红色发光电磁三功能两层复合纳米纤维膜及其制备方法与流程

文档序号:15730423发布日期:2018-10-23 17:09阅读:179来源:国知局
红色发光电磁三功能两层复合纳米纤维膜及其制备方法与流程

本发明涉及纳米材料制备技术领域,具体说涉及红色发光电磁三功能两层复合纳米纤维膜及其制备方法。



背景技术:

单一功能纳米材料的应用范围有限,而双功能或多功能纳米材料的应用范围更广,这类材料更具特色和吸引力,因此,多功能纳米材料受到研究者的高度关注。随着纳米科技的发展,纳米材料由单一功能,如具有发光特性,导电性或磁性,向着双功能以及多功能方向发展,如具有磁光、光电或电磁双功能以及光电磁三功能,这样可以在一种纳米结构材料上实现双功能或三功能,对纳米器件、纳米技术和相关的科学与技术的发展具有重要意义。例如,磁性-荧光双功能纳米复合材料为疾病诊断和治疗提供了一种新的平台,由于它们的双功能性质使疾病的“发现-检测-治疗”成为一体。这种纳米复合材料的使用将进一步改进诊断的效率和减少副作用,引起了研究者的高度关注。电磁双功能纳米复合物在雷达波吸收、电磁屏蔽、抗静电涂层和传感器等方面具有广阔的应用前景。

四氧化三铁Fe3O4是一种重要而广泛应用的磁性材料。人们已经采用多种方法,如沉淀法、溶胶-凝胶法、微乳液法、水热与溶剂热法、热分解法、静电纺丝法等方法成功地制备出了Fe3O4纳米晶、纳米棒、纳米线、纳米膜、杂化结构、核壳结构纳米颗粒等纳米材料,技术比较成熟。稀土金属铕配合物Eu(TTA)3(TPPO)2,Eu3+为铕离子,TTA为2-噻吩甲酰三氟丙酮根,TPPO为三苯基氧化膦,因铕离子独特的电子构型而成为具有独特性能的红色发光材料,如发光强度高、稳定性好、荧光量子产率高、单色性好等优点,是一种广泛应用的荧光材料。聚苯胺PANI由于其容易合成、电导率高和环境稳定性好等优点,已经成为导电聚合物领域研究的热点之一。人们已经合成了纳米线、纳米棒、纳米管和纳米纤维等一维纳米结构的聚苯胺PANI,因此,利用磁性Fe3O4纳米晶、稀土铕发光配合物Eu(TTA)3(TPPO)2和导电聚苯胺PANI构筑具有光电磁三功能特性的纳米材料是理想的物质。

已有的研究已经证明,当深颜色的导电聚苯胺PANI和磁性Fe3O4与稀土配合物直接混合,会显著降低其发光效果,因此要获得稀土配合物良好的发光效果,必须使稀土配合物与PANI和Fe3O4实现有效分离。如果将导电高分子聚苯胺PANI和Fe3O4纳米晶与聚丙烯腈PAN复合形成纳米纤维膜,将稀土配合物Eu(TTA)3(TPPO)2与聚乙烯吡咯烷酮PVP复合形成纳米纤维膜,再将这两种薄膜复合到一起形成上下两层复合膜,就可以实现聚苯胺PANI和Fe3O4与稀土配合物有效分离,从而获得性能良好的红色发光-导电-磁性三功能两层复合纳米纤维膜,这种新型的膜材料将具有重要的应用前景,目前尚未见相关的文献报道。

