金属基片和使用金属基片的电子组件的制作方法

文档序号:8013917阅读:180来源:国知局
专利名称:金属基片和使用金属基片的电子组件的制作方法
技术领域
本发明涉及一种金属基片,它包括金属基座部分,电路导体部分和位于所述电路导体部分和该基座部分之间的绝缘部分,特别是涉及一种适用于半导体器件的金属基片,这些半导体器件用于电力控制,它们与电子装置相结合,并且产生大量热。
在电子控制装置中,例如变换器,伺服放大器和主轴放大器,电力控制用半导体器件包括大容量二极管,晶体管,绝缘栅双极性晶体管和金属氧化物半导体场效应晶体管。目前使用的一种电子电路板称为“DBC板”,板上的电路例如用于电力控制,它产生大量的热。这种DBC板包括构成导体电路的金属片,陶瓷绝缘材料和邻接所述陶瓷绝缘材料的底部的传热金属板。用于DBC板中的金属板可以是铜板。传热金属板可以是铜板。如果采用了这些具有高导热性材料如铝陶瓷或氮化铝陶瓷作为陶瓷绝缘材料,则由导体电路产生的热将快速传送到金属板。此外,当材料本身是陶瓷时,由于电晕放电造成的,材料退化受到抑制,并且使耐放电性能得以改善。
但是在DBC板中,陶瓷绝缘材料层的热膨胀系数与导热金属板层的热膨胀系数不同,于是导致热循环性能相当差,并使相互连接面上易于出现裂缝。另外,由于陶瓷生产工艺中的限制因素,人们难以生产大尺寸的片材。典型地,采用传统的生产工艺制成的陶瓷板尺寸限于约150mm×150mm。此外,采用传统生产工艺需要在高温下加热该板材,结果,不仅生产工艺复杂,而且生产成本高。
为了克服DBC板的上述问题,人们在金属基片内加入一层由有机聚合物和金属膜构成的绝缘层,并且使用粘合剂粘到一导热金属板上。如图7所示,在其中的金属基片70内,电路导体3形成在绝缘层2上,该绝缘层由有机绝缘材料构成,并且形成在导热金属板1的上表面上,在绝缘层2内添加有晶粒状无机填料。具有这种结构的文献例如6235/1971号日本专利说明书和9650/1972号日本专利说明书。图中导体3和板1之间具有放电通道71。
通常,有机聚合物构成的绝缘层与DBC板所用的陶瓷相比,具有相当低的导热性,但是通过添加铝或硅的无机填料可使该导热性增大。此外,将该绝缘层的厚度减小到DBC板厚度的7%-30%,可使导热率上升到所需的水平。
与此有关的技术文献包括106775/1991号、名称“金属基片”的日本实用新案公开说明书,73966/1988号、名为“热辐射绝缘板”的日本实用新案公开说明书,98253/1987号,名为“印刷电路板”的日本实用新案公开说明书,244180/1991号、名为“叠层式金属基片”的日本专利公开说明书,27786/1990号,名为“耐低热电路板”的日本专利公开说明书,232795/1989号,名为“制造金属基片的方法”的日本专利公开说明书和232792/1990号,名为“电路板”的日本专利公开说明书。
特别是在106775/1991号日本实用新案公开说明书的

图1或图4中介绍了一种金属基片,在其有机绝缘层中填入具有高导热性的很长的无机填料。其纵向表面朝向金属基座侧或无定向地放置。由于填加了无机填料,使金属基片70的电路导体3上所装组件辐射的热能有效地转移发散到外面,这些组件例如晶体管,电阻器和电容器。
此外,如果在这些金属基片内采用有机聚合物绝缘材料,就便于以低成本制造大于DBC板的基片。并且不会出现DBC板中由于热循环产生的裂缝问题。由于上述原因,在产生大量热的电力线路或其它类似电组件中采用如上所述结构的金属基片。
