化学汽相淀积稀土掺杂的半导体层的制作方法

文档序号:8020973阅读:390来源:国知局
专利名称:化学汽相淀积稀土掺杂的半导体层的制作方法
技术领域
本发明是申请号为93117079.6、发明名称为“化学汽相沉积过饱和稀土掺杂的半导体层”的发明专利申请的分案申请。
本发明涉及利用气相的硅烷或锗烷和稀土元素化合物,在衬底上生产稀土元素掺杂的外延半导体层的CVD方法。通过本方法,产生了单相、稀土元素过饱和的稀土元素掺杂半导体层。本方法可用于制造包括硅衬底和掺铒的外延硅薄膜的光电子器件。
近几年来,研究工作集中在实现硅光电子集成电路(OE-ICs)。可应用的领域将是芯片之间的互连、并行处理以及硅芯片上的集成光电子器件。而前面二项应用基本上需要在77K之上工作的光源和硅片上的探测器。但后一项应用要求光源在一定波长下工作,即约1.5μm,该波长处于光纤的吸收最小值处。
1983年Ennen等人〔Appl.phys.lett.,943(1993)〕曾指出半导体材料中稀土元素离子的位能适于发展光发射二极管和激光器。制作这些器件的最佳选择物之一是掺铒的硅。铒的1.54μm的发光在硅的带隙之下,因此在硅中可以构成光波导。这个性质令人振奋地提供了用硅制备光学器件和在用硅制备的电路中集成电学与光学器件的可能性。通过克服硅间接跃迁的局限性,可将硅的成熟制造技术术扩展到光通信领域。光通信中这个波长也变得极为重要,因为该波长相应于在光纤中传输最大,它也是IR-泵浦掺铒硅光放大器的输出波长。
铒的1.54μm发光是内部4f跃迁的结果。而5s和5p壳层屏蔽了来自第1级主晶核作用的Er3+的4f轨道,因此,发光与主材料完全独立无关。该光跃迁出现在Er3+(4f″)的自旋轨道能级4I13/2→4I15/2之间。因主晶核晶场的影响弱,在硅中作为一种杂质的铒可望在室温下出现荧光。
过去十年,已研究过了掺Er的硅的光致和电致发光、电特性和结构性质。然而,本发明之前,所有的掺Er硅都必须用硅块离子注入或MBE生长硅的低能离子注入来制作。注入后,样品要退火,既除去离子损伤又“激活”注入的铒。(对于可能形成Er杂质复合物来说,激活起到这些材料中的光学中心的作用)。在900℃退火温度下,得到的结果最好。可惜的是,900℃时,铒在硅中极限溶解度约为1.3×1018原子/cm3,而且退火结果形成ErSi2片晶,ErSi2在Er的浓度超过1.3×1018时从硅相中析出。
因硅外延层内稀土元素的浓度愈高便可提供效率和功率愈大的器件,所以,需要有一种方法,能在900℃下生产高于目前极限溶解度的掺入水平。
我们发现,通过避免高温退火而利用化学汽相淀积的非平衡性,可以制出超过掺杂剂平衡浓度的亚稳态的高掺杂材料。因而,采用超高真空化学汽相淀积(UHVCVD)法来淀积铒掺杂硅,掺铒浓度约为2×1019原子/cm3,比硅中铒的平衡固溶度高一个数量级。
本发明的目的是提供一种掺稀土元素的半导体层的方法。
本发明的在衬底上产生掺铒半导体层的方法,包括将选自锗烷、硅烷或其气相混合物的第1组分,和由气相铒的化合物组成的第2组分的混合物导入CVD室,并加热衬底,因而在衬底上形成淀积薄膜。该铒化合物在500℃时的蒸汽压大于10-6乇。在一个最佳实施例中,提供的氧原子源可以是外加的(例如NO)源,也可以是由稀土元素的自配合基体,从而,所得的硅或锗层含有铒与氧,此外还有半导体。