专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospinning)的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由Formhals于1934年首先提出。这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后,在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维,这些纤维堆积到一起就形成了微纳米纤维膜。人们已经采用静电纺丝技术制备了光电磁单一功能、双功能和三功能纳米纤维膜。Q.Z.Yu,et al.采用静电纺丝技术制备了具有单一导电功能的聚苯胺PANI纳米纤维膜[Mater.Sci.Eng.B,2008,150,70-76];董相廷等采用静电纺丝技术制备了具有单一发光功能的PAN/Eu(BA)3phen发光纳米纤维膜[化工新型材料,2008,36(9),49-52];王策等采用静电纺丝法制备了具有磁性的聚乙烯吡咯烷酮/四氧化三铁复合纳米纤维薄膜[高等学校化学学报,2006,27(10),2002-2004];Qingbiao Yang,et al.采用静电纺丝技术制备了Fe2O3nanoparticles/Eu(DBM)3(Bath)复合双功能磁光纳米纤维膜[Journal of Colloid and Interface Science,2010,350,396-401],董相廷等采用静电纺丝技术制备了Fe3O4/Eu(BA)3phen/PVP磁光双功能复合纳米纤维膜[Journal of Nanoparticle Research,2012,14(10):1203-1209]、Eu(BA)3phen/PANI/PVP光电双功能复合纳米纤维膜[高等学校化学学报,2012,33(8),1657-1662]和Eu(BA)3phen/PANI/Fe3O4/PVP光电磁三功能纳米纤维膜[Journal of Materials Science:Materials in Electronics,2014,25(3),1309-1316]。目前,未见利用静电纺丝技术制备红色发光电磁三功能两层复合纳米纤维膜的相关报道。

利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数和喷丝头的结构对最终产品的形貌和尺寸都有重要影响。本发明采用单喷头静电纺丝技术,以Eu(TTA)3(TPPO)2配合物、PVP和N,N-二甲基甲酰胺DMF的混合液为一种纺丝液,称为纺丝液I,将油酸包覆的Fe3O4纳米晶、PAN、苯胺、樟脑磺酸、过硫酸铵、DMF混合,待苯胺聚合成聚苯胺后构成另一种纺丝液,称为纺丝液II。控制纺丝液的粘度至关重要,在最佳的工艺条件下,先将纺丝液I进行静电纺丝,得到Eu(TTA)3(TPPO)2/PVP红色发光纳米纤维膜,之后将纺丝液II进行静电纺丝,在Eu(TTA)3(TPPO)2/PVP发光纳米纤维膜上复合PANI/Fe3O4/PAN电磁双功能纳米纤维膜,得到了结构新颖的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能上下两层复合纳米纤维膜。



技术实现要素:

在背景技术中采用静电纺丝技术制备了光电磁单一功能、双功能和三功能纳米纤维膜,所使用的原料、模板剂、溶剂和最终的目标产物与本发明的方法有所不同。本发明采用静电纺丝技术制备了[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能上下两层复合纳米纤维膜,为纳米纤维膜领域增加了一种具有新特性和新结构的纳米复合薄膜材料。

本发明是这样实现的,首先采用沉淀法制备出Eu(TTA)3(TPPO)2配合物和油酸包覆的Fe3O4纳米晶,以Eu(TTA)3(TPPO)2配合物、PVP和N,N-二甲基甲酰胺DMF的混合液为一种纺丝液,称为纺丝液I,将油酸包覆的Fe3O4纳米晶、PAN、苯胺、樟脑磺酸、过硫酸铵、DMF混合,待苯胺聚合成聚苯胺后构成另一种纺丝液,称为纺丝液II,控制纺丝液的粘度至关重要。采用单喷丝头静电纺丝技术进行静电纺丝,在最佳的工艺条件下,获得[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能上下两层复合纳米纤维膜,其步骤为:

(1)沉淀法制备油酸包覆的Fe3O4纳米晶

将5.4060g FeCl3·6H2O,2.7800g FeSO4·7H2O,4.04g NH4NO3和1.9000g分子量为20000的聚乙二醇溶于100mL去离子水中,加热至50℃并通入氩气30min,然后缓慢滴加氨水至溶液的pH值为11,继续通氩气20min得到黑色悬浊液,将此悬浊液磁分离后,用无水乙醇和去离子水依次洗涤三次,将产物置于60℃的真空干燥箱中干燥12h,得到直径为8-10nm的Fe3O4纳米晶;取2.0000g所制备的Fe3O4纳米晶分散在已通入30min氩气的100mL去离子水中并超声分散20min,然后将溶液在氩气保护下加热到80℃,并加入1mL油酸,然后继续反应40min,将所得到的沉淀进行磁分离,去除水层并将沉淀在60℃真空干燥箱中干燥6h,得到油酸包覆的Fe3O4纳米晶;

