1)Ear side耳别
2)ear recognition人耳识别
1.Automatic ear recognition based on contour curve and local feature;基于轮廓曲线和局部特征点的自动人耳识别
2.Research of the Ear Recognition Based on Principal Component Analysis;基于主成分分析的人耳识别系统研究
3.Selection of the anchor points and design of the detecting algorithm for ear recognition system;人耳识别系统中的定位点选择及检测算法的设计
英文短句/例句
1.Ear Recognition Based on ICA and BDTSVM;基于ICA和BDTSVM的人耳识别
2.Ear Recognition Based on Two-dimensional Fisher Linear Discriminant基于二维Fisher线性判别的人耳识别
3.Ear Recognition Based on Principal Component Analysis;基于主元分析的人耳识别方法的研究
4.Ear Recognition Based on Principle Component Analysis基于主成分分析的人耳识别方法研究
5.Ear recognition using LDA/GSVD and SVM基于LDA/GSVD和支持向量机的人耳识别
6.Human ear recognition based on wavelet transform,LDA/FKT and SVM基于小波变换和LDA/FKT及SVM的人耳识别
7.Multi-pose ear recognition based on force field convergence feature基于力场收敛特征的多姿态人耳识别
8.Ear Recognition Based on Wavelet Transform and Block DCT基于Haar小波变换和分块DCT的人耳识别
9.Application of localized subspace projections on ear recognition局部子空间映射在人耳识别中的应用
10.Ear Recognition Using KDA/GSVD and SVM基于KDA/GSVD和支持向量机的人耳识别
11.The Comparison of Human Ear Recognition Technology based on ICA and KPCA基于ICA和KPCA人耳识别技术比较
12.Ear Recognition Based on Wavelet Decomposition and Discriminative Common Vector基于小波分解和鉴别共同矢量的人耳识别
13.Research of the Ear Recognition Based on the Subspace Analysis and Support Vector Machine;基于子空间分析和支持向量机的人耳识别研究
14.The Application of Ear Recognition Based on Multi-directional and Multi-scale Analysis and Moment Features多方向多尺度与矩特征在人耳识别中的应用
15.An ICA-Based Ear Recognition Method through Nonlinear Adaptive Feature Fusion基于ICA的非线性自适应特征融合的人耳识别
16.Ear recognition based on wavelet transform and orthogonal centroids algorithm基于小波变换和正交质心算法的人耳识别研究
17.Human Ear Detection and Recognition Based on Face Profile and Ear Feature侧面轮廓与人耳特征相结合的人耳检测与识别
18.Speaker Identification in Whispered Speech Based on Modified-MFCC基于修正MFCC的耳语说话人识别方法
相关短句/例句
ear recognition人耳识别
1.Automatic ear recognition based on contour curve and local feature;基于轮廓曲线和局部特征点的自动人耳识别
2.Research of the Ear Recognition Based on Principal Component Analysis;基于主成分分析的人耳识别系统研究
3.Selection of the anchor points and design of the detecting algorithm for ear recognition system;人耳识别系统中的定位点选择及检测算法的设计
3)outer ear recognition外耳识别
1.On the basis of the application background,the paper compares some edgedetection algorithms such as Canny operator,Sobel operator and so on,and by distinguishing edge type vision and algorithm,puts forward a practical method of edge detection based on outer ear recognition technique,which is useful in actual applications.外耳识别技术是一种新的生物个体识别技术 ,有它自身的应用范围和特点 ,以其为应用背景 ,比较了Canny算子、Sobel算子等边缘处理技术之后 ,从区分图像边缘类型视觉与算法角度出发 ,提出了一种基于外耳识别技术的边缘检测的实用方法 ,具有一定实际应用价值。
4)ear identification耳廓识别
5)multi-pose ear recognition多姿态人耳识别
1.Locally Linear Embedding and Its Improved Algorithm for Multi-Pose Ear Recognition用于多姿态人耳识别的局部线性嵌入及其改进算法
2.In this paper,on the basis of the manifold learning algorithm,we propose a multi-pose ear recognition method based on LLE(locally linear embedding)that overcomes the disadvantages of 2-D ear recognition methods in dealing with pose variations.多姿态人耳识别是人耳识别技术面临的一个难题,目前这方面的研究并不多见。
6)ear recognition methods人耳识别方法
延伸阅读
耳耳1.众盛貌。 2.《三国志.魏志.崔琰传》:"与训书曰:'省表﹐事佳耳!时乎时乎﹐会当有变时。'……有白琰此书傲世怨谤者﹐太祖怒曰:谚言'生女耳'﹐'耳'非佳语。'会当有变时'﹐意指不逊。于是罚琰为徒隶。"后因以"耳耳"表示有所不足之辞﹐犹言罢了罢了。 3.挺拔貌。