集成在一芯片中。
[0050]图2所示的原边控制LED驱动电路的工作原理如下:源极驱动管Ml,功率管M2,耗尽型NMOS晶体管M3为三复合管,形成功率级电路,其中源极驱动管Ml和功率管M2形成源极驱动电路。其中,耗尽型NMOS晶体管M3为高压供电管,用于给电源端口 VCC供电。源极驱动管Ml为源极驱动电路的低压驱动管。当源极驱动管Ml导通时,源极驱动管Ml的漏极为逻辑低电平,功率管M2的栅极为电源端口 VCC上的电源电压,这样功率管M2的栅源电压VGS为高,功率管M2导通,源极驱动管Ml和功率管M2都导通以后,输入电压Vin通过功率管M2、源极驱动管Ml、第一电阻R1、变压器Tl的原边绕组NP到地形成回路,变压器Tl储存能量,PFC恒流控制电路200的地端口 GND为逻辑高电平,接近输入电压Vin,反馈端口 FB上的反馈信号相对地端口 GND的电压为负电平。恒流控制模块203检测采样端口 CS的采样信号以及反馈端口 FB的反馈信号,并通过补偿端口 COMP的补偿信号进行环路补偿控制,当达到环路控制需要的导通时间Ton (该导通时间Ton为源极驱动管Ml的导通时间)时,恒流控制模块203输出的驱动信号为关断信号,例如驱动模块205输出的驱动信号输出逻辑低电平,源极驱动管Ml关断,相应地,功率管M2关断,反馈端口 FB上的反馈信号相对于地端口 GND的电压为正电平,可以通过该反馈信号检测副边二极管D6的导通时间。变压器Tl的副边绕组NS通过副边二极管D6、输出电容C3和LED负载形成放电回路。同时,恒流控制模块203通过检测采样端口 CS的采样信号、反馈端口 FB的反馈信号,计算输出电流,并通过系统控制使得输出电流恒定,实现恒流的目的。
[0051]供电控制模块202用于检测电源端口 VCC的电源电压,当电源端口 VCC上的电源电压大于一预设值(例如基准模块204提供的一个参考电压)时,输出信号DRV3可以为逻辑高电平,使得耗尽型NMOS晶体管M2停止供电,PFC恒流控制电路200靠存储在第一电容Cl上的能量供电;当电源端口 VCC上的电源电压低于一定值(例如基准模块204提供的一个参考电压),输出信号DRV3可以为逻辑低电平,耗尽型NMOS晶体管M3开始导通,给电源端口 VCC以及第一电容Cl充电。由于源极驱动管Ml和功率管M2组成的源极驱动电路中功率管M2的驱动损耗不需要电源端口 VCC提供,使得整个PFC恒流控制电路的功耗较小,并且使得高压供电成为可能,即使使用对驱动电流要求很大的较大功率的高压功率管M2,也可以正常工作。
[0052]由上,本实施例的方案采用三复合管(源极驱动管Ml、功率管M2和耗尽型NMOS晶体管M3)形成了高压供电的源极驱动结构,电源端口 VCC接功率管M2的栅极,无需电源端口 VCC提供栅极驱动电流,使得电源端口 VCC的耗电较少,可以用高压直接供电,省去了辅助绕组供电;此外,整个原边控制LED驱动电路连接为浮地控制方式,PFC恒流控制电路200的地端口连接至原边绕组NP,因而可以通过原边绕组NP检测副边二极管的导通时间,从而可以省去辅助绕组检测电路,这样就可以彻底省去辅助绕组,有利于降低成本。另外,该方案还一并省去了现有技术中常规的启动电阻Rl和供电二极管D5 (参照图1),有利于降低外围电路成本。
[0053]另外,本方案的无辅助绕组的高功率因数原边控制LED驱动电路无需采用辅助绕组供电,因而使得输出电压的范围与PFC恒流控制电路200的电源端口 VCC的电压范围之间并无寄生的对应关系,从而有利于加宽输出电压范围,能够提高整机的兼容性。