在传统的如上所述类型的金属基片中,将粒状无机填料加入有机聚合物材料中,并且用所获得的混合物作为绝缘材料。可是,如果使该构绝缘层受到放电作用,则有机绝缘层容易退化,并且粒状填充材料并未有效工作。这也就是说,当放电造成的退化达到填充了粒状无机填料的区域时,这种退化过程会沿着这一区域的界面进行,结果,该填料对于改善耐放电性能并非总是有效的。
此外,将绝缘层的厚度减少到一般DBC板厚度的约7%-30%,以确保所需的散热性能,这样将影响到高压绝缘性能。首先应注意到,如果增加绝缘层的厚度,刚耐受放电的能力将得以改善,但散热性能变差,原因在于电路导体内产生的热很难传导到金属基片上。还应注意到,尽管传统的金属基片一般使用在较低的工作电压,例如交流200V或以下,但近来人们常在400V或600V高压等级下使用金属基片。因此,考虑这两个条件,由于电晕放电使有机聚合物的绝缘层性能劣化,并且绝缘层的绝缘性能受到破坏。此外,当片的厚度变薄,维持绝缘不击穿的寿命也变短。
产生这一问题的原因是多方面的。首先,如果在基片的电路导体区的表面上存在空气,而且即使这个区域已经抗蚀剂或硅封装物质处理过,在处理完的层内难免存在充有空气的空穴区。第二,众所周知,如果高压交流电压作用到这些充有空气的空穴部位,则产生电晕放电。第三,大部分有机聚合物的电晕放电起始电压范围大约为400-500V,虽然该起始电压与每个基片的厚度有关。不仅额定电压为400V或更低的电子组件,而且额定电压高于400V的电子组件,如果在与这些部分的电子控制相结合的开关操作过程中加载的电压高于400V,就可能发生电晕放电现象。
此外,虽然106775/1991号日本实用新型说明书“金属基片”中提供了有效的热学改进措施,例如改善热传导性和减小线性热膨胀系数,但放电导致的劣化现象将沿着界面扩散,这从图7可看出,如前所述,所填充的粒状无机填料,当放电到达这些填料时,将出现劣化现象,由此,该填料不能改善金属基片的抗放电能力。
为此,本发明的目的是提供一种金属基片,它具有优异的热发散特性以及出色的抗放电能力,还可在高电压下使用。本发明的另一目的是提供采用这种金属基片并在高压下工作的电子组件。
在本发明的金属基片和使用本发明的电子组件中,一绝缘层包括内部填充有片状无机填料的有机绝缘材料。所述片状无机填料的平坦面基本上平行于电路导体件和基座件的表面,从而使该无机片状填料板叠积成分层的状态。采用这种布置,即使电晕放电在电路导体部分表面或绝缘层内的空穴内产生,并且有机绝缘材料发生劣化,但由放电导致的劣化现象可被抑制或基本上限制在具有片状无机填料的部分内。结果,整个绝缘层的抗放电性能得以改善。
在本发明的金属基片和使用该基片的电子组件中,所述绝缘部分包括一种具有片状无机填料和粒状无机填料的有机绝缘材料,片状无机填料的平坦表面基本上平行于电路导体件和基座件的表面,因此该材料能叠积成分层状态。结果,即使在沿着电路导体表面的空穴中或在绝缘层的空穴部位内出现放电现象,并且使有机绝缘材料受到放电的损坏,但由于放电导致的劣化现象可防止,或基本上被抑制在填充有片状无机填料的区域内。从而改善了整个绝缘层的抗放电性能,并且由于存在颗粒状无机填料,绝缘层的导热性上升。同时,线性热膨胀系数可降低,因而通过改变填充材料的固定比例可以制成适于专用条件下的绝缘层。
