一种多层铜/钛复合板及其制备方法

文档序号:10500944阅读:506来源:国知局
一种多层铜/钛复合板及其制备方法
【专利摘要】一种多层铜/钛复合板及其制备方法,多层铜/钛复合板由7~126层两种厚度相同的金属层构成,金属层为钛层或铜层,厚度为12~333μm,抗拉强度为355~395 MPa,屈服强度为295~325 MPa,延伸率为16~31%;制备方法为:将纯铜板和纯钛板轧制前处理;交叉叠放后进行一道次同步复合轧制,制成多层铜/钛复合板成品,或反复切割叠放轧制,相邻两次轧制之间进行退火。本发明的方法可获得双相组织均匀分布的高塑性多层铜/钛层状复合材料;对于迅速发展的微元器件、微机电系统、生物材料和核工业等高新技术领域的发展具有重要价值。
【专利说明】
一种多层铜/钛复合板及其制备方法
技术领域
[0001]本发明属于金属材料技术领域,特别涉及一种铜/钛多层复合板及其制备方法。
【背景技术】
[0002]由异种金属以较细尺度(微米、亚微米甚至纳米)单元层厚度交替叠加组成的金属层状复合体,由于其高强度/硬度、优异的抗辐照损伤等特性,目前在微元器件、微机电系统、生物材料和核工业等高新技术领域已得到广泛应用。这类材料在加工制备和随后的服役过程中常需承受大应变变形及循环载荷的作用,这对其抵抗塑性形变损伤的能力提出了很高要求,因此对层状金属复合材料的研究和开发成为材料领域关注的热点。对于包含低对称性密排六方结构(hep)金属的层状复合材料,由于其大量的层/层异质界面能够有效地吸收由核辐照引起的空位、间隙原子等缺陷,且hep金属自身具有密度低、比强度和比刚度高、导电导热性好和抗腐蚀等特点,近年来由钛、锆、镁与其它金属复合而成的六方系多层材料开始受到人们的瞩目。但是与晶体结构对称性高的面心立方(fee)和体心立方(bcc)金属相比,hep金属的室温塑性变形能力差,这在很大程度上制约了相关复合材料的开发和使用。因此,开展包含hep金属的金属层状复合体形变结构和服役行为的研究对六方系复合材料的设计与应用具有重要的意义。
[0003]目前制备层状金属复合材料的方法主要有磁控溅射、喷射沉积、爆炸焊和累积叠乳等。累积叠乳是通过连续乳制过程中的大压下量塑性变形实现不同板层的紧密焊合,该方法工艺简单、无空隙和界面污染,并可通过有效细化晶粒提高材料的机械强度,是当前工业化生产层状金属复合板最具优势的方法。然而,对经历了乳制变形的hep金属,由于其内部形成较强的{0001}基面织构,导致可开动的滑移系数量有限,这大大降低了由累积叠乳技术获得的金属板材继续均匀变形的能力。另一方面,就叠乳工艺而言,实现力学属性(主要指屈服强度和加工硬化能力)差异较大的两种金属的复合存在一定困难,当前累积叠乳技术仅被应用于同种金属的复合(如镁合金-镁合金)以及部分异种金属(如Al-Mn、Al-Mg、Al-Fe)之间的复合。目前,国内外学者在金属层状复合材料微观形变及其塑性变形能力方面已开展了广泛研究,但对包含有hep金属的层状复合体的研究相对有限。对由300 °C叠乳获得的AZ31镁合金板的研究表明,经3道次乳制复合,动态再结晶导致晶粒显著细化,材料的强度略有下降,但均匀延伸率从叠乳之前的14.2%提高至32.1% (詹美燕,李元元,陈维平,中国有色金属学报,Vol.17,pp.841-851, 2007)。对由400 °C叠乳3道次获得的Al-Mg层状复合板的研究则表明,叠乳变形过程中的织构演变和动态再结晶能够提高材料的强度,但由于板材内形成了较强的基面织构,塑性延伸率随着叠乳道次的增加从乳制前的8%急剧下降至2.2%(K.Wu, H.Chang, E.Maawad, W.M.Gan, H.G.Brokmeier, Μ.Y.Zheng, Materials Science & Engineering A,Vol.527, pp.3073-3078, 2010),一致的现象在对ME20镁合金复合板的研究中亦有报导(X.Li,T.Al-Samman,G.Gottstein,Materials Letter, vol.65, pp.1907-1910, 2011)。