[0054]应该理解到的是上述实施例只是对本实用新型的说明,而不是对本实用新型的限制,任何不超出本实用新型实质精神范围内的实用新型创造,包括但不限于对局部构造的变更、对元器件的类型或型号的替换,以及其他非实质性的替换或修改,均落入本实用新型保护范围之内。
【权利要求】
1.一种PFC恒流控制电路,其特征在于,具有电源端口、地端口、采样端口、输入端口和反馈端口,该PFC恒流控制电路包括: 用于检测所述电源端口的电源电压并根据该电源电压导通或断开所述电源端口和输入端口之间的连接的供电模块; 功率管,其漏极连接所述输入端口,其栅极连接所述电源端口 ; 源极驱动管,其漏极连接所述功率管的源极,其源极连接所述采样端口 ; 恒流控制模块,其第一输入端与所述采样端口相连并从所述采样端口接收采样信号,其第二输入端与所述反馈端口相连并从所述反馈端口接收反馈信号,其输出端输出驱动信号,该驱动信号与所述采样信号和反馈信号相关联,该驱动信号经由驱动模块传输至所述源极驱动管的栅极,用以控制所述源极驱动管的导通和关断。
2.根据权利要求1所述的PFC恒流控制电路,其特征在于,所述供电模块包括: 供电控制模块,其输入端连接所述电源端口,用于检测所述电源端口的电源电压; 耗尽型NMOS晶体管,其漏极连接所述输入端口,其源极连接所述电源端口,其栅极连接所述供电控制模块的输出端。
3.根据权利要求1所述的PFC恒流控制电路,其特征在于,所述PFC恒流控制电路还具有补偿端口,该补偿端口连接补偿网络的第一端,该补偿网络的第二端连接所述地端口,所述恒流控制模块还从该补偿端口接收补偿信号,并根据该补偿信号、采样信号和反馈信号产生所述驱动信号。
4.根据权利要求1所述的PFC恒流控制电路,其特征在于,还包括: 基准模块,其输入端连接所述电`源端口,用以产生多种基准信号供所述供电模块和/或恒流控制模块使用。
5.一种无辅助绕组的原边控制LED驱动电路,其特征在于,包括: 权利要求1至4中任一项所述的PFC恒流控制电路,其输入端口接收输入电压; 第一电容,其第一端连接所述PFC恒流控制电路的电源端口,其第二端连接所述PFC恒流控制电路的地端口; 第一电阻,其第一端连接所述PFC恒流控制电路的采样端口,其第二端连接所述PFC恒流控制电路的地端口; 分压网络,对PFC恒流控制电路的地端口和地之间的电压进行分压,其输出端连接所述PFC恒流控制电路的反馈端口 ; 变压器,其原边绕组的异名端连接所述PFC恒流控制电路的地端口,其原边绕组的同名端接地; 副边二极管,其正极连接所述变压器的副边绕组的同名端; 输出电容,其第一端连接所述副边二极管的负极,其第二端连接所述变压器的副边绕组的异名端。
6.根据权利要求5所述的原边控制LED驱动电路,其特征在于,所述分压网络包括: 第二电阻,其第一端连接所述PFC恒流控制电路的地端口,其第二端连接所述PFC恒流控制电路的反馈端口; 第三电阻,其第一端连接所述第二电阻的第二端,其第二端接地。
7.根据权利要求5所述的原边控制LED驱动电路,其特征在于,还包括:整流桥,对交流信号进行整流产生所述输入信号;输入电容,其第一端连接所述整流`桥的输出端,其第二端接地。
【文档编号】H05B37/02GK203387740SQ201320480163
【公开日】2014年1月8日 申请日期:2013年8月7日 优先权日:2013年8月7日
【发明者】王栋, 吴建兴 申请人:杭州士兰微电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1