当选择先质时,包括氧源,优选的先质是三(1,1,1,5,5,5-六氟-2,4-戊二酮(2-4pentanedionato)-O,O′)铒、三(2,4-戊二酮-O,O′)铒、三(1,1,1-三氟戊二酮-O,O′)铒、三(1,1,1-三氟-5,5-二甲基-2,4-己二酮-O,O′)铒,三(5,5-二甲基-2,4-己二酮-O,O′)铒、三(1-环丙基-4,4,4-三氟-1,3-丁二酮-O,O′)铒、三(2,2,6-三甲基-3,5-庚二酮-O,O′)铒、三(2,2,6-四甲基-3,5-庚二酮-O,O′)铒、三(1,1,1,5,5,6,6,7,7,7-十氟-2,4-庚二酮-O,O′)铒、三(2,2-二甲基-6,6,7,7,8,8,8-庚氟基-3,5-辛二酮)铒和三〔(2-苯基亚氨甲基)酚盐-O,N〕铒。当氧原子源为外加源时,例如氧化氮时,优选的先质是三(环戊二烯基)铒、三(五甲基环戊二烯基)铒、三(甲基环戊二烯基)铒、三(异丙基环戊二烯基)铒、双(环戊二烯基)铒卤化物、双(环戊二烯基)铒烷基物。
在一个具体的优选方法中,硅烷或锗烷是SiH4、GeH4,而铒化物则是三(1,1,1,5,5,5-六氟-2,4-戊二酮-O,O′)铒〔Er(HFAC)3〕,且该掺铒半导体层含有远大于1019原子/cm3的铒,还附加至少1018原子/cm3的氧。衬底要加热到450°至800℃,最好为约650℃,并将气压保持在1O至10-9乇。所供给的硅烷流量为1至100SGCM,当温度为650℃时,流量最好约为4SCCM。
另一方面,本发明涉及一种光学有源的外延薄膜,包括硅、约8×1018至约8×1019原子/cm3的铒,最好含有1017至1019原子/cm3的氧,所述的薄膜基本上无铒的硅化物析出。
另一方面,本发明涉及一种光电子器件,包括硅衬底及附着其上的外延硅薄膜。所述的薄膜含有约8×1018至约8×1019原子/cm3的铒,以及所述外延薄膜基本上无铒的硅化物析出。
还有一个方面,本发明涉及一种化学汽相淀积方法,用于在衬底上产生掺稀土元素的硅层,该衬底包括通过热分解硅烷和稀土元素化合物的气态先质混合物来淀积所述的层。按照本方法,掺稀土的硅层可以含有基本上为单相的稀土元素,其浓度高于该稀土元素以单相存在于硅中的平衡浓度。另外,优选的气态先质混合物另外还包括氧原子源,这可以是稀土化合物自身。该稀土化合物最好选自由六氟乙酰丙酮化物、乙酰丙酮化物、四甲基庚二酮化物、氟辛二酮化物组成的一组,而稀土元素选自由铒、铽和铕组成的一组。


图1是用于实施本发明的超高真空CVD装置的示意图。
图2是本发明器件的光致发光输出的IR光谱。
图1描绘了用于制造本发明薄膜的7.6cm直径的超高真空化学汽相淀积(UHVCVD)反应器。该反应器在设计上不同于Meyer-son等人叙述过的最早的UHVCVD反应器。其不同点在于泵和装载晶片都使用反应器的同一端。这种修改就允许将加热了的先质的储存器1安装在反应器的相对一端。该储存器用一不长的直径12.7mm的不锈钢管12与反应器端部凸缘相连接。反应器由石英玻璃和不锈钢构成,利用凸缘、阀门与密封件一起组成高真空设备。反应器用外电阻加热元件(管式炉4)加热。淀积前和淀积期间,反应器用带有二级油泵9的150L/sec涡轮分子泵8抽真空。装料锁气室也用一涡轮分子泵10抽空,以便防止泵油的沾污。该反应器的基本气压低于10-9乇,而该装料锁气室在10分钟内可自大气压获得低于10-6乇的气压。
根据本发明的方法,先质储存器1装着适量的稀土元素化合物并被抽空。在一个优选的实施例中,该稀土元素是铒,不过也可以用其它稀土元素,尤其是铽和铕。该稀土族元素包括元素57至71。这些稀土元素化合物要限制在必须能够在CVD能工作的温度和压力下供给CVD工艺所需的蒸汽。在实践意义上,这意味着稀土元素化合物在500℃下应表现出至少约10-6乇的蒸汽压。举例的化合物归入两个主要的类型(a)配位化合物,其稀土元素与氧、氮、硫或磷键合;以及(b)有机金属化合物,其稀土元素与碳键合。