[0004]然而,除镁和镁合金之外,对于再结晶温度较高的其它hep金属(如钛、锆)而言,难以在不降低材料强度的前提下通过使叠乳板材发生动态再结晶来维持其塑性。如前所述,织构的存在对六方金属的微观力学行为影响显著,比如通过异步乳制、反复叠乳等方式向纯镁引入剪切变形或添加微量稀土元素来弱化其基面织构都有助于提高其塑性成型性。那么,对由六方和立方结构金属组成的多层复合材料而言,异质界面处的应力状态对六方金属的塑性变形有何影响?立方金属优先开动的位错、孪晶和剪切带与异质界面之间如何协调应变?再者,形变机制的变化势必导致材料织构的演化,六方金属内的织构状态是否有利于改善其自身的塑性变形能力?在以往文献中,未见有关上述问题实验研究和理论解析的报道。但是,解答这些未解的疑问却是成功开发高强韧性六方系复合材料的关键。因此,通过研究六方金属与其它结构组元金属之间应变协调的特性,阐明微层状复合结构中异质界面对各金属形变和织构演化的效应,这对揭示材料的服役失效机理和设计具有最优综合力学性能的六方系复合材料具有十分重要的意义。

【发明内容】

[0005]针对现有技术存在的上述包含有密排六方金属的层状复合体塑性延伸率较低、制备和加工难等问题,本发明提供一种多层铜/钛复合板及其制备方法,通过合理的叠乳工艺控制及退火处理控制,使所制备的复合板组织均匀、致密稳定。
[0006]本发明的多层铜/钛复合板由7?126层两种厚度相同的金属层构成,金属层为钛层或铜层,每个金属层的厚度为12?333 wii,抗拉强度为355?395 MPa,屈服强度为295?325MPa,延伸率为16?31%。
[0007]上述的多层铜/钛复合板中,与任一钛层相邻的两个金属层中,其中的一个金属层为铜层;与任一铜层相邻的两个金属层中,其中的一个金属层为钛层。
[0008]上述的多层铜/钛复合板中,铜层按重量百分比含Cu2 99.9%,钛层按重量百分比含Ti>99.7%ο
[0009]本发明的多层铜/钛复合板的制备方法按以下步骤进行:
(1)准备面积相同且厚度相同的纯铜板和纯钛板,将纯铜板和纯钛板进行乳制前处理弱化金属的初始织构,乳制前处理步骤为:将纯铜板在200 ± I °(:真空退火,保温20?30min;将纯钛板在700±1 °(:真空退火,保温I?1.5 h;将退火保温后的纯铜板和纯钛板分别去除表面油污并去除氧化层;
(2)将乳制前处理后的纯铜板和纯钛板交叉叠放,形成多层板,多层板的层数为奇数;
(3)将多层板在300±1°C条件下进行一道次同步复合乳制,压下量为60?70%,制成初级复合板;初级复合板作为多层铜/钛复合板成品,或进行步骤(4);
(4)将初级复合板在500± I °C保温I?2 h进行去应力退火,随炉冷却至常温;然后切割成面积相同的2个或2个以上复合分板,再将各复合分板去除氧化层后叠放到一起,用铆钉铆合固定在一起,形成叠放复合板;
(5)将叠放复合板作为多层板,在300±I °C条件下进行一道次同步复合乳制,压下量为60?70%,制成次级复合板;
(6)将次级复合板作为多层铜/钛复合板成品,或重复步骤(4)和(5)1?2次,制成多层铜/钛复合板。
[0010]上述的纯铜板和纯钛板厚度为0.5?2mm。[0011 ] 上述的纯铜板的纯度? 99.9%,纯钛板的纯度? 99.7%。
[0012]上述方法中,步骤(3)和(5冲进行乳制时,乳辊的转速为0.5?I m/s。
[0013]上述方法中,步骤(I)中纯铜板和纯钛板进行真空退火时,真空度<3.5X10—3Pa。
[0014]上述方法中,步骤(I)中去除表面油污是采用丙酮清洗,去除表面氧化层是采用砂轮机打磨。
[0015]上述的铆钉为铝铆钉。
[0016]上述的用铆钉铆合固定在一起是指采用铆钉将两个复合分板的四个角部固定在一起。