在本发明的金属基片和使用该基片的电子组件中,绝缘部分包括一由有机绝缘材料制成的绝缘层,其内填加有片状无机填料,还包括一由有机绝缘材料制成的绝缘层,其内填加有颗粒状无机填料,也就是说总共两个绝缘层,该片状无机填料的表面基本上平行于电路导体件和基座件的表面,从而使该填充材料能叠积成分层状态。结果,即使由于电晕放电使有机绝缘材料受损,但由于放电导致的劣化可只限制在填加有片状无机填料的区域内,或者由于放电导致的劣化本身可被遏止,耐放电性能得以改善。此外,由于该绝缘层包含颗粒状无机填料,使绝缘层的导热率上升,从而降低了线性热膨胀系数。采用这种结构,通过改变两有机绝缘层之间的厚度比,可以制成适用于专门用途条件的绝缘层。
在本发明的金属基片和使用该基片的电子组件中,绝缘部分包括多个绝缘层,每个绝缘层由具有不同类型的片状无机填料的有机绝缘材料层构成,每种片状无机填料分别具有不同的平均颗粒直径。至少属于片状无机填料中任何一种的填料表面基本上平行于电路导体件和基座件的表面,因而该填料可叠积成分层状态。结果,即使在沿电路导体表面的部位或在绝缘层内的空穴处出现放电现象,由于放电导致该有机绝缘材料受损,但由放电导致的劣化现象被抑制在填加片状无机填料的区域内,或可以防止放电导致的劣化现象本身的发生。总之,整个绝缘层的抗放电性能得以改善。而且,通过改变多个有机绝缘层之间的厚度比例,可制成适于专门使用条件的绝缘层。
在金属基片和使用该基片的电子组件中,绝缘部分包括具有多种不同的片状无机填料的有机绝缘材料,每种无机填料由不同的原材料构成,这些片状无机填料的表面大体上平行于电路导体件和基底件的表面,从而使填充材料可叠积成分层状态。由于此原故,即使沿电路导体部分的表面或在绝缘层内的空穴中产生电晕放电,并且由于放电使有机绝缘材料受损,但放电导致的劣化被限制在填充的片状无机填料区域内,或放电导致的劣化被防止,从而使整个绝缘层的抗放电性能得以改善。此外,填充材料的种类的各种相应特性可被赋予该绝缘层,由此,所制成的绝缘层更适应专门的使用条件。
在本发明的金属基片和使用该金属基片的电子组件中,绝缘部分包括多个绝缘层,每层由填充有片状无机填料的有机绝缘层构成,其中每种片状无机填料分别具有不同颗粒直径,每层片状无机填料的表面基本上平行于电路导体件和基座件的表面,从而这些填料可叠积成分层状态。结果,即使沿电路导体部分的表面或在该绝缘层内的空穴中发生电晕放电,使有机绝缘材料由于放电劣化,但放电造成的劣化现象被限制在填充了片状无机填料的区域内,或由于放电本身的劣化得以防止,于是整个表面的抗放电性能获得改善。此外,由于填料本身具有的特性可被赋予该绝缘层,从而可制成适于特殊使用条件的绝缘层。
本发明的其他目的和参考资料将从下面结合附图的进一步描述中更易于理解。
图1是本发明的金属基片的构成示意图;
图2是本发明的金属基片的一个示意图;
图3是本发明的金属基片的一个示意图;
图4是本发明的金属基片的一个示意图;
图5是本发明的金属基片的一个示意图;
图6是本发明的金属基片的一个示意图;
图7是本发明的金属基片的一个示意图;
现在参照相关的附图依次描述本发明的金属基片和使用这种基片的电子器件。如图1所示,金属基片10具有一电路导体件3,它经由一绝缘层2置于一金属基座1上,绝缘层2填加有片状无机填料4,这些片呈平板形式,填充到绝缘层2内。金属基座1的材料可以采用诸如铁,铝,铜,SUS或硅晶钢类材料,但是本实施例采用铜制作基座1。作为电路导体3的材料可选用铝或铜,不过本实施例选用铜。
