多孔性支撑体、复合半透膜、及螺旋型分离膜元件的制作方法

文档序号:11630797阅读:321来源:国知局

本发明涉及在无纺布层的单面上具有聚合物多孔层的多孔性支撑体、在该多孔性支撑体的表面上具有表皮层的复合半透膜、以及使用该复合半透膜的螺旋型分离膜元件。复合半透膜及螺旋型分离膜元件可用于超纯水的制造、咸水或海水的脱盐等,并且可以从染色废水、电沉积涂料废水等成为公害发生原因的污染物等中除去·回收其中含有的污染源或有效物质,有助于废水的封闭化。另外,可用于食品用途等中有效成分的浓缩、净水和污水用途等中的有害成分的除去等高度处理。此外,可用于油田、页岩气田等中的废水处理。



背景技术:

复合半透膜根据其过滤性能、处理方法而被称为ro(反渗透)膜、nf(纳滤)膜、fo(正渗透)膜,可用于超纯水制造、海水淡水化、咸水的脱盐处理、废水的再利用处理等。

作为复合半透膜,使用在多孔性支撑体上形成有表皮层的复合半透膜。另外,作为多孔性支撑体,使用在无纺布层的单面上具有聚合物多孔层的多孔性支撑体。

多孔性支撑体例如可通过下述方式制造:将用于形成聚合物多孔层的聚合物溶液(原液(dope))涂布于长尺寸的无纺布层上,之后,将具有原液膜的无纺布层在凝固浴中浸渍从而使原液膜中发生微相分离,然后将聚合物的多孔结构固定化从而在无纺布层上形成聚合物多孔层。

但是,无纺布层与聚合物多孔层的化学组成不同、热收缩率不同,因此,有在所制作的多孔性支撑体的宽度方向的两端部易于产生弯曲(卷曲)这样的问题。若在多孔性支撑体的宽度方向的两端部产生卷曲,则输送性变差,或者在复合半透膜的制造中操作性变差,因此在谋求改善。

为了解决上述问题,专利文献1中提出了一种分离膜,其为由具有流体通过性的长尺寸的基材和在该基材的表面上形成的分离层构成的分离膜,所述分离层由具有规定厚度的规定厚度部、和薄厚度部构成,所述薄厚度部从该规定厚度部的宽度方向的两端起分别位于其外侧,且具有比所述规定厚度更薄的厚度,并且,在各该薄厚度部的宽度方向的外侧端与所述基材的宽度方向的两侧端之间,具有仅存在所述基材而不存在所述分离层的分离层不存在部。

另外,专利文献2中提出了一种以有机合成纤维为主体的无纺布,其是用于在该无纺布的一个面上支撑半透膜的半透膜支撑体用无纺布,当将待涂覆所述半透膜的无纺布在厚度方向上剥离为2层从而将其分为半透膜涂覆面侧层和半透膜非涂覆面侧层时,该半透膜涂覆面侧层相对于该半透膜涂覆面侧层与该半透膜非涂覆面侧层的合计而言为35质量%以上且70质量%以下。

另外,所制作的多孔性支撑体是以卷绕成卷的状态保存的,还有在退卷时易于产生卷痕(日文:巻き癖)这样的所谓“md卷曲”的问题。

现有技术文献

专利文献

专利文献1:国际公开第2011/118486号

专利文献2:日本特开2013-180236号公报



技术实现要素:

发明所要解决的问题

本发明的目的在于提供盐截留性优异且不易产生卷痕(不易发生md卷曲)的多孔性支撑体、在该多孔性支撑体的表面上具有表皮层的复合半透膜、及使用该复合半透膜的螺旋型分离膜元件。