[0017]本发明的工艺方法应用于批量制备铜/钛金属层状复合板,提高了复合板材整体的力学性能;首先对纯金属进行退火处理以削弱不利于塑性变形的织构组分,然后在一定温度和形变量下进行乳制复合,获得两相组织分布均匀,异质界面结合良好的铜/钛层状复合结构;通过此工艺处理,铜/钛多层复合板具有较高的强度和塑性。
[0018]选取纯铜和纯钛作为组元金属的原因是:铜的塑性变形能力好,导热性和导电性高,但强度低,耐腐蚀能力差;钛的强度和塑性好,耐蚀性强,但导电导热性弱;将两种金属复合,希望通过发挥各组元金属自身的优势,并借助异种金属在变形中相互协调应变的特点,使得材料整体在强度维持在较高水平的前提下,具备一定的均匀塑性变形能力。
[0019]与现有技术相比,本发明的特点和有益效果是:
1、是通过测定织构演化进行工艺设计;首先,通过预处理消除了钛层中不利于其塑性变形的基面织构;其次,采用一定温度下的复合乳制以确保在叠乳过程中钛层内不会产生较强的有害织构;最后,在每道次叠乳后对复合板材实施了中间退火,有助于消除材料内的应力集中并抑制复合结构中剪切带的产生;此外,对金属的结合面打磨采用了砂轮机而不是钢丝刷,有助于实现对高强度组元金属(钛)表面的均匀毛化处理,获得的铜/钛金属层状复合板由于其组织均匀,致密稳定,即使继续经历较大形变量的冷变形(拉伸甚至是乳制),铜/钛界面处仍保持结合良好,材料具有一定的均匀塑性变形的能力;还可根据需要改变铜和钛的叠放次序,当把钛置于复合板的最外层时,复合板材可提供优良的耐腐蚀能力,从而满足其在复杂环境中的使用需求;
2、利用传统的累积叠乳技术,结合适当的材料预处理和退火工艺,只需通过采用合理的热处理参数,即可获得双相组织均匀分布的高塑性多层铜/钛层状复合材料;此外,获得的复合结构在随后的服役过程中即便已出现显著的剪切带,铜层始终保持连续,这种连通结构决定了材料具有较好的导电导热能力;因此,该铜/钛复合材料对于迅速发展的微元器件、微机电系统、生物材料和核工业等高新技术领域的发展具有重要价值。
【附图说明】
[0020]图1为本发明实施例1中制备的各阶段产品的扫描电子显微镜照片图;图中,浅色为铜层,深色为钛层,RD:乳向,ND:乳板法向;图中(a)为乳制一次,(b)为乳制二次,(C)为乳制三次,(d)为乳制四次;
图2为本发明实施例1中原料及制备的各阶段产品在室温条件下单向拉伸的工程应力-工程应变曲线图;图中,▲:纯钛,▼:纯铜,■:乳制一次,?:乳制二次,.:乳制三次,★:乳制四次; 图3为本发明实施例1中原料及制备的各阶段产品在室温条件下单向拉伸的真应力-真应变曲线图;图中,▲:纯钛,▼:纯铜,■:乳制一次,?:乳制二次,.:乳制三次,★:乳制四次;
图4为本发明实施例1中各阶段产品中间厚度位置钛的织构取向分布函数(ODF)截面X射线衍射图;图中,(a)为乳制前处理后的钛,最大取向密度:6.822,(b)为乳制一次,最大取向密度:3.927,(c)为乳制二次,最大取向密度:4.772,(d)为乳制三次,最大取向密度:5.737;粗黑线表示{0001}基面织构在欧拉空间的理想取向位置;
图5为本发明实施例1中乳制一次的初级复合板经50%冷乳变形的扫描电子显微镜照片图;图中,浅色为铜层,深色为钛层,RD:乳向,ND:乳板法向,箭头所指位置表示钛层发生了“颈缩”;图中,(a)放大50倍,(b)放大150倍;
图6为本发明实施例1中乳制一次的初级复合板经500 °C退火后又经50%冷乳变形的扫描电子显微镜照片图;图中,浅色为铜层,深色为钛层,RD:乳向,ND:乳板法向;图中,(a)放大50倍,(b)放大150倍;
图7为本发明实施例1中乳制一次的初级复合板经800 0C退火后又经50%冷乳变形的扫描电子显微镜照片图;图中,浅色为铜层,深色为钛层,RD:乳向,ND:乳板法向,箭头所指位置表示界面处形成了CuTi金属间化合物;图中,(a)放大50倍,(b)放大150倍;
图8为本发明实施例1中的板材经未退火和退火处理后单向拉伸的工程应力-工程应变曲线图;图中,▲:未退火,_:500 °C退火,.:800 °C退火;
图9为本发明实施例1中的板材经未退火和退火处理后单向拉伸的真应力-真应变曲线图;图中,▲:未退火,_:500 °C退火,.:800 °C退火。
