1)generalized linear models广义线性模型
1.Classification ratemaking based on generalized linear models基于广义线性模型的分类费率厘定方法
2.The estimation of semiparametric and generalized linear models(SGMLs) was considered,an efficient estimation was given based on the proposed moment-type estimation,with its asymptotic behavior investigated.考虑了半参数广义线性模型的估计问题。
3.An estimation algorithm of coefficient to select variables for L1 regularized generalized linear models was introduced.介绍了L1规划广义线性模型(GLM)的一种系数估计法,估计系数的同时进行变量选择,从而确立模型。
英文短句/例句
1.Generalized linear models based on the Matlab;基于Matlab的广义线性模型建模
2.Asymptotic Properties of LS-SCAD Estimators in Generalized Linear Models广义线性模型中LS-SCAD估计的渐近性质
3.Some Studies on the Semiparametric Generalized Linear Model;半参数广义线性模型若干问题的研究
4.An Application of Generalized Linear Model to Automotor Insurance Pricing;广义线性模型在汽车保险定价的应用
5.Variable Selection in Joint Generalized Linear Models联合广义线性模型中的变量选择(英文)
6.Study on the parameters estimation of generalized linear model under the linear restriction;广义线性模型在线性约束下的参数估计
7.Applications of Generalized Linear models in No-life Insurance and Properties;广义线性模型的性质及其在非寿险中的应用
8.Weak Consistency of Quasi-Maximum Likelihood Estimates in Generalized Linear Models广义线性模型中拟似然估计的弱相合性
9.Large-Sample Theory of the Maximum Likelihood Estimate in Generalized Linear Models;广义线性模型极大似然估计的大样本理论
10.Application of Generalized Linear Models in New-Drug Clinical Trial;广义线性模型在新药临床试验中的应用
11.Mixed-type Data Monitoring Using Generalized Linear Model-Adjusted Scheme;基于广义线性模型的混合数据监控方案
12.To Predict Reserve for Outstanding Losses of Non-Life Insurance by Using Dual Generalized Liner Models;用双广义线性模型预测非寿险未决赔款准备金
13.Broad Linear Model of a Set of Semi-parameters and Its Fitting;一类半参数可变系数广义线性模型及其拟合
14.Robust Estimate for Generalized Linear Models and Its Application in Medical Feilds广义线性模型的稳健估计及其医学应用
15.The Method of Reserve-estimating Based on Bayesian General Linear Model基于贝叶斯广义线性模型的准备金估计方法
16.Parameter Maximum Likelihood Estimations from Incomplete Data in Generalized Linear Models不完全数据广义线性模型参数的极大似然估计
17.Ridge Estimate on Moore-Penrose Inverse Matrix of Generalized Linear Regression Model广义线性回归模型的Moore-Penrose逆阵岭估计
18.GMM Estimation and Asymptotic Property of a Nonlinear Parameter Model一类非线性参数模型的广义矩估计法
相关短句/例句
Generalized linear model广义线性模型
1.Asymptotics of maximum quasi-likelihood estimates in generalized linear models with adaptive designs;自适应设计广义线性模型极大拟似然估计的渐近性
2.Variable selection in generalized linear model;广义线性模型中的变量选择
3.Study on the parameters estimation of generalized linear model under the linear restriction;广义线性模型在线性约束下的参数估计
3)general linear model广义线性模型
1.Methods EM algorithm was employed to solve the maximum likelihood estimation (MLE) of parameters of general linear model (GLM) based on Gamma distribution with interval data,then univariate and multivariate anal yses were applied to explore factors that infl.方法 采用EM算法求解基于含区间数据Gamma分布的广义线性模型(GLM)参数的极大似然估计(MLE)。
2.Statistical parametric mapping (SPM) depends on the general linear model(GLM) and the theory of Gaussian fields to some extent.统计参数映射在某种程度上依赖于广义线性模型和高斯场理论。
3.The discussion,shows that the new relative efficiency is very useful in case where we combine general linear model with principal analysis and canonical correla.定义了广义线性模型中参数的最小二乘估计(LSE)与最佳线性无偏估计(BLUE)的一种新的相对效率,这种相对效率定义为参数估计量的协方差阵的最大相对特征根之比。
4)GLM广义线性模型
1.GLM(generalized linear models) was employed to fit Shannon-Wiener indexes of arbor,shrub and herbaceous layers and the overall Shannon-Wiener index of the communities in the forest vegetations of Hungou of Zhongtiaoshan Mountain with environmental factors and SΦrenson index was used to examine species similarities of neighboring communities types along the altitude.借助广义线性模型(generalized linear models,GLM),拟合了混沟森林植被乔、灌、草各层及群落总体的Shannon-Wiener指数与环境因子间的关系,并通过SΦrenson指数研究了海拔梯度上相邻森林群落类型物种组成的相似性,结果显示:(1)土壤pH值和海拔高度是对物种Shannon-Wiener指数影响最广泛的环境因子,湿度指数对混沟地区物种多样性影响不大。
2.Aiming at preventing from ill conditional problem in the iterative process of parameter estimation for generalized linear modeling (GLM), two ways are given in this paper.利用Lagrange乘子方法解决了广义线性模型(GLM)的约束估计问题,并由此引出了广义线性模型的病态问题。
5)generalized nonlinear models广义非线性模型
6)gen-eralized partly linear model广义半线性模型
延伸阅读
多元线性回归模型分子式:CAS号:性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。