C-均值,C-means
1)C-meansC-均值
1.Inspired by the clone selection principle and memory mechanism of the vertebrate immune system, a hybrid algorithm combining C-means algorithm and artificial immune algorithm is presented.通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法。
2.The method based clustering algorithm of Self Organized Map (SOM) and C-means which is for the sele随后针对负荷预测的地域特性,对长沙地区的负荷特性进行了深入分析,确定了影响该地区负荷变化的主要因素;针对历史数据噪声问题,首次提出了利用SOM和C-均值聚类组合算法来选择相似日,构造相似日训练样本并利用SVM模型进行预测的新方法;针对SVM方法,通过对不同SVM参数的预测结果对比,确定了最优的训练参数。
英文短句/例句

1.Design of dual fuzzy C-means classifier;模糊C-均值算法分类器设计的改进
2.The Application of Fuzzy C-Means Algorithm in Carpool System模糊C-均值算法在拼车系统中的应用
3.Non-local denoising fast fuzzy C-means clustering algorithm非局部降噪快速模糊C-均值聚类算法
4.C-Means clustering based on immune genetic algorithm基于免疫遗传算法的模糊C-均值聚类
5.Optimized initial centers for fuzzy C-means algorithm优化初始中心的模糊C-均值(FCM)算法
6.Research on the Application of Fuzzy C-means Algorithm in Intrusion Detection System;模糊C-均值算法在入侵检测系统中的应用研究
7.The Improved Fuzzy C-Means Clustering for Noisy Image Segmentation;改进的模糊C-均值聚类对噪声图像的分割
8.Generating T-S Fuzzy System Based on Modified FCM;基于改进的模糊C-均值聚类建立T-S模糊系统
9.Fuzzy C-Means Algorithm and Its Application in Image Segmentation模糊C-均值聚类算法及其在图像分割中的应用
10.Grouping Method Based on Fuzzy C-mean Clustering in PE Teaching;基于模糊C均值聚类的体育教学分组
11.Anomaly Network Traffic Detection Model Based on Fuzzy C-Means Clustering Algorithm基于模糊C均值的异常流量检测模型
12.Flame Detection Method Based on Fuzzy C-Means Clustering(FCM)基于模糊C均值聚类的火焰检测算法
13.Mean-Shift tracking algorithm based on FCM基于模糊C均值的Mean-Shift目标跟踪算法
14.Fast fuzzy C-Means clustering for image segmentation快速模糊C均值聚类的图像分割方法
15.ON THE C-I AVERAGE CONVERGENCE FOR SEQUENCE OF FUZZY VALUED FUNCTIONS关于模糊值函数序列的C-I平均收敛
16.Key Frames Extraction Based on Simu-FCM Clustering类模糊C均值聚类的关键帧提取算法
17.Realization of Fuzzy C-Means Based on Visual Basic and MatrixVB基于VB与MatrixVB的模糊C均值方法实现
18.Diagnosis of Green Brand Based on Unascertained C-Means;基于未确知C均值聚类的绿色品牌诊断研究
相关短句/例句

C-means algorithmC均值法
1.Improved initial classes partition method of C-means algorithm;一种改进的C均值法初始类划分方法
2.After the analysis of two main factors on the effect of C-means algorithm,based on the density about selecting initial cluster centre and initial allocation,a new method to improve the way of division initial allocation was proposed.在分析影响C均值法聚类效果的两个主要因素的基础上,将紧致性的概念与基于密度的初始聚类中心的选取方法和类的初始划分方法相结合,提出了一种改进划分初始类的方法。
3)Inverse C-mean逆C均值
1.An Inverse C-mean Method for Filtering the learning Samples;逆C均值学习样本筛选方法
4)Hard C-mean硬C-均值
5)C-meansC均值
1.A C-means Algorithm Based on Data Field基于数据场的C均值聚类方法研究
2.Adaptive Hard C-means Algorithm with Effectiveness Factors一种含影响力因子的自适应C均值算法
6)C-mean clusteringC-均值聚类
延伸阅读

均值不等式几个重要不等式(一)一、平均值不等式设a1,a2,…, an是n个正实数,则,当且仅当a1=a2=…=an时取等号1.二维平均值不等式的变形(1)对实数a,b有a2+b2³2ab          (2)对正实数a,b有(3)对b>0,有,   (4)对ab2>0有,(5)对实数a,b有a(a-b)³b(a-b)                (6)对a>0,有(7) 对a>0,有                   (8)对实数a,b有a2³2ab-b2(9) 对实数a,b及l¹0,有二、例题选讲例1.证明柯西不等式证明:法一、若或命题显然成立,对¹0且¹0,取代入(9)得有两边平方得法二、,即二次式不等式恒成立则判别式例2.已知a>0,b>0,c>0,abc=1,试证明:(1)(2)证明:(1)左=[]=³(2)由知同理:相加得:左³例3.求证:证明:法一、取,有a1(a1-b)³b(a1-b), a2(a2-b)³b(a2-b),…, an(an-b)³b(an-b)相加得(a12+ a22+…+ an2)-( a1+ a2+…+ an)b³b[(a1+ a2+…+ an)-nb]³0所以法二、由柯西不等式得: (a1+ a2+…+ an)2=((a1×1+ a2×1+…+ an×1)2£(a12+ a22+…+ an2)(12+12+…+12)=(a12+ a22+…+ an2)n,所以原不等式成立例4.已知a1, a2,…,an是正实数,且a1+ a2+…+ an<1,证明:证明:设1-(a1+ a2+…+ an)=an+1>0,则原不等式即nn+1a1a2…an+1£(1-a1)(1-a2)…(1-an)1-a1=a2+a3+…+an+1³n1-a2=a1+a3+…+an+1³n…………………………………………1-an+1=a1+a1+…+an³n相乘得(1-a1)(1-a2)…(1-an)³nn+1例5.对于正整数n,求证:证明:法一、>法二、左==例6.已知a1,a2,a3,…,an为正数,且,求证:(1)(2)证明:(1)相乘左边³=(n2+1)n证明(2)左边= -n+2(= -n+2×[(2-a1)+(2-a2)+…+(2-an)](³ -n+2×n