【具体实施方式】
[0021]本发明实施例中采用的纯铜板和纯钛板为市购产品。
[0022]本发明实施例中采用的乳机为400新型异步热乳实验乳机(东北大学RAL重点实验室自制的乳机),乳辊直径为0.4 m0
[0023]本发明实施例中米用的扫描电子显微镜型号为JEM-700 IF场发射扫描电子显微
Ho
[0024]本发明实施例中采用的X射线衍射设备型号为Rigaku-SmartLabX射线衍射仪。
[0025]本发明实施例中采用的取向分布函数计算软件为LaboTex3.0定量织构分析软件。
[0026]本发明实施例中获得的多层铜/钛复合板的最大取向密度为6.822。
[0027]本发明实施例中的铆钉为铝铆钉。
[0028]本发明实施例中去除表面油污是采用丙酮清洗,去除表面氧化层是采用砂轮机打磨。
[0029]本发明实施例中纯铜板和纯钛板进行真空退火时,真空度<3.5X10—3Pa。
[0030]本发明实施例中纯铜板的纯度? 99.9%,纯钛板的纯度? 99.7%ο
[0031]本发明实施例中进行乳制时,乳辊的转速为0.5?Im/s。
[0032]本发明的板材厚度是指平均厚度。
[0033]实施例1
(I)准备面积相同且厚度相同的纯铜板和纯钛板,将纯铜板和纯钛板进行乳制前处理弱化金属的初始织构,乳制前处理步骤为:将纯铜板在200 土 I °C真空退火,保温20 min;将纯钛板在700±1 °(:真空退火,保温I h;将退火保温后的纯铜板和纯钛板分别去除表面油污并去除氧化层;纯铜板和纯钛板厚度均为I mm;
(2)将乳制前处理后的4个纯铜板和3个纯钛板交叉叠放,形成多层板,多层板的层数为
7;
(3)将多层板在300±1°C条件下进行一道次同步复合乳制,压下量为65 %,制成初级复合板;
(4)将初级复合板在500± I °C保温I h进行去应力退火,随炉冷却至常温;然后切割成面积相同的2个复合分板,再将各复合分板去除氧化层后叠放到一起,为防止板材之间发生相对滑动,在叠放板材的四角位置钻孔,用铆钉铆合固定在一起,形成叠放复合板;
(5)将叠放复合板作为多层板,在300±I °C条件下进行一道次同步复合乳制,压下量为65%,制成次级复合板;
(6)重复去应力退火-切割步骤(4)和叠放-乳制步骤(5)2次,其中第一次重复步骤(4)时,切割成面积相同的3个复合分板,第二次重复步骤(4)时,切割成面积相同的3个复合分板;最终制成多层铜/钛复合板由126层的钛层和铜层两种金属层构成,每个金属层的厚度为12 μπι,抗拉强度为395 MPa,屈服强度为325 MPa,延伸率为16%;初级复合板的抗拉强度为355 MPa,屈服强度为295 MPa,延伸率为31%;铜层按重量百分比含Cu > 99.9%,钛层按重量百分比含Ti 2 99.7%;
各阶段产品的扫描电子显微镜照片如图1所示,原料及各阶段产品的单向拉伸的工程应力-工程应变曲线如图2所示,真应力-真应变曲线如图3所示,原料纯钛板及各阶段产品中间厚度位置钛的织构取向分布函数(ODF)截面X射线衍射图如图4所示;随后对初级复合板材进行了不同温度的退火处理和室温下累积形变量为50%的乳制变形,未经退火处理的初级复合板经50%冷乳后的扫描电子显微镜照片如图5所示,初级复合板经500°C退火后又经50%冷乳变形的扫描电子显微镜照片如图6所示,初级复合板经800°C退火后又经50%冷乳变形的扫描电子显微镜照片如图7所示;由图可见,即使经历了500 °C和800 °C退火复合板仍呈现较大的延伸率和一定的加工硬化,即具有稳定的塑性变形能力;未退火、500 °C和800 °C退火处理后的复合板均未出现开裂的现象,各板材呈现良好的延展性;由三种复合板在50%冷乳变形后的微观形貌可知,各材料均呈现良好的界面结合,未退火和500 °C退火样品中的铜/钛异质界面清晰。在800 °C退火处理的复合板中可见异质界面处产生了较多的CuTi金属间化合物;但是与未退火样品不同,退火样品中未见明显的钛层“颈缩”,异质界面仍大体保持平直,这表明冷乳过程中各金属层能够均匀地沿着乳板法向减薄并沿着乳向延伸,从而维持了复合板整体的强度和延伸率;室温条件下,乳制一次的初级复合板经未退火和退火处理后单向拉伸的工程应力-工程应变曲线如图8所示,真应力-真应变曲线如图9所示;真应力-真应变曲线中塑性变形阶段应力随着应变的增加而持续上升,表明各复合板均具有一定的加工硬化能力。