(2)沉淀法制备Eu(TTA)3(TPPO)2配合物

将1.7596g Eu2O3粉末溶解于10mL浓硝酸中,加热蒸干除去多余的硝酸得到Eu(NO3)3·6H2O晶体,加入20mL无水乙醇,配制成Eu(NO3)3的乙醇溶液;将6.6670g 2-噻吩甲酰三氟丙酮HTTA和5.5680g三苯基氧化膦TPPO共同溶于100mL的无水乙醇中,再将所制备的Eu(NO3)3乙醇溶液缓慢加入其中,调节溶液的pH值为6.5-7.0之间,加热至60℃,搅拌3h,将所得到的沉淀用水和无水乙醇依次洗涤3次,将产物放在60℃烘箱中干燥12h,得到Eu(TTA)3(TPPO)2粉末;

(3)配制纺丝液

将0.2000g Eu(TTA)3(TPPO)2加入到4.5000g DMF中,溶解后加入1.0000g分子量为90000的聚乙烯吡咯烷酮PVP,磁力搅拌24h,得到纺丝液I;将0.9000g油酸包覆的Fe3O4纳米晶加入到7.000g DMF中,超声分散20min,再加入0.9000g分子量为86000的聚丙烯腈PAN,于60℃下搅拌5h,将其溶解得到均匀的胶状液,再加入0.4500g苯胺ANI和0.5612g樟脑磺酸CSA,磁力搅拌2h,将1.1033g过硫酸铵APS溶解在2.0000g DMF中,磁力搅拌2h,将这两份溶液放入5℃的冰箱中冷藏1h,之后将这两份溶液在冰水浴中混合,磁力搅拌3h后,将混合液放入5℃的冰箱中冷藏24h,得到纺丝液II;

(4)制备[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜

将纺丝液I注入一支带有1mL塑料喷枪头的10mL注射器中,高压直流电源的正极与注射器内铜丝电极相连,负极与接收装置铁丝网相连,采用竖喷方式,喷枪头与铁丝网的距离为10cm,纺丝电压为13kV,环境温度为20-25℃,相对湿度为20%-50%,进行静电纺丝得到Eu(TTA)3(TPPO)2/PVP发光纳米纤维膜,待纺丝液I耗尽后,将纺丝液II注入到注射器中,继续进行静电纺丝,在Eu(TTA)3(TPPO)2/PVP发光纳米纤维膜上得到PANI/Fe3O4/PAN电磁纳米纤维膜,随着溶剂的挥发,最终得到[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜。

在上述过程中所制备的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜,由两层薄膜复合而成,Eu(TTA)3(TPPO)2/PVP红色发光纳米纤维层的平均厚度为64.93μm,PANI/Fe3O4/PAN电磁纳米纤维层的平均厚度为159.31μm;在366nm的紫外光激发下,[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜中发光一侧发射出主峰位于615nm的明亮红光;[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜中导电一侧的平均电导率为3.79×10-3S·cm-1;[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的饱和磁化强度为4.6emu/g,所制备的两层复合纳米纤维膜具有良好的发光-导电-磁性三功能,实现了发明目的。

附图说明

图1是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的XRD谱图;

图2是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的SEM照片,该图兼做摘要附图;

图3是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的光学显微镜照片;

图4是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的激发光谱图;

图5是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的发射光谱图;

图6是[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的磁滞回线图。

具体实施方式

本发明所选用的氧化铕Eu2O3的纯度为99.99%,2-噻吩甲酰三氟丙酮,三苯基氧化膦,N,N-二甲基甲酰胺,六水合三氯化铁,七水合硫酸亚铁,硝酸铵,分子量为20000的聚乙二醇,硝酸,分子量为90000的聚乙烯吡咯烷酮,分子量为86000的聚丙烯腈,无水乙醇,氨水,苯胺,樟脑磺酸,过硫酸铵,油酸,氩气均为市售分析纯产品;去离子水实验室自制;所用的玻璃仪器和设备是实验室中常用的仪器和设备。