对配位化合物适合的配位基包括乙酰丙酮化物(2,4-戊二酮化物)和包括六氟乙酰丙酮化物的(HFAC,1,1,1,5,5,5-六氟-2,4-戊二酮化物)和三氟乙酰丙酮化物(TFAC,1,1,1-三氟-2,4-戊二酮化物)乙酰丙酮化物的衍生物;2,4-己二酮化物与2,4-己二酮化物的衍生物;2,4-与3,5-戊二酮化物及包括2,2,6,6-四甲基3,5-戊二酮化物(THD)、2,2,6-三甲基3,5-戊二酮化物以及1,1,1,5,5,6,6,7,7-十氟2,4-戊二酮化物的衍生物;2,2-二甲基-6,6,7,7,8,8,8-七氟-3,5-辛二酮化物(FOD);以及诸如苯胺和羟基苯甲醛的席夫碱(Schiff-base)型复合物,这些物质给出一种通过氮和氧键合的二齿配位体。有机金属化合物的例子包括三环戊二烯基铒(III)和环戊二烯基环的有机衍生物,其包括;三一四甲基环戊二烯基配位体、甲基环戊二烯基配位体,以及异丙基环戊二烯基配位体、双(环戊二烯基)铒的卤化物,以及双(环戊二烯基)铒的烷基化物,而其中烷基被定义为一至六个碳原子的直链或分枝的烃基。优选的配位体包括乙酰丙酮化物、HFAC、THD或FOD。
从文献发表的内容看来,除了铒之外还夹杂有氧(或许还有碳、氮和氟)导致光致发光的增强。由于这个原因,这就需要给CVD薄膜提供一种氧源。这点通过引入气体氧源,如氧化氮,或采用含氧的先质化合物,如前所述的配位体来实现。在两种情况下,当在衬底上热分解先质时,就可淀积出含有稀土原子和氧(或其他“杂质”原子)的薄膜。
将衬底装在石英片舟3上,放入装料锁气室2中再抽空到合适的气压,最好低于10-5乇。该衬底可以是能与CVD条件相容的任何材料;优先选用单晶硅片。一般来说,当衬底晶片按常规作过预先清洗时,就可生产出较好的薄膜。
向反应器通入制造半导体薄膜用的先质气体,该先质可以是任何硅烷或锗烷,或两者的混合物。这些先质在CVD条件下是挥发性的;使用硅烷(SiH4)、乙硅烷(Si2H6)、锗烷(GeH4)和乙锗烷(Ge2H6)较好。可以通入III族掺杂剂先质,如乙硼烷,或V族掺杂剂先质,如磷烷,以改变薄膜的电学特性。该半导体先质气体是经气体进气口11进入反应器的。
该反应器的温度保持在450℃至800℃。低于450℃时,没有明显的Si、Ge或Si/Ge的外延生长;如果温度接近900℃,则铒开始分凝。在将衬底推入反应器之前,装料锁气室2的气压最好低于10-5乇。
在用电磁耦合操纵器6移动衬底、经门阀5进入反应器室13之后,经加热使稀土先质汽化,从储存器1进入反应室。在图1所示的实施例中,通过围绕着储存器的外部恒温器7供热。使用Er(HFAC)3时,恒温器保持在58℃可获得最佳的汽化速率。调节先质储存器的温度,也就是调节在反应器中先质的分压,对工艺过程的成功是很重要的。用Er(HFAC)3时,温度低于55℃,没有铒混入。温度高于65℃时,薄膜由铒浓度为10至20%、厚为300到400A的多晶层构成。该层的厚度不会随淀积时间延长而增加,这表明该生长表面已受先质“抑制”。对这个观察结果的合理解释是,存在一个最低的生长速率,高于这个速率,来自先质的铒和其它元素可以掺入,而低这个速率,生长表面就被抑制。(在1毫乇气压下由硅烷生长纯硅的速率在550℃下为4埃/分,而在650℃下时为40埃/分)。作为工作状态调整实验条件的一部分,容易由经验确定所给定稀土化合物应选用的合适恒温器温度。通过将所关注的先质的蒸汽压在储存器中的气压与Er(HFAC)3在58°/1乇时的蒸汽压相比较,可以计算出适当的温度。