用于解决问题的手段

本申请的发明人为解决上述问题而反复进行了潜心研究,结果发现能够通过以下所示的多孔性支撑体来实现上述目的,从而完成了本发明。

即,本发明涉及一种多孔性支撑体,其为在无纺布层的单面上具有聚合物多孔层的多孔性支撑体,所述多孔性支撑体的特征在于,

无纺布层的md方向上的弯曲硬度为1.2~2.1g·cm2/cm,且md方向上的弯曲恢复性为0.3~0.6g·cm/cm,

在无纺布层中含浸有作为聚合物多孔层的形成材料的聚合物,

相对于聚合物多孔层中的聚合物及含浸在无纺布层中的聚合物的总重量而言,含浸在无纺布层中的聚合物的含浸率为25~34重量%。

本申请的发明人发现,通过将作为聚合物多孔层的形成材料的聚合物以比以往更多的量含浸在无纺布层中,从而在将多孔性支撑体从卷中退卷时,能够缓和在无纺布层中产生的应力,由此得到了不易产生卷痕(不易发生md卷曲)的多孔性支撑体。

作为无纺布层,使用md方向上的弯曲硬度为1.2~2.1g·cm2/cm、且md方向上的弯曲恢复性为0.3~0.6g·cm/cm的无纺布层。在弯曲硬度小于1.2g·cm2/cm的情况下、或在弯曲恢复性小于0.3g·cm/cm的情况下,当制作多孔性支撑体时,在生产线上输送的过程中,易于在无纺布层中产生褶皱,从而难以形成均匀的聚合物多孔层。另一方面,在弯曲硬度大于2.1g·cm2/cm的情况下、或在弯曲恢复性大于0.6g·cm/cm的情况下,无纺布层的刚性变得过高,且无纺布自身变平的力弱,因此,当将复合半透膜制成元件时,将复合半透膜切断或弯折的加工变得困难,且即便增加含浸在无纺布层中的聚合物的量,仍易于在多孔性支撑体中产生卷痕。

相对于聚合物多孔层中的聚合物及含浸在无纺布层中的聚合物的总重量而言,含浸在无纺布层中的聚合物的含浸率必须为25~34重量%。在聚合物的含浸率小于25重量%的情况下,当将多孔性支撑体从卷中退卷时,不能充分地缓和在无纺布层中产生的应力,因此易于在多孔性支撑体中产生卷痕。另一方面,在聚合物的含浸率大于34重量%的情况下,易于在聚合物多孔层中产生缺陷,因此盐截留性降低。

上述聚合物优选为聚砜。

另外,本发明涉及在上述多孔性支撑体的表面上具有表皮层的复合半透膜、及使用该复合半透膜的螺旋型分离膜元件。

发明效果

本发明的多孔性支撑体不仅盐截留性优异,而且不易产生卷痕(不易发生md卷曲),因此输送性良好,且在复合半透膜的制造中操作性优异。

具体实施方式

本发明的多孔性支撑体为在无纺布层的单面上具有聚合物多孔层的多孔性支撑体。

作为无纺布层,使用md方向上的弯曲硬度为1.2~2.1g·cm2/cm、且md方向上的弯曲恢复性为0.3~0.6g·cm/cm的无纺布层。md方向上的弯曲硬度优选为1.3~2.0g·cm2/cm,md方向上的弯曲恢复性优选为0.35~0.55g·cm/cm。

无纺布层的md方向上的弯曲硬度通过kes试验法测定。详细而言,使用纯弯曲试验机,测定将长度为10cm、宽度为10cm的无纺布层在长度方向上弯曲时的回弹应力,将弯曲曲率为2.5时的应力作为md方向上的弯曲硬度。

无纺布层的md方向上的弯曲恢复性通过kes试验法测定。详细而言,使用纯弯曲试验机,分别测定将长度为10cm、宽度为10cm的无纺布层在长度方向上弯曲时、及恢复时的回弹应力,将弯曲曲率为2.5时的应力差作为md方向上的弯曲恢复性。

另外,作为无纺布层,为了将聚合物的含浸率调节为25~34重量%,优选使用单位面积重量为65~95g/m2的无纺布层,更优选为单位面积重量为67~93g/m2的无纺布层,另外,优选使用透气度为0.8~3.5cm3/cm2·s的无纺布层,更优选为透气度为1.0~3.3cm3/cm2·s的无纺布层。另外,无纺布层的厚度优选为50~120μm左右,更优选为57~117μm。