[0034]实施例2
方法同实施例1,不同点在于:
(1)纯铜板真空退火时间25min;将纯钛板真空退火时间1.2 h;
(2)去应力退火时间1.5h;切割成面积相同的2个复合分板; (3)将次级复合板重复去应力退火-切割步骤和叠放-乳制步骤I次,重复去应力退火-切割步骤时,切割成面积相同的3个复合分板,制成多层铜/钛复合板;
(4)多层铜/钛复合板由42层的钛层和铜层两种金属层构成,每个金属层的厚度为37μm,抗拉强度为380 MPa,屈服强度为305 MPa,延伸率为25%。
[0035]实施例3
方法同实施例1,不同点在于:
(1)纯铜板真空退火时间30min;将纯钛板真空退火时间1.5 h;
(2)去应力退火时间2h;切割成面积相同的2个复合分板;
(3)将次级复合板作为多层铜/钛复合板成品;
(4)多层铜/钛复合板由14层的钛层和铜层两种金属层构成,每个金属层的厚度为111μπι,抗拉强度为365 MPa,屈服强度为306 MPa,延伸率为25%。
[0036]实施例4
方法同实施例1,不同点在于:
(1)纯铜板真空退火时间30min;将纯钛板真空退火时间1.5 h;
(2)初级复合板作为多层铜/钛复合板成品;
(3)多层铜/钛复合板由7层的钛层和铜层两种金属层构成,每个金属层的厚度为333μm,抗拉强度为355MPa,屈服强度为295 MPa,延伸率为31%。
[0037]实施例5
方法同实施例1,不同点在于:
(1)纯铜板和纯钛板厚度为2mm;
(2)纯铜板真空退火时间25min;将纯钛板真空退火时间1.5 h;
(3)I个纯铜板和2个纯钛板交叉叠放,多层板的层数为3;
(4)制成初级复合板压下量为70%;
(5)去应力退火时间1.5h;然后切割成面积相同的2个复合分板;
(6)制成次级复合板压下量为70%;
(7)将次级复合板重复去应力退火-切割步骤和叠放-乳制步骤2次,制成多层铜/钛复合板;
(8)多层铜/钛复合板由24层的钛层和铜层两种金属层构成,每个金属层的厚度为16μm,抗拉强度为383MPa,屈服强度为312 MPa,延伸率为18%。
[0038]实施例6
方法同实施例1,不同点在于:
(1)纯铜板和纯钛板厚度为0.5mm;
(2)纯铜板真空退火时间30min;将纯钛板真空退火时间1.2 h;
(3)3个纯铜板和2个纯钛板交叉叠放,多层板的层数为5;
(4)制成初级复合板压下量为60%;
(5)去应力退火时间2h;然后切割成面积相同的3个复合分板;
(6 )制成次级复合板压下量为60%;
(7)将次级复合板重复去应力退火-切割步骤和叠放-乳制步骤I次,制成多层铜/钛复合板; (8)多层铜/钛复合板由45层的钛层和铜层两种金属层构成,每个金属层的厚度为32 μm,抗拉强度为385 MPa,屈服强度为313MPa,延伸率为22%。
[0039]实施例7
方法同实施例1,不同点在于:
(1)纯铜板和纯钛板厚度为0.5mm;
(2)纯铜板真空退火时间25min;将纯钛板真空退火时间1.2 h;
(3)4个纯铜板和5个纯钛板交叉叠放,多层板的层数为9;
(4)制成初级复合板压下量为67%;
(5)去应力退火时间1.5h;然后切割成面积相同的2个复合分板;
(6)制成次级复合板压下量为67%;
(7)将次级复合板重复去应力退火-切割步骤和叠放-乳制步骤I次,制成多层铜/钛复合板;
(8)多层铜/钛复合板由36层的钛层和铜层两种金属层构成,每个金属层的厚度为18μm,抗拉强度为378 MPa,屈服强度为310 MPa,延伸率为22%。
[0040]实施例8