给该先质储存器装上1.0克无水的三(六氟乙酰丙酮-O,O′)铒(III)并抽空。把4片直径2.25英寸的硅片预先清洗并浸在10%的氢氟酸中直至表面变为疏水,而后立即放入反应器的装料锁气室中。开始通入硅烷(4SCCM)和氢(50SCCM),并且打开通向室温铒源的阀门。把装料锁气室抽气十分钟之后,将晶片送入反应器。3分钟后,停止通入氢气,而且在一小时的间隔内将反应器温度升到500℃至650℃。在反应器处于650℃时,将包围先质的恒温器温度升到58℃,直接使Er(HFAC)3蒸升进入反应器。给定的计算系统抽空速度为42升/秒,淀积时气压是1.5乇。在这些条件下,淀积速率约30埃/分,而淀积时间从3变至12小时。中断硅烷气流,再将晶片拉入装料锁气室冷却。
利用下述方法确定薄膜的组分由卢瑟夫背散射谱(RBS)确定铒的浓度,而用二次离子质谱(SIMS)确定出现在薄膜中的碳、氟和氧的含量。在上述(蒸发器温度(Te)=58℃,衬底温度(Ts)=650℃)条件下产生的薄膜具有均匀的铒浓度(2×1019原子/cm3),碳、氟与氧的含量约为4×1019原子/cm3。在测过的三个样品中,碳、氧和氟的含量都相等(在测量的误差范围内)。这些“杂质”都是先质分解造成的。
使用透射电子显微镜(TEM)对两个样品进行分析。样品1是在Si(100)上淀积的厚2.7μm的膜层(Te=60℃,Ts=650℃,Er浓度=8×1019原子/cm3)。电子衍射表明,该薄膜是外延的,但也显出了存在着很容易指出的第2相,如ErSi2。相应的电子图像还表明,该层的结晶质量很差。样品2是Te降低2℃所生长的厚2μm的薄膜,生长时间较长(11小时,而不是3小时)。该薄膜的剖面TEM测量没有出现任何凝析出的ErSi2。样品2的铒浓度为2×1019原子/cm3。这个浓度至少高出所报告的采用注入技术得到的最高浓度一个数量级。该剖面TEM测量还显示出一处高密度的线状缺陷。这些线状缺陷可能是由于铒(或铒复合物)引入薄膜所产生的应力造成的,不过,这些缺陷更象是由于先质的沾污造成的。在UHVCVD中所用的温度下,结晶的质量对碳和氧的存在很敏感,而SIMS的结果表明这些元素都以相当高的浓度存在着。另一个可能的污染源则是由淀积区上游的配位体分解所产生的多余的碳和氧。该Er(HFAC)3复合物在反应器低达300℃的部位分解,并且能不断放出少量有机物,这种有机物会污染原始的生长表面。TEM的结果对这个假设给予了支持,它显示出在开始生长界面处缺陷发生得很急剧,而且浓度最高。在这一点上,当与浓度受控的氧化剂气体一起使用时,对其它先质,特别是有机金属型,也许是优点。
本领域众所周知的方法可用来制造稀土元素化合物。前述实验中所用的Er(HFAC)3,可由Morris等人在“无机合成”,Vol.9,S.Y.Tyree,editor;McGraw Hill,New York,(1967)p.39叙述过的对已知的合成Al(HFAC)3的过程加以改变而制成。这种合成法是一个改进,优于Berg和Acosta〔Anal.Chim.Acta,40,101,(1968)〕所描述的在无水溶液条件下合成Er(HFAC)3的方法;从而避免中间合成Er(HFAC)3一水化物,该一水化物在能被用于CVD工艺之前,必须在真空下放在五氧化磷之上升高温度脱水。而新的合成法也明显地比文献所述的制造方法快和容易。文献的方法难以处理结晶体和油的混合物,需要多次再结晶,使每一步骤都有很大的产品损失。所有的操作都采用标准的Schlenk管和干燥箱技术在氮气下进行。
将4.11克(.015克分子)的脱水ErCl3放在100毫升的CCl4中,装入一200毫升的带有回流冷凝器、压力平衡滴液漏斗以及进气管的3颈烧瓶中。搅动悬浮液,加入9.57克的1,1,1,5,5,5六氟-2,4-戊二酮化物。几分钟后,该溶液从无色转变成淡红色并且放出HCl气体。接着添加配位体,分馏该溶液1小时。再将该热溶液抽吸过滤,并且经6小时冷却至-10℃。可以看到在烧瓶中形成淡红色的结晶。滤出该晶体,用冷CCl4洗涤,再在100℃,10-2乇下升华二次。就可获得7.9克(67%)纯净的Er(HFAC)3产品。