作为无纺布层的材料,例如,可举出聚烯烃、聚酯、纤维素等,也可使用将多种材料混合而成的材料。尤其是,从成型性的观点考虑,优选使用聚酯。另外,可以使用长纤维无纺布或短纤维无纺布,但从微细的毛刺(其为针孔缺陷的产生原因)少、以及膜面的均匀性的观点考虑,优选使用长纤维无纺布。

聚合物多孔层只要能形成表皮层即可,没有特别限定,通常为具有0.01~0.4μm左右的孔径的多孔层。聚合物多孔层的形成材料没有特别限制,例如,可举出聚砜、聚醚砜等聚芳基醚砜、聚酰亚胺、及聚偏二氟乙烯等。尤其是从化学稳定、机械稳定、热稳定的观点考虑,优选使用聚砜或聚芳基醚砜。

聚合物多孔层的厚度没有特别限制,但若过厚,则通量(flux)降低,因此优选为45μm以下,更优选为40μm以下,进一步优选为35μm以下,特别优选为30μm以下。另一方面,若过薄,则易于产生缺陷,因此优选为16μm以上,更优选为20μm以上。

以下,针对聚合物多孔层的形成材料为聚砜时的多孔性支撑体的制造方法进行说明。对于本领域技术人员而言,当聚合物多孔层的形成材料为聚砜以外的材料时,通过适当调整制造条件,也能够制造本发明的多孔性支撑体。

聚砜多孔层的形成方法没有特别限制,通常利用湿式法或干湿式法形成。例如,将聚砜溶液(原液)涂布于无纺布层上,之后,将具有原液膜的无纺布层在凝固浴中浸渍从而使原液膜中发生微相分离,然后通过将聚砜的多孔结构固定化,从而在无纺布层上形成聚砜多孔层。被涂布至无纺布层上的聚砜溶液向无纺布层中缓缓渗透,聚砜通过凝固处理而被保持在无纺布层中。

作为聚砜溶液的溶剂,例如,可使用二甲基亚砜、二甲基乙酰胺、二甲基甲酰胺、n-甲基-2-吡咯烷酮、及二噁烷等。

聚砜溶液中的聚砜的浓度通常为10~30重量%左右。

为了将无纺布层中的聚砜的含浸率调节成相对于聚砜多孔层中的聚砜及含浸在无纺布层中的聚砜的总重量而言为25~34重量%,聚砜溶液的粘度优选为500~1万mpa·s,更优选为500~1000mpa·s。需要说明的是,粘度的测定方法基于实施例的记载。

对于聚砜溶液的涂布厚度,考虑含浸在无纺布层中的聚砜的量、及要形成的聚砜多孔层的厚度而适当调节。

为了将无纺布层中的聚砜的含浸率调节成相对于聚砜多孔层中的聚砜及含浸在无纺布层中的聚砜的总重量而言为25~34重量%,适当调节从将聚砜溶液涂布于无纺布层上起至将聚砜的多孔结构固定化为止的时间。例如,当使用上述无纺布层及聚砜溶液时,从涂布聚砜溶液起至将聚砜的多孔结构固定化为止的时间通常为0.1~15秒左右。

所制作的多孔性支撑体的无纺布层中含浸有聚砜,相对于聚砜多孔层中的聚砜及含浸在无纺布层中的聚砜的总重量而言,聚砜的含浸率为25~34重量%,优选为27~31重量%。

本发明的复合半透膜为在上述多孔性支撑体的表面上具有表皮层的复合半透膜。

表皮层的形成材料没有特别限制,可举出例如乙酸纤维素、乙基纤维素、聚醚、聚酯、及聚酰胺等。

本发明中,表皮层优选为包含将多官能胺成分与多官能酰卤成分聚合而形成的聚酰胺系树脂的表皮层。

所谓多官能胺成分,是具有2个以上的反应性氨基的多官能胺,可举出芳香族、脂肪族、及脂环式的多官能胺。

作为芳香族多官能胺,例如,可举出间苯二胺、对苯二胺、邻苯二胺、1,3,5-三氨基苯、1,2,4-三氨基苯、3,5-二氨基苯甲酸、2,4-二氨基甲苯、2,6-二氨基甲苯、n,n’-二甲基间苯二胺、2,4-二氨基苯甲醚、阿米酚、苯二甲胺等。