在绝缘层中,有机绝缘材料中填充有片状无机填料,在本实施例中,是在树脂中填充片状无机填料,填料中各具有占树脂重量的80%的铝填料(商标为Showa Keikinzoku,标号为Low soda铝L-13PC)。片状无机填料的填充量为树脂的80%。因为,如果在树脂中混入过量的片状无机填料,则使树脂的粘滞性增大,导致可加工性变差。
尤其是主要采用环氧树脂和(diciandiamido)固体物质作为有机绝缘材料,每个铝片的尺寸约为0.06mm,厚度范围从0.002-0.003mm,由这样的铝片构成片状无机填料4。此外在基片内的绝缘层厚度是0.12mm,总共20至30片填料层形成在该绝缘层2内。
片状无机填料中的片可以为圆形,矩形,多边形或其它形状,只要是扁平的材料即可。此外,在有机绝缘层内的每个无机填料片4的平坦表面通常平行于电路导体3和金属基座1的表面定向,从而该片状无机填料能分层叠积。也就是说,所填充的片状无机填料使得从电路导体3上的一给定点沿垂直于电路导体3的方向通过通道11到达金属基座1的任一矢量均能与某些片状无机填料相交。
在绝缘层2内,可采用多种方法使这些片状无机填料朝一个方向定向。例如,(1)将具有平板形式的片状无机填料粉末填充到具有低粘度的有机绝缘材料中,多次供给这种混合粉末,从而形成一薄层,然后将薄层固化;(2)使用重力使片状无机填料均朝一个方向对齐;或(3)将具有平板形式的片状无机填料粉末散布到金属基座上,然后在其上形成一有机绝缘层,使该绝缘材料与这些片填料粉逐渐浸渗。在本实施例中,将各具有平板形式的片状无机填料粉4填加到具有低粘度的有机绝缘材料中,填加数次后形成薄层(10-20μ/1次×10次),然后在真空中加压和加热这些薄层,使其固化。
对根据前面介绍的方法所得到的基片的抗放电性能进行测试。在这个抗放电试验中,试样为在外尺寸为200mm(长)×150mm(宽)的金属基片中心处腐蚀出一块5mm(宽)×50mm(长)的导电图形。金属基座的厚度为2mm,有机多聚物绝缘层的厚度为0.12mm,导电层的厚度为0.1mm。
在测试中,在周围温度为100℃的条件下,在导电图形和金属基片的金属基座之间施加工业电源(交流2KV和交流3KV,60HZ)。持续时间一直到测出绝缘损坏为止。当施加交流电压时,导电图形表面附近的空气会导致电晕放电,测试结果列于表1中。
从表1可清楚看出,填充有片状无机填料的金属基片比传统的制品(填充有粒状无机填料的金属基片)具有突出的优良抗放电性能。即,在具有如前所述结构的金属基片10中,在电路导体3侧产生的放电对绝缘层2中有不利影响,而这一劣化进程取决于填加到绝缘层2内的片状无机填料的区域。如前所述,每个片状无机填料构成绝缘层2的一部分,这些无机填料片4的表面基本上平行于电路导体3和金属基座1的表面,而且这些填料片叠积成分层状态。采用这种结构,虽然放电发生在这些片状无机填料区域内,但绝缘恶化程度很低,原因是片状无机填料4具有出色的抗放电性能。结果体现在表1的数据中。换句话说,金属基片的表面上有一绝缘层2,电路导体3形成在该绝缘层2之上,在绝缘层2内填充有片状无机填料4,这些无机填料4中的每一片的表面通常平行于电路导体3和金属基座1的表面,并且与传统的基片相比,叠积成分层状态的无机填料的定向的片7具有特别优异的抗放电性能。
晶体管,电阻器和电容器等电力控制半导体器件产生大量热,将这些器件装到具有本发明上述结构的金属基片上,就制成多种电子组件。