实施例:将5.4060g FeCl3·6H2O,2.7800g FeSO4·7H2O,4.04g NH4NO3和1.9000g分子量为20000的聚乙二醇溶于100mL去离子水中,加热至50℃并通入氩气30min,然后缓慢滴加氨水至溶液的pH值为11,继续通氩气20min得到黑色悬浊液,将此悬浊液磁分离后,用无水乙醇和去离子水依次洗涤三次,将产物置于60℃的真空干燥箱中干燥12h,得到直径为8-10nm的Fe3O4纳米晶;取2.0000g所制备的Fe3O4纳米晶分散在已通入30min氩气的100mL去离子水中并超声分散20min,然后将溶液在氩气保护下加热到80℃,并加入1mL油酸,然后继续反应40min,将所得到的沉淀进行磁分离,去除水层并将沉淀在60℃真空干燥箱中干燥6h,得到油酸包覆的Fe3O4纳米晶;将1.7596g Eu2O3粉末溶解于10mL浓硝酸中,加热蒸干除去多余的硝酸得到Eu(NO3)3晶体,加入20mL无水乙醇,配制成Eu(NO3)3的乙醇溶液;将6.6670g 2-噻吩甲酰三氟丙酮HTTA和5.5680g三苯基氧化膦TPPO共同溶于100mL的无水乙醇中,再将所制备的Eu(NO3)3乙醇溶液缓慢加入其中,调节溶液的pH值为6.5-7.0之间,加热至60℃,搅拌3h,将所得到的沉淀用水和无水乙醇依次洗涤3次,将产物放在60℃烘箱中干燥12h,得到Eu(TTA)3(TPPO)2粉末;将0.2000g Eu(TTA)3(TPPO)2加入到4.5000g DMF中,溶解后加入1.0000g聚乙烯吡咯烷酮PVP,磁力搅拌24h,得到纺丝液I;将0.9000g油酸包覆的Fe3O4纳米晶加入到7.000g DMF中,超声分散20min,再加入0.9000g聚丙烯腈PAN,于60℃下搅拌5h,将其溶解得到均匀的胶状液,再加入0.4500g苯胺ANI和0.5612g樟脑磺酸CSA,磁力搅拌2h,将1.1033g过硫酸铵APS溶解在2.0000g DMF中,磁力搅拌2h,将这两份溶液放入5℃的冰箱冷藏1h,之后将这两份溶液在冰水浴中混合,磁力搅拌3h后,将混合液放入5℃的冰箱冷藏24h,得到纺丝液II;将纺丝液I注入一支带有1mL塑料喷枪头的10mL注射器中,高压直流电源的正极与注射器内铜丝电极相连,负极与接收装置铁丝网相连,采用竖喷方式,喷枪头与铁丝网的距离为10cm,纺丝电压为13kV,环境温度为20-25℃,相对湿度为20%-50%,进行静电纺丝得到Eu(TTA)3(TPPO)2/PVP发光纳米纤维膜,待纺丝液I耗尽后,将纺丝液II注入到注射器中,继续进行静电纺丝,在Eu(TTA)3(TPPO)2/PVP发光纳米纤维膜上得到PANI/Fe3O4/PAN电磁纳米纤维膜,随着溶剂的挥发,最终得到[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜。所述的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜中含有立方相Fe3O4纳米晶,见图1所示;所述的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜,由两层薄膜复合而成,Eu(TTA)3(TPPO)2/PVP红色发光纳米纤维层的平均厚度为64.93μm,PANI/Fe3O4/PAN电磁纳米纤维层的平均厚度为159.31μm,见图2所示;所述的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜的一侧颜色较深,包含聚苯胺和Fe3O4纳米晶,另一侧颜色较浅,包含无色的Eu(TTA)3(TPPO)2配合物,见图3所示;以615nm作为监测波长,[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜在200-450nm处有一个宽的激发带,其峰值在366nm处,可归为配体的π→π*跃迁,见图4所示;在366nm的紫外光激发下,[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜发射出主峰位于615nm的明亮红光,它对应于Eu离子的5D0→7F2跃迁,见图5所示;所制述的[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜具有较强的磁性,饱和磁化强度为4.6emu/g,见图6所示;应用霍尔效应测试仪测得[Eu(TTA)3(TPPO)2/PVP]/[PANI/Fe3O4/PAN]红色发光电磁三功能两层复合纳米纤维膜中导电一侧的平均电导率为3.79×10-3S·cm-1

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1