作为脂肪族多官能胺,例如,可举出乙二胺、丙二胺、三(2-氨基乙基)胺、n-苯基乙二胺等。

作为脂环式多官能胺,例如,可举出1,3-二氨基环己烷、1,2-二氨基环己烷、1,4-二氨基环己烷、哌嗪、2,5-二甲基哌嗪、4-氨基甲基哌嗪等。

上述多官能胺可使用一种,也可并用两种以上。为了得到盐截留性能高的表皮层,优选使用芳香族多官能胺。

所谓多官能酰卤成分,是具有2个以上的反应性羰基的多官能酰卤。

作为多官能酰卤,可举出芳香族、脂肪族、及脂环式的多官能酰卤。

作为芳香族多官能酰卤,例如,可举出均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、联苯二甲酰氯、萘二甲酰氯、苯三磺酰氯、苯二磺酰氯、氯磺酰基苯二甲酰氯等。

作为脂肪族多官能酰卤,例如,可举出丙二甲酰氯、丁二甲酰氯、戊二甲酰氯、丙三甲酰氯、丁三甲酰氯、戊三甲酰氯、戊二酰卤化物、己二酰卤化物等。

作为脂环式多官能酰卤,例如,可举出环丙烷三甲酰氯、环丁烷四甲酰氯、环戊烷三甲酰氯、环戊烷四甲酰氯、环己烷三甲酰氯、四氢呋喃四甲酰氯、环戊烷二甲酰氯、环丁烷二甲酰氯、环己烷二甲酰氯、四氢呋喃二甲酰氯等。

上述多官能酰卤可使用一种,也可并用两种以上。为了得到盐截留性能高的表皮层,优选使用芳香族多官能酰卤。另外,优选使用3元以上的多官能酰卤作为多官能酰卤成分的至少一部分而形成交联结构。

另外,为了提高含有聚酰胺系树脂的表皮层的性能,也可使聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯酸等聚合物、山梨糖醇、丙三醇等多元醇等进行共聚。

关于在多孔性支撑体的表面上形成包含聚酰胺系树脂的表皮层的方法,没有特别限制,可以使用所有已知的方法。例如,可举出界面缩合法、相分离法、薄膜涂布法等。所谓界面缩合法,具体而言,为如下方法:使含有多官能胺成分的胺的水溶液、与含有多官能酰卤成分的有机溶液接触,使之进行界面聚合从而形成表皮层,将该表皮层载置于多孔性支撑体上的方法;通过在多孔性支撑体上进行上述界面聚合,从而在多孔性支撑体上直接形成包含聚酰胺系树脂的表皮层的方法。所述界面缩合法的条件等的详情记载于日本特开昭58-24303号公报、日本特开平1-180208号公报等中,可以适当采用这些已知技术。

本发明中,优选如下方法:在多孔性支撑体上形成由包含多官能胺成分的胺的水溶液形成的水溶液被覆层,接下来,使含有多官能酰卤成分的有机溶液与水溶液被覆层接触,从而使之进行界面聚合,由此形成表皮层。

在上述界面聚合法中,胺的水溶液中的多官能胺成分的浓度没有特别限制,优选为0.1~5重量%,更优选为0.5~3重量%。当多官能胺成分的浓度小于0.1重量%时,表皮层中容易产生针孔等缺陷,而且存在盐截留性能下降的倾向。另一方面,当多官能胺成分的浓度大于5重量%时,膜厚变得过厚,透过阻力变大,存在透过通量降低的倾向。

上述有机溶液中的多官能酰卤成分的浓度没有特别限制,优选为0.01~5重量%,进一步优选为0.05~3重量%。当多官能酰卤成分的浓度小于0.01重量%时,未反应的多官能胺成分易于残留,且表皮层中容易产生针孔等缺陷,存在盐截留性能下降的倾向。另一方面,当多官能酰卤成分的浓度大于5重量%时,未反应的多官能酰卤成分易于残留,且膜厚变得过厚,透过阻力变大,存在透过通量降低的倾向。