下面描述本发明的第二个实施例。如图2所示,金属基片20包括布置在绝缘层2上的电路导体3,而绝缘层2位于金属基座1上,在绝缘层2内填充有片状无机填料4和粒状无机填料。在本实施例中,树脂含有的片状铝无机填料(商标为Showa Keikinzoku,品名为Low soda铝AL-13PC)填加量的重量占树脂重量的40%,而含有的粒状无机填料(具有由Showa Denko制造的球形铝填料)的填加量占树脂重量的50%。
有机绝缘层内部填充有片状无机填料4和粒状无机填料5,片状无机填料的表面基本上平行于电路导体3和金属基座1的表面,并叠积成分层状态。即,如图中通道21所表示的,在绝缘区域2内的从电路导体3上一给定点沿垂直于电路导体3方向指向金属基座1的任一矢量均可与片状无机填料4的某些片相交。
可采用多种方法使片状无机填料4均朝一个方向定向,不过在本实施例中,将粉末形成的片状无机填料4和粒状无机填料5填充到低粘度的有机绝缘材料中。这种混合料填加数次后形成薄层形式。然后将该薄层放在加压和加热的真空气氛下固化。结果,相对于第一实施例的情况,与仅填加片状无机填料4相比,树脂的粘度可减少到约70%,并且可加工性也得到改善。自然地,绝缘材料的粘度可降低,线性膨胀系数及热传导率也可在制造过程中很简便地加以调整。
根据上述方法获得的制品的抗电性能测试条件完全与第一个实施例的条件相同。测试结果列于表2中。
从表2中可清楚看出,这种在有机绝缘材料中填有片状铝填料和粒状铝填料的金属基片,其抗放电性能显著优于传统制品。改进抗放电性能的机理与第一个实施例的情况相同。
晶体管、电阻器和电容器这些产生大量热的电力控制用集成半导体电子组件装在具有上述结构的金属基片上构成电子组件。
现在描述本发明的第三个实施例。如图3所示,金属基片包括电路导体3,它位于形成在金属基座1上的绝缘2层之上,绝缘层2由第一绝缘层2a和第二绝缘层2b构成,第一绝缘层2a内填充有片状无机填料4,第二绝缘层2b内填充有粒状填料5。
在第一绝缘层2a内,采用如环氧树脂类有机绝缘材料,其内填充了片状无机填料4。在本实施例中,所填充的铝片状无机填料的重量是树脂(可选用Showa Keikinzoku的名称为Low soda aluminaAL-13PC的产品)重量的80%。
在第二绝缘层2b中,采用如环氧树脂类有机绝缘材料,其内填充了粒状无机填料。在本实施例中,所填充的铝颗粒无机填料(由Showa Denko出售的超晶粒铝球形制品)的重量约为树脂重量的90%。
根据本实施例的金属基片,第一绝缘层2a由填充有片状无机填料4的有机绝缘材料制成,它形成在紧靠电路片3的绝缘层侧。这种布置方式有效地改善了绝缘层的抗电晕放电性能。在制造过程中,先在金属基座1上形成填充了粒状无机填料5的第二绝缘层2b,然后形成填充有片状无机填料4的第一绝缘层2a,最后粘合电路导体3。
第一绝缘层2a中的片状无机填料4的表面基本上平行于在有机绝缘材料内的电路导体3和金属基座1的表面,并且片状无机填料叠积成分层状态。也就是说,所填充的片状无机填料使从电路导体3上一给定点沿垂直于电路导体3的方向经通道31到达金属基座1的任何矢量能与绝缘区2内的片状无机填料之一相交。
可使用多种方法使无机填料朝一个方向定向,在本实施例中,首先将粒状填料5的粉末填充到具有低粘滞性的有机绝缘材料中,重复混合数次,形成薄层,然后将其放入加压和加热的气氛中固化,直到厚度为0.06mm为止。此外,将片状无机填料4的粉末填充到低粘度的有机绝缘材料中,如此重复数次,形成薄层,将其放入加压和加热的真空气氛中固化,直至厚度为0.06mm为止。至此,形成了总厚度为0.12mm的一绝缘层,接着将电路导体3粘附在其上。