可以预料,上述合成法也可以用来以相同的方式制造其它稀土元素的其它复合物,只需要用相当的稀土三氯化物去替换ErCl3和用适当的配位体去替换HFAC。
对许多样品进行了光致发光测量。测量时,用工作在514nm的Ar离子激光器作激发光源,并和一Cygnrs FTIR来检测所发射的辐射。含Er浓度为2×1019原子/厘米3的2微米薄膜的典型光谱示于图2。这幅光谱在10K下获得,且随着温度的升高,发光很陡地衰落。在200K,该信号强度降低到原强度的50分之一,而在室温则不能测到。
虽然参照最佳实施例已经披露和具体地描述了本发明,但本领域的技术人员都知道,在不离开本发明的精神范围的条件下,可以进行形式上和细节方面的其它改变。
权利要求
1.一种在衬底上制作掺铒的半导体层的方法,其特征在于包括将选自由气相的锗烷、硅烷及其混合物组成的一组材料中的第1组分和由气相的铒化合物组成的第2组分的混合物导入用于在一衬底上形成淀积薄膜的薄膜形成室中,并加热所述衬底,其中,所述铒化合物的蒸汽压在500℃时大于10-6乇。
2.根据权利要求1的方法,其特征在于还包括下列步骤将氧原子源导入所述的薄膜形成室,从而所述的半导体层含有所述的半导体、铒和氧。
3.根据权利要求2的方法,其特征在于所述的氧原子源是所述的铒化合物。
4.根据权利要求3的方法,其特征在于所述的铒化合物选自由三(1,1,1,5,5,5-六氟-2,4-戊二桐-O,O’)铒、三(2,4-戊二酮-O,O’)铒、三(1,1,1,-三氟戊二酮-O,O’)铒、三(1,1,1-三氟-5,5-二甲基-2,4-己二酮-O,O’)铒、三(5,5-二甲基-2,4-己二酮-O,O’)铒、三(1-环丙基-4,4,4-三氟-1,3-丁二酮-O,O’)铒、三(2,2,6-三甲基-3,5-庚二酮-O,O’)铒、三(2,2,6,6-四甲基-3,5-庚二酮-O,O’)铒、三(1,1,1,5,5,6,6,7,7,7-十氟-2,4-庚二酮-O,O’)铒、三(2,2,-二甲基-6,6,7,7,7,8,8,8-庚氟基-3,5辛二酮)铒和三〔(2-苯基亚氨甲基)酚盐-O,N〕铒组成的一组材料。
5.根据权利要求4的方法,其特征在于所述的硅烷或锗烷是SiH4,而所述的铒化合物是三(1,1,1,5,5,5-六氟-2,4-戊二酮-O,O’)铒。
6.根据权利要求1的方法,其特征在于掺铒的半导体层含有多于1019原子/厘米3的铒。
7.根据权利要求6的方法,其特征在于掺铒的半导体层还含有至少1018原子/厘米3的氧。
8.根据权利要求1的方法,其特征在于所述的衬底被加热到450℃至800℃。
9.根据权利要求2的方法,其特征在于所述的氧原子源是第3气体组分。
10.根据权利要求9的方法,其特征在于所述的第3气体组分是氧化氮。
11.根据权利要求9的方法,其特征在于所述的铒化合物选自由三(环戊二烯基)铒、三(五甲基环戊二烯基)铒、三(甲基环戊二烯基)铒、三(异丙基环戊二烯基)铒、双(环戊二烯基)铒卤化物及双(环戊二烯基)铒烷基物组成的一组材料。
12.一种在衬底上制造掺铒硅层的方法,其特征在于包括(a)将硅衬底导入用于在衬底上形成淀积薄膜的薄膜形成室;(b)将流量为1至100SCCM的SiH4引入所述室;(c)将所述衬底保持在450°至800°;(d)将所述室的气压保持在10至10-9乇;以及(e)将气相的三(1,1,1,5,5,5-六氟-2,4-戊二酮)铒输入所述室,以使在所述衬底上形成薄膜。
