Leslie矩阵,Leslie matrix
1)Leslie matrixLeslie矩阵
1.The Vary in Distance Leslie Matrix and the Application in the Population of Giant Pandas in Tang jiahe Region;不等距Leslie矩阵及其对唐家河地区大熊猫种群动态的应用
2.The spatial distributed models with age-constructed metapopulation dynamics are established by applying Leslie matrix and Markov chain.运用Leslie矩阵和Markov链建立了一个具年龄结构的集合种群随时间动态变化的空间分布模型,给出了集 合种群持续存在以及灭绝的条件。
3.Based on the LESLIE Matrix as the dynamic function, we built up the mathematical model of the china population development since the adoption of “Family Planning Policy”.以LESLIE矩阵构建人口的动力学方程 ,建立了 2 0世纪 80年代以来中国人口的数学模型 ,并用人口普查的数据验证了该模型的有效性及所含假设的合理性。
2)matrix (matrixes or matrices)矩阵;矩阵
3)Matrix[英]['me?tr?ks][美]['metr?ks]矩阵
1.Matrix Expression of Mine Ventilation Network Graph and Its Computer Method Based on MATLAB;基于MATLAB的矿井通风网络图的矩阵表示及电算方法
2.The study of enterprise work safety responsibility matrix;企业安全生产责任矩阵研究
3.Symmetry and matrix representation of octagonal point groups in quasicrystal;准晶体中八方晶系点群的对称性与矩阵表示
英文短句/例句

1.The square matrix is called a diagonal matrix.该方矩阵称为对角矩阵
2.The matrix is defined as the reciprocal of A.该矩阵定义为A之逆矩阵
3.If A is the mxn matrix, then the nxm matrix is called the transpose of A.如果A是mxn矩阵,那么nxm矩阵为A的转置矩阵
4.Some Common Properties Among Invertible Matrix,Adjoint Matrix and Inverse Matrix可逆矩阵及其伴随矩阵、逆矩阵的一些共同特性
5.block multiplication of matrices矩阵的分块乘法;矩阵的分块乘法;矩阵分块乘法;矩阵分块乘法
6.Inverse Matrix of Triple-diaganal Symmetry Toeplitz Matrix;Toeplitz矩阵逆阵的一种解法
7.Another matrix associated with G is the adjacency matrix.伴随于G的另一个矩阵是邻接矩阵
8.transform a matrix to a diagonal matrix.把一个对角矩阵转化成对角矩阵
9.The Inverse Eigenvalue Problems for Jacobi and Periodic Jacobi Matrices;Jacobi矩阵及周期Jacobi矩阵特征值反问题
10.Constructing Disjunct (Separable) Matrices and Studying the Properties;disjunct矩阵和separable矩阵的构作及性质
11.A Calculation Method for Generalized Inverse Matrix of Rectangular Matrix;长方形矩阵的广义逆矩阵的计算方法
12.Idempotent - Hermite Matrix and Decomposition of Matrices;幂等的Hemite矩阵矩阵的分解
13.An Elementary Transformation Method for Computing the Generalized Inverse of Matrix;求λ-矩阵广义逆矩阵的初等变换法
14.The Reduction about Polynomial Bezout Matrix and the Inverse of Vandermonde Matrix;多项式Bezout矩阵的约化与Vandermonde矩阵的逆
15.The Inverse Matrices of Arithmetical Hankel Matrices;等差序列构成的Hankel矩阵的逆矩阵
16.Calculating Inverse Matrix of Partitioned Matrix with Generized Elementary Transformation;用“广义初等变换”求分块矩阵的逆矩阵
17.Generalized Inverse Matrices and Properties of Kronecker Product of Matrices over;有限域F_q上矩阵的广义逆及矩阵Kronecker积
18.Conclusions of matrix order by using lump matrix;利用分块矩阵讨论矩阵秩的几个结论
相关短句/例句