对该基片试品抗放电性能的测试过程与上述第一和第二实施例的过程一样。测试结果示于表3中。

从表3中可清楚看出,按本实施例获得的金属基片的抗放电性能比传统制品优越得多,用于改进抗放电性能的机理基本上与第一实施例相同。不过,与第一实施例的绝缘层厚度相比,这里填充有片状无机填料的第一绝缘层2a的厚度要薄些,因此持续到绝缘击穿的时间也变短。
由晶体管、电阻器和电容器这些产生大量热的电力控制集成半导体器件构成的电子组件装在具有上述实施结构的金属基片上。
现在说明本发明的第四个实施例,如图4所示,金属基片40包括装在绝缘层2上的电路导体3,绝缘层下面是金属基底1,绝缘层2由第一绝缘层2a和第二绝缘层2b构成。片状无机填料4填充到第一绝缘层2a内,而填充到第二绝缘层2b内的片状无机填料6的平均大小与填充到第一绝缘层2a内的片状无机填料4不同。
在本实施例的金属基片中,由有机绝缘材料制成的紧靠电路导体3的第一绝缘层2a内的片状无机填料4具有较大的平均尺寸,因此有效地改善了该组件的抗放电性能。并且,先在金属基座1上形成填充有较小平均尺寸的片状无机填料6的第二绝缘层2b,接着在其上形成填充有较长尺寸的片状无机填料4的第一绝缘层2a,最后粘合上电路导体3。
绝缘层2a中的片状无机填料4和绝缘层2b中的片状无机填料6的表面基本上平行于电路导体3和金属基座1的表面,这些填料片叠积成分层状态。因此在绝缘区内从电路导体3上任一点沿垂直于电路导体3方向通过通道41到达金属基座1的任一矢量均可与片状无机填料4和6中某些片相交。
在这种结构中,其抗放电性能远比传统的产品强得多。本实施例中用于改善抗放电性能的机械参数及将片状无机填料朝一个方向定向的方法基本上与第一和第三个实施例相同。
电力控制用的能产生大量热的晶体管、电阻器和电容器等半导体器件安装在如上所述的金属基片上,构成电子组件。
现在描述本发明的第五个实施例。参见图5,金属基片50包括在金属基座1上通过绝缘层2而形成的电路导体3。第一种和第二种片状无机填料以混合形式布置到绝缘层2内。即,在一种有机绝缘材料中填入片状无机填料4和片状无机填料7的无序混合物,片状无机填料4和7的表面基本上平行于电路导体3和金属基座1的表面,于是这些片状无机填料叠积成分层状态。也就是说,从电路导体3上任一点沿垂直于电路导体3的通道51到达金属基座1上的任何矢量可与片状无机填料4和7的某些片相交。上述片状无机填料4和7的原材料可从云母、氮化硼、玻璃片和铝片材中任选。
本实施例产品的抗放电性能也远优于传统的产品。用于改善抗放电性能的机理和将无机填料朝同一方向定向的方法与第一个实施例大致相同。
电力控制的可产生大量热的半导体器件,如晶体管、电阻器和电容器安装到具有上述结构的金属基片上,构成电子器件。
下面描述本发明的第六个实施例。参见图6,金属基片60具有一形成在绝缘层上的电路导体3,该绝缘层位于一金属基座1的上表面上。绝缘层2由第一绝缘层2a和第二绝缘层2b构成。片状无机填料4填加到第一绝缘层2a内,由不同于片状无机填料4的原材料制成的片状无机填料8填加到第二绝缘层2b内。采用这种布置,从电路导体3上一给定点沿垂直于电路导体3的方向经由通道61到金属基座1上的任一矢量可与片状无机填料4和8中之一片相交。上述片状无机填料4和8的原材料可从云母、氮化硼、玻璃片和铝片材中任选其一。