方法同实施例1,不同点在于:
(1)纯铜板和纯钛板厚度为0.8mm;
(2)纯铜板真空退火时间25min;将纯钛板真空退火时间1.5 h;
(3)6个纯铜板和5个纯钛板交叉叠放,多层板的层数为11;
(4)制成初级复合板压下量为70%;初级复合板作为多层铜/钛复合板成品
(5)多层铜/钛复合板由11层的钛层和铜层两种金属层构成,每个金属层的厚度为240μπι,抗拉强度为360 MPa,屈服强度为296 MPa,延伸率为30%。
[0041 ] 实施例9
方法同实施例1,不同点在于:
(1)纯铜板和纯钛板厚度为1.5mm;
(2)纯铜板真空退火时间25min;将纯钛板真空退火时间1.5 h;
(3)5个纯铜板和4个纯钛板交叉叠放,多层板的层数为9;
(4)制成初级复合板压下量为70%;
(5)去应力退火时间2h;然后切割成面积相同的2个复合分板;
(6 )制成次级复合板压下量为60%;
(7)将次级复合板作为多层铜/钛复合板成品;
(8)多层铜/钛复合板由18层的钛层和铜层两种金属层构成,每个金属层的厚度为180μπι,抗拉强度为371 MPa,屈服强度为311 MPa,延伸率为28%。
【主权项】
1.一种多层铜/钛复合板,其特征在于由7?126层两种厚度相同的金属层构成,金属层为钛层或铜层,每个金属层的厚度为12?333 Mi,抗拉强度为355?395 MPa,屈服强度为295?325 MPa,延伸率为16?31%。2.根据权利要求1所述的一种多层铜/钛复合板,其特征在于多层铜/钛复合板中,与任一钛层相邻的两个金属层中,其中的一个金属层为铜层;与任一铜层相邻的两个金属层中,其中的一个金属层为钛层。3.根据权利要求1所述的一种多层铜/钛复合板,其特征在于多层铜/钛复合板中,铜层按重量百分比含Cu 2 99.9%,钛层按重量百分比含Ti > 99.7%ο4.一种权利要求1所述的多层铜/钛复合板的制备方法,其特征在于按以下步骤进行: (1)准备面积相同且厚度相同的纯铜板和纯钛板,将纯铜板和纯钛板进行乳制前处理弱化金属的初始织构,乳制前处理步骤为:将纯铜板在200 土 I °(1;真空退火,保温20?30 min ;将纯钛板在700±1 °(:真空退火,保温1~1.5 h;将退火保温后的纯铜板和纯钛板分别去除表面油污并去除氧化层; (2)将乳制前处理后的纯铜板和纯钛板交叉叠放,形成多层板,多层板的层数为奇数; (3)将多层板在300±1°C条件下进行一道次同步复合乳制,压下量为60?70%,制成初级复合板;初级复合板作为多层铜/钛复合板成品,或进行步骤(4); (4)将初级复合板在500±TC保温I?2h进行去应力退火,随炉冷却至常温;然后切割成面积相同的2个或2个以上复合分板,再将各复合分板去除氧化层后叠放到一起,用铆钉铆合固定在一起,形成叠放复合板; (5)将叠放复合板作为多层板,在300±1°C条件下进行一道次同步复合乳制,压下量为60?70%,制成次级复合板; (6)将次级复合板作为多层铜/钛复合板成品,或重复步骤(4)和(5)1?2次,制成多层铜/钛复合板。5.根据权利要求4所述的多层铜/钛复合板的制备方法,其特征在于所述的纯铜板和纯钛板厚度为0.5?2mm。6.根据权利要求4所述的多层铜/钛复合板的制备方法,其特征在于所述的纯铜板的纯度2 99.9%,纯钛板的纯度> 99.7%ο7.根据权利要求4所述的多层铜/钛复合板的制备方法,其特征在于步骤(3)和(5)中进行乳制时,乳辊的转速为0.5?lm/s。8.根据权利要求4所述的多层铜/钛复合板的制备方法,其特征在于步骤(I)中纯铜板和纯钛板进行真空退火时,真空度< 3.5 X 10—3 Pa。
【文档编号】C21D9/46GK105856727SQ201610242299
【公开日】2016年8月17日
【申请日】2016年4月19日
【发明人】贾楠, 周晓欢, 姜爽, 张辉, 郑毅然, 赵骧
【申请人】东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1