作为上述有机溶液中使用的有机溶剂,只要是在水中的溶解度低、不会使多孔性支撑体劣化、且能溶解多官能酰卤成分的有机溶剂,则没有特别限定,例如可举出环己烷、庚烷、辛烷及壬烷等饱和烃;1,1,2-三氯三氟乙烷等卤代烃等。优选沸点为300℃以下的饱和烃,更优选沸点为200℃以下的饱和烃。

为了使制膜变得容易、或提高所得的复合半透膜的性能,可以在上述胺的水溶液、有机溶液中加入各种添加剂。作为上述添加剂,例如可举出十二烷基苯磺酸钠、十二烷基硫酸钠及月桂基硫酸钠等表面活性剂;用于除去由聚合生成的卤化氢的氢氧化钠、磷酸三钠及三乙胺等碱性化合物;酰化催化剂;日本特开平8-224452号公报中记载的溶解度参数为8~14(cal/cm3)1/2的化合物等。

从向多孔性支撑体上涂布上述胺的水溶液起直到涂布上述有机溶液为止的时间,虽然也取决于胺的水溶液的组成、粘度及多孔性支撑体的表面的孔径,但优选为15秒以下,进一步优选为5秒以下。当上述溶液的涂布间隔超过15秒时,胺的水溶液渗透·扩散至多孔性支撑体的内部深处,存在未反应的多官能胺成分大量残留在多孔性支撑体中的可能性。另外,渗透至多孔性支撑体的内部深处的未反应的多官能胺成分有即便通过之后的膜清洗处理也难以除去的倾向。需要说明的是,在向多孔性支撑体上被覆上述胺的水溶液后,可除去多余的胺的水溶液。

本发明中,优选的是,在由胺的水溶液形成的水溶液被覆层与有机溶液接触之后,除去多孔性支撑体上的过量的有机溶液,将形成在多孔性支撑体上的膜于70℃以上进行加热干燥,从而形成表皮层。通过对形成的膜进行加热处理,能够提高其机械强度、耐热性等。加热温度更优选为70~200℃,特别优选为100~150℃。加热时间优选为30秒~10分钟左右,更优选为40秒~7分钟左右。

表皮层的厚度没有特别限制,通常为0.05~2μm左右,优选为0.1~1μm。

对于本发明的复合半透膜而言,其形状没有任何限制。即,可以是平膜状、或螺旋元件状等能够想到的所有膜形状。另外,为了提高复合半透膜的盐截留性、透水性、及耐氧化剂性等,可实施以往已知的各种处理。

本发明的螺旋型分离膜元件例如可通过以下方法进行制造:在将复合半透膜对折而形成的间隙中配置供给侧流路部件,将所得的制品与透过侧流路部件层叠,并将用于形成封闭部(其防止供给侧流体与透过侧流体的混合)的粘接剂涂布于复合半透膜的周边部(3边),从而制作分离膜单元,将一个或多个该分离膜单元以螺旋状卷绕在中心管的周围,进而将分离膜单元的周边部封闭。

实施例

以下,给出实施例对本发明进行说明,但本发明不受这些实施例的任何限定。

〔评价及测定方法〕

(无纺布层的md方向上的弯曲硬度的测定)

kes试验法:使用纯弯曲试验机(katotechco,ltd.制,kes-fb2),测定将长度为10cm、宽度为10cm的无纺布层在长度方向上弯曲时的回弹应力,将弯曲曲率为2.5时的应力作为弯曲硬度(g·cm2/cm)。

(无纺布层的md方向上的弯曲恢复性的测定)

kes试验法:使用纯弯曲试验机(katotechco,ltd.制,kes-fb2),分别测定将长度为10cm、宽度为10cm的无纺布层在长度方向上弯曲时、及恢复时的回弹应力,将弯曲曲率为2.5时的应力差作为弯曲恢复性(g·cm/cm)。

(无纺布层的透气度的测定)

按照jisl1096中记载的方法,使用弗雷泽型试验机测定透气度。

(聚砜溶液的粘度的测定)