绝缘层2a中的片状无机填料4和绝缘层2b中的片状无机填料8的表面基本上平行于电路导体3和金属基座1的表面,这些填料叠积为分层状态。每种实施例的结构具有的抗放电性能远比传统制品的同类性能优越得多。本实施例的用于改善抗放电性能的机理和使无机填料片均朝一个方向定向的方法与第一和第三实施例相同。
用于电力控制的能产生大量热的半导体器件,如晶体管、电阻器和电容器等,均安装在具有上述结构的金属基片上,构成电子组件。
应注意到,本发明的金属基片并不只局限于上述实施例描述的形式,还可在不脱离本发明的精神范围内加以改变。在前面的实施例中,电路导体只在金属基座的一面上构成,然而电路导体可以经绝缘层在金属基座的两面上形成。类似地,在上述第三、四和第六个实施例中的金属基片包括由两层构成的总绝缘层,但本发明的金属基片并不限于两层结构,可以采用多层形式。
如上所述,在金属基片和采用这种金属基片的电子组件中,绝缘部分包括一有机绝缘材料,其内填充有片状无机填料,并且这些片状无机填料叠积成分层状态,因此即使放电导致绝缘层劣化,然而由于片状无机填料的填加,能遏止放电导致的恶化,由此改善了抗放电性能。
而且在本发明的金属基片和使用此基片的电子组件中,该绝缘区域包括填充了片状和粒状无机材料的有机绝缘材料,并且这些片状无机填料叠积成分层状态。结果,虽然存在放电引起的绝缘退化现象,但由于填加有片状无机填料的区域存在,防止了放电导致的绝缘劣化的发展。由此,改善了基片的抗放电性能,使其可使用性上升。此外,由于使用了混合的无机填料,性能各异,不必局限于片状无机填料的单一性能,因而可获得令人满意的所需性能。
在本发明的金属基片和使用该基片的电子组件中,绝缘部分包括由有机绝缘材料制成的第一绝缘层,其内填充了片状无机填料,和由有机绝缘材料制成的第二绝缘层,其内填充了粒状无机填料,并且片状无机填料叠积成分层状态。结果,虽然放电导致了绝缘层受损,但片状无机填料的填充大大阻止了由放电导致的恶化程度。由此,基片的抗放电性能得以改善,其寿命提高,而且由于填充的混合无机填料的不同特性,并不局限于片状无机填料的单一性能,从而可满足所需性能要求。
在本发明的金属基片和使用这种基片的电子组件中,绝缘部位包括填充有片状无机填料的有机绝缘材料,这些填料由多种不同种类的材料构成,并且这些片状无机填料叠积成分层状态。这样,虽然放电导致绝缘层退化,但由于填充了片状无机填料的区域存在,阻止了这种绝缘退化现象的进展。由此,基片的抗放电性能得以改善,寿命提高,并且由于填充的混合无机填料具有各异的性能,不局限于片状无机填料的单一性能,从而可满足所需性能要求。
在本发明的金属基片和使用该基片的电子组件中,绝缘部分包括多个绝缘层,这些绝缘层包括填充有片状无机填料的有机绝缘材料,这些填料各自由不同材料组成,并且这些片状无机填料叠积成分层状态。因而虽然放电导致了绝缘层的退化,但由于填充了片状无机填料的区域存在,阻止了放电引起的这种劣化的进展。因此,基片的抗放电性能得以改善,而且由于使用了混合无机填料,它们各异的性能取代了片状无机填料单一的性能,因而可满足所需的性能要求。
本发明的上述结合特定实施例的说明使本发明更完整和清晰,从属的权利要求是在这些实施结构基础上描述的,但本发明并不局限于这些所描述的结构,任何依据现有技术在基本技术教导下做出的改型和变化结构均未脱离本发明的基本原则。
权利要求