13.根据权利要求12的方法,其特征在于所述的SiH4流量为4SCCM,所述衬底保持在约650℃,所述气压保持在约1.5毫乇,而所述三(1,1,1,5,5,5-六氟-2,4-戊二酮)铒的流量是通过加热三(1,1,1,5,5,5-六氟-2,4-戊二酮)铒到55°于65℃、在1.5毫乇下获得的。
14.一种在衬底上制造掺稀土元素的硅层的化学汽相淀积方法,其特征在于包括通过硅烷、锗烷或它们的混合物和一种稀土元素化合物的气态先质混合物的热分解来淀积所述的层。
15.根据权利要求14的方法,其特征在于所述的掺稀土元素的硅层包含基本上为单相的所述稀土元素,其浓度高于所述稀土元素在所述硅层中的单相平衡浓度。
16.根据权利要求14的方法,其特征在于所述掺稀土的半导体为光学有源的,且基本上无稀土元素的硅化物和锗化物析出。
17.根据权利要求14的方法,其特征在于所述的气态先质的混合物还包括氧原子源。
18.根据权利要求17的方法,其特征在于所氧原子源是所述稀土化合物。
19.根据权利要求18的方法,其特征在于稀土化合物选自由六氟乙酰丙酮化物、乙酰丙酮化物、四甲基庚二酮化物及氟辛二酮化物组成的一组材料。
20.根据权利要求19的方法,其特征在于所述的稀土元素选自由铒、铽和铕组成一的一组材料。
21.根据权利要求17的方法,其特征在于还包括下列步骤将碳原子源导入所述薄膜形成室,从而所述半导体层包括所述半导体、所述稀土元素、氧和碳。
22.根据权利要求17的方法,其特征在于还包括下列步骤将氟原子源导入所述薄膜形成室,从而所述半导体层包括所述半导体、所述稀土元素、氧和氟。
23.根据权利要求17的方法,其特征在于所述氧原子源为第3气体组分。
24.根据权利要求23的方法,其特征在于所述第3气体组分为氧化氮。
25.根据权利要求14的方法,其特征在于所述衬底被加热到450℃~800℃。
26.根据权利要求2的方法,其特征在于还包括下列步骤将碳原子源导入所述薄膜形成室,从而所述半导体层包括所述半导体、铒、氧和碳。
27.根据权利要求2的方法,其特征在于还包括下列步骤将氟原子源导入所述薄膜形成室,从而所述半导体层包括所述半导体、铒、氧和氟。
28.根据权利要求14的化学汽相淀积方法,其特征在于通过硅烷和一种稀土元素的气态先质混合物的热分解来淀积所述的层。
29.根据权利要求28的方法,其特征在于所述的掺稀土元素的硅层包含基本上为单相的所述稀土元素,其浓度高于所述稀土元素在硅中的单相平衡浓度。
30.根据权利要求28的方法,其特征在于所述气态先质混合物还包括一氧原子源。
31.根据权利要求30的方法,其特征在于所述氧原子源为所述稀土元素化合物。
32.根据权利要求31的方法,其特征在于所述稀土元素化合物选自六氟乙酰丙酮化物、乙酰丙酮化物、四甲基庚二酮化物、氟辛二酮化物组成的一组材料。
33.根据权利要求32的方法,其特征在于所述稀土元素选自铒、铽和铕组成的一组材料。
全文摘要
本发明公开了一种在衬底上制造掺稀土元素的外延半导体层的CVD方法。本方法采用气相的硅烷或锗烷与稀土元素化合物。通过本方法,制造出单相的掺过饱和稀土元素的半导体层。优选的稀土元素是铒,而用CVD淀积铒的较佳先质是铒的六氟乙酰丙酮化物、乙酰丙酮化物、四甲基庚二酮化物及氟辛二酮化物。本方法可用于制造包括硅衬底与掺铒外延硅薄膜的光电子器件。
文档编号C30B25/14GK1255735SQ9912348
公开日2000年6月7日 申请日期1999年11月9日 优先权日1992年8月31日
发明者大卫·B·彼迟 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1