关于聚砜溶液的粘度,使用e型粘度计(东机产业株式会社制,re-85型粘度计),以测定温度为30℃的条件进行测定。

(含浸在无纺布层中的聚砜的含浸率的计算)

测定经干燥后的多孔性支撑体的重量a。之后,利用胶带将聚砜多孔层从多孔性支撑体上剥离,并测定无纺布层的重量b。之后,将无纺布层在dmf中浸渍,使含浸在无纺布层中的聚砜溶解于dmf中。之后,将无纺布层从dmf中取出并进行清洗、干燥。之后,测定无纺布层的重量c。

聚砜多孔层的重量d由下式算出。

重量d=重量a-重量b

含浸在无纺布层中的聚砜的重量e由下式算出。

重量e=重量b-重量c

含浸在无纺布层中的聚砜的含浸率(重量%)由下式算出。

含浸率(重量%)=〔重量e/(重量d+重量e)〕×100

(盐截留率的测定)

将制作的平膜状的复合半透膜切割为规定的形状、尺寸,设置在平膜评价用的样品池(cell)中。于25℃对膜的供给侧和透过侧赋予1.5mpa的压差,使含有0.15重量%的nacl且已将ph调节为6.5的水溶液与膜接触。测定通过该操作而得到的透过水的电导率,算出盐截留率(%)。预先制作nacl浓度与水溶液电导率的相关性曲线(校正曲线),使用其通过下式算出盐截留率。

盐截留率(%)={1-(透过液中的nacl浓度[mg/l])/(供给液中的nacl浓度[mg/l])}×100

(多孔性支撑体的md卷曲的评价)

将制作的多孔性支撑体从供给辊退卷,切割为宽1m、长1m的大小从而获得样品。将样品置于平坦的台面上,对md方向的端部的从台面翘起的翘曲高度进行测定,基于下述基准来评价多孔性支撑体的md卷曲。

◎:翘曲高度为20mm以下。

○:翘曲高度大于20mm、且为26mm以下。

×:翘曲高度大于26mm。

实施例1

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为20μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.6秒。

然后,将3重量%的间苯二胺溶解于水中从而制备胺的溶液。另外,将0.25重量%的均苯三甲酰氯溶解于己烷中从而制备有机溶液。在将制作的多孔性支撑体从供给辊送出的同时,将上述胺的溶液涂布于多孔性支撑体上,之后,除去多余的胺的溶液,由此形成胺溶液被覆层。接下来,向胺溶液被覆层的表面上涂布上述有机溶液。之后,除去多余的溶液,进一步在140℃的热风干燥机中保持3分钟,在多孔性支撑体上形成包含聚酰胺系树脂的表皮层,从而制作复合半透膜。

实施例2

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为20μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.5秒。

然后,利用与实施例1同样的方法制作复合半透膜。

实施例3

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为20μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.4秒。

然后,利用与实施例1同样的方法制作复合半透膜。

实施例4

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为30μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.3秒。

然后,利用与实施例1同样的方法制作复合半透膜。

比较例1

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为15μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.7秒。

然后,利用与实施例1同样的方法制作复合半透膜。

比较例2

向表1中记载的无纺布层的表面上,涂布包含18.3重量%的聚砜和二甲基甲酰胺的聚砜溶液(原液),之后,将具有原液膜的无纺布层在水浴中浸渍从而进行凝固处理,由此形成厚度为30μm的聚砜多孔层,从而制作多孔性支撑体,将所制作的多孔性支撑体卷绕在供给辊上。需要说明的是,从聚砜溶液的涂布起直至凝固处理结束为止的时间为3.2秒。

然后,利用与实施例1同样的方法制作复合半透膜。

表1

产业上的可利用性

本发明的复合半透膜及螺旋型分离膜元件可用于超纯水的制造、咸水或海水的脱盐等,并且可以从染色废水、电沉积涂料废水等成为公害发生原因的污染物等中除去·回收其中含有的污染源或有效物质,有助于废水的封闭化。另外,可用于食品用途等中有效成分的浓缩、净水和污水用途等中的有害成分的除去等高度处理。此外,可用于油田、页岩气田等中的废水处理。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1