1.一种金属基片,包括一金属基座层;一电路导体层;和一绝缘层,位于所述电路导体层和所述基座层之间;所述绝缘层包括一种其内填充有片状无机填料的有机绝缘材料,所述片状无机填料以多叠层状态布置在所述绝缘层内。
2.电子组件,包括一金属基片,包括一金属基座层,一电路导体层,和一位于所述电路导体层和所述基底层之间的绝缘层;所述绝缘层包括填充有片状无机填料的有机绝缘材料,所述片状无机填料以多叠层状态布置在所述绝缘层内;和多个安装到所述电路导体层上的电力电路器件。
3.一种金属基片,包括一金属基座部分;一电路导体部分;和一位于所述电路导体和所述基座部分之间的绝缘部分;所述绝缘部分包括有机绝缘材料,其内填充有片状无机填料和粒状无机填料,所述片状无机填料以多层形式叠积在所述绝缘部分内。
4.根据权利要求3的金属基片,其中所述粒状无机填料与至少一层片状无机填料相混合。
5.一种金属基片,包括一金属基座部分;一电路导体部分;和一绝缘部分,位于所述电路导体部分和所述基座部分之间;所述绝缘部分包括由填充了片状无机填料的有机绝缘材料制成的第一绝缘层,和由填充了粒状无机填料的有机绝缘材料制成的第二绝缘层,所述片状无机填料以叠积和分层状态布置到所述绝缘部分内。
6.根据权利要求1所述的金属基片,其中所述片状无机材料包括片尺寸约为0.6mm的氧化铝。
7.一种金属基片,包括一金属基座部分;一电路导体部分;和一绝缘部分,位于所述电路导体部分和所述基座部分之间;所述绝缘部分包括多个绝缘层,每个绝缘层由填充有多个片状无机填料的有机绝缘材料构成,所述片状填料至少具有两种不同平均尺寸,这些片状无机填料以多层形式布置在所述绝缘部分内。
8.根据权利要求1所述的金属基片,其中所述片状无机材料叠积成大约20-30层。
9.一种金属基片,包括一金属基座部分;一电路导体部分;和一绝缘部分,位于所述电路导体部分和所述基座部分之间;所述绝缘部分包括一有机绝缘材料,其内填充有由多种不同的无机填料构成的片状无机填料,所述片状无机填料以多层形式布置在所述绝缘部分内。
10.根据权利要求9所述的金属基片,其中所述片状无机材料叠积成大约20-30层,并且这些片的表面尺寸大约为0.06mm,其厚度范围为0.002-0.003mm。
11.一种金属基片,包括一金属基座部分;一电路导体部分;和一绝缘部分,位于所述电路导体部分和所述基座部分之间;所述绝缘部分包括多个绝缘层,其中至少两个绝缘层由填充了片状无机填料的有机绝缘材料制成,这些片状填料分别由不同的材料组成,所述片状无机填料以多层的状态布置在所述绝缘部分内。
12.电子组件,包括一金属基片,包括一金属基座部分,一电路导体部分,和一位于所述电路导体部分和所述基座部分之间的绝缘部分;所述绝缘部分包括多个绝缘层,所述绝缘层中至少两个包括一填充片状无机填料的有机绝缘材料,这些片状填料由不同的原材料构成,所述片状无机填料以多层形式布置在所述绝缘部分内。
13.根据权利要求11的金属基片,其中所述片状无机材料叠积成总厚度为0.12mm左右的多层形式。
全文摘要
一金属基片包括一金属基座,一电路导体部分和位于该电路导体和金属基座之间的绝缘层,该绝缘层由有机绝缘材料构成,其内填充有片状无机填料,并且这些片状无机填料以分层形式叠积在该绝缘层内。
文档编号H05K1/05GK1106606SQ9411617
公开日1995年8月9日 申请日期1994年8月5日 优先权日1993年8月6日
发明者林悟 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1