matrix (matrixes or matrices)矩阵;矩阵
3)Matrix[英]['me?tr?ks][美]['metr?ks]矩阵
1.Matrix Expression of Mine Ventilation Network Graph and Its Computer Method Based on MATLAB;基于MATLAB的矿井通风网络图的矩阵表示及电算方法
2.The study of enterprise work safety responsibility matrix;企业安全生产责任矩阵研究
3.Symmetry and matrix representation of octagonal point groups in quasicrystal;准晶体中八方晶系点群的对称性与矩阵表示
4)Matrices[英]['meitrisi:z][美]['metr?,siz, 'm?tr?-]矩阵
1.Algebraic structure and properties of generalized Pascal matrices;广义Pascal矩阵代数结构及性质
2.Transforming matrices in point engagement worm transmission;点啮合蜗杆传动中的变换矩阵
5)matrice矩阵
1.The set of real matrices with the same sign pattern as A is called the qualitative class of A,denoted as Q (A).这实际上也解决了ShaoJia yu和HwangSuk geun提出的关于nearlyL 可开拓阵问题中所给矩阵为方阵的一个重要特殊情
2.The polarization scattering matrices for the fields scattered by the spherical bodywith complete polarization plane wave illuminating on them are presented using analytic meth-od.应用解析方法给出了球体在完全极化平面波照射下散射场的极化散射矩阵表示式,通过极化比分析了球体散射场的极化特性。
3.According to the definition and general theories of positive semi-definited matrices,we introduce the theory of partial ordering in positive definited(positive semi-definited) matrices,that is positive definited(positive semi-definite) matrices;We discuss some important properties which we called matrix inequalities, and put the average value inequalities extended on the matrices.通过运用正定矩阵的定义和一般理论,得出了正定(半正定)矩阵的偏序理论,即A-B是正定(半正定)矩阵的一些重要性质,得出了一些矩阵不等式;并将代数中的均值不等式推广到矩阵形式的不等式,并将其推广。
6)matrix A矩阵A
1.Any matrix A is always similar to a corresponding Jordan standard.任何一个矩阵A总是相似一个与其相应的若当(Jordan)标准型,就若当标准型的过渡矩阵T的求法进行了探讨,得出一种常用方法。
延伸阅读

Cartan矩阵Cartan矩阵Cartan matrix 当它的Cartan矩阵是不可分解的:xndecom拼巧able),即在指标的某些置换后,不可能表为对角块矩阵. 令g=q、十十q。是g分解为单子代数的直和,A,是单I一ie代数g的C盯tan矩阵·则对角块矩阵 {…一{一:……是9的Cartan笼,阵.(对单Lze代数的Cartan矩阵的具体形式,见半单lje代数(Lie al罗bra,semi一slmple).) Cartan矩阵的分量“。二2恤等)/(“r·咐有下列性质: 拭.2:“‘()a,、Z,对,势了 以0二冷u/二11Cartan矩阵与用’‘三成元和关系来kjJ画q密切侧关即g中存在线性无关的生成兀e‘,厂、八,(i=飞、·…:)(称为典范生成元(以n、,,11以l罗nerators。),满足下歹,1关系: 卜,_用/氏h;I气州二“叮(2) }h,厂一“/」,lh‘寿}二以任意两个典范生成儿组可由q的自同构互相变换.典范产仁成元还满足关系 (ad引“’价二。,扭d厂)‘仁’.石二。,,若/,(3)据定义这里(adx汗一卜川对丁一给定的生成兀组。、fh(i一l,二,心关系(2)和(3)定义了g戈见[2〕). 对满足(I)的任意矩阵A,设以。,f,h,(i=l,;)为生成一f以(2),〔3)为定义关系的klLie代数为g妇),则乌训)是有限维的,当且仅当A是一个一半单bc代数的Cartan矩阵{3]I补注]满足条初门)的矩阵左定义一个有限维l玲代数,当且仪当它是王定的;在其他情况,如半正定情形,出现其他有趣的代数,见Kac一M以月y代数(K-a。M以刘y al罗bra),{A2」. 设L是特征为0的代数闭域上的半单Lic代数,则满足条件(2)的生成元e,厂,h,的集合也称为Cheva-lley生成元(Chevalley罗nerators)或Chevalley基份hevalley basis)这样的生成元的存在性定理称为C讹valley定理(Chevalley theorem).关系(2),(,;)定义Lie代数的结果常称为Serre定理(Serre th即。。、2)域K上带单位元的有限维结合代数A的Cartan琴阵是矩阵(ctj)(i·,一‘,“‘、‘),由有限维不可约左A模的完全集N!,…,从来定义.明确地说,气是满足Hom(月,N)并O的不可分解投射左A模月的合成列中凡出现的次数.对每个N,这样的只存在巨在同构意义下是唯一确定的 在一定情况下,〔artan矩阵〔”被证明是对称正定的,甚至C二D了D,这里D是整数矩阵。