二元插值,bivariate interpolation
1)bivariate interpolation二元插值
1.In the practice of compiling and establishing the unban storm intensity formula of Changsha ,with the help of computer , the method that the bivariate interpolation and the least square method was applied to calculate the statistical parameters of Pearson-Ⅲ distributing curves is presented in this paper.在编制湖南省长沙市暴雨强度及计算公式中 ,通过利用计算机的辅助计算 ,得出了应用二元插值理论与最小二乘原理联合求解确定皮尔逊 -Ⅲ型分布统计参数。
英文短句/例句

1.Geometric Characterization for Bivariate Interpolation and Plane Configurations of Interpolation Nodes二元插值的几何特征与插值结点平面构形
2.Strong Cesro Approximation of Double Trigonometric Interpolation Sequences二元插值算子的Cesàro强性逼近
3.The Application of Binary Interpolation Technique for Optimum Design of the Gear Transmission;二元插值技术在齿轮传动优化设计中的应用
4.The Construction of the Periodic Interpolatory Waveletes in Twovariables and the Corresponding Fast Algorithms;二元周期插值小波的构造及快速算法
5.On Approximation of Modifying S.N.Bernstein Trigonometric Polyromials;二元S.N.Bernstein型三角插值多项式的逼近
6.A Differentiating Criterion of Bivariate Rational Interpolation Existence;二元有理插值存在性的一个判别准则
7.The Study of a Family of the Barycentric Bivariate Rational Interpolation一类重心型二元有理插值算法的研究
8.Some researches on unisolvent of bivariate Hermit interpolation关于二元Hermite插值唯一可解问题研究
9.Lagrange Interpolation by Bivariate Splines over Quasi-cross-cut Partitions拟贯穿剖分上的二元样条Lagrange插值
10.Note to bivariate rational interpolation on rectangular grids关于矩形节点上二元有理插值的注记
11.On Properly Posed Set of Functionals for Multivariate and Bivariate Birkhoff Interpolation关于多元插值和二元Birkhoff插值泛函组适定性问题的研究
12.Finite Element Numerical Simulation on Line Controlled Source Based on Quadratic Interpolation基于二次插值的线源可控源有限元数值模拟
13.A BIVARIATE RATIONAL INTERPOLATION BASED ON FUNCTION VALUES AND THE PROPERTIES一种基于函数值的二元有理插值函数及其性质
14.Local Lagrange Interpolation by Bivariate Splines on Refining Triangulation;加密三角剖分下二元样条空间的局部Lagrange插值
15.Bivariate Spline Method for Scattered Data Fitting;二元样条函数方法求数据插值拟合问题
16.The Existence of the Two Classes of Bivariate Rational Interpolation Function and Its Algorithm;两类二元有理插值函数存在性及其算法
17.The Duality of Thiele-Thiele Type Bivariate Branched Continued Fraction Osculatory Rational Interpolation;Thiele-Thiele型二元分叉连分式切触有理插值的对偶
18.The Analysis of Anisotropic Property of Quadratic Triangular Element;三角形二次元插值的各向异性特征分析
相关短句/例句

binary interpolation二元插值
1.The basic principles of the topographic simulation by binary interpolation formula and the ore body bottom and ore body thickness simulation by trend equation were analyzed, and the random formation of schematic section view of ore body was illustrated.论述了二元插值公式对地形进行模拟、趋势方程对矿体底板和矿体厚度进行模拟的基本原理 ,并结合实例对矿体示意剖面的随机生成进行了说明。
3)bivariate Hermite interpolation二元Hermite插值
1.In this paper,some problems on bivariate Hermite interpolation by polynomial are studied.Borislar和Yuan Xu[2]等人在2002年及2003年得到的有关单位圆盘上的Hermite插值的主要结果,从而搞清了二元Hermite插值唯一可解集的几何结构和基本特征。
4)bivariate Lagrange interpolation二元Lagrange插值
5)bivariate Birkhoff interpolation二元Birkhoff插值
1.This paper mainly deals with the properly posed set of functionals for bivariate Birkhoff interpolation.主要研究了二元Birkhoff插值泛函组适定性问题。
6)bivariate Newton interpolation formula二元Newton插值公式
1.The bivariate Newton interpolation formula,which is defined on the rectangular grids with multiple points,is given,based on which a necessary and sufficient condition of the existence of a kind of bivariate osculatory interpolant is presented.文章研究切触有理插值问题中的插值函数的存在性,在矩形网格上给出了带重节点的二元Newton插值公式。
2.In the reference[3],it constructs a class of bivariate rational interpolation function(BRIF) on the rectangular grids by the bivariate Newton interpolation formula,and it sets up and prove the sufficient condition of the existence of BRIF.文[3]构造了对于矩形网格上基于二元Newton插值公式的一类二元有理插值函数,并给出了其存在性的充分条件。
延伸阅读

Bessel插值公式Bessel插值公式Bessel interpolation formula  十户,业匕生二匕二上业业二且+ ’7’/“(2陀)! 十户划卫二业三卫上塑二止逛卫业二业且, ‘J’/之(Zn+l)!与Gauss公式(l),(2)相比,Bessel插值公式具有某些优点;特别是,如果在区间的中点,即在点t=1/2上插值,则一切奇数阶差分的系数都等于零.如果把公式(3)右边最后一项略去,则所得到的多项式凡,十1(x0十th)虽然不是一个适当的插值多项式(它仅在Zn个结点xo一伍一 l)h,…,x。十从上等于f(x》,但是给出了比同次插值多项式更好的余项估计(见播值公式(interpolatlon扔皿ula)).例如,如果x二x0十th6(x。,xl),则使用关于结点x0一h,x。,x。十h,x。+Zh写出的最常用的多项式 。;‘x‘、+,、、_一、:,,、。,,},一工{、尸,,,业止卫. 一扒‘。’‘”‘一”/2’了’/’UZ}’了’‘’几得到的余项估计,比关于结点x。一h,x。,x。,h或x。,x。+h,x。+2h写出的插值多项式给出的估计几乎要好8倍.Bessel插值公式{肠份哭1 intellx面位用肠nll山反二e”“ItI℃Pn创扭”“o“”即中叩M扒a} 作为Gauss前位]插值公式与同阶的(j:,us、后“,J括值公式(见‘;auss插值公式(Gauss Interp‘)xa[;、)11 folmtlla))之和的半而得到的公式,旋于结点卜,丫。}h.丫。h,I。·“h,丫川,.丫川,l)/7的Gaus、前向插值公式为:八一点工二戈+111卜 (,,十,帆叮h)州·川、、少不一(l) 刃+口(l、l)叮启) (2,:+1)’关f一结点丫。二戈汁h即关J结点玩,h一、、,、Zh一丫。卜h‘、从曰”!泊,、月h的同阶的Causs后向插值公式为‘·:、‘、r一、·,::、了{卜、业示过· ‘,今、、三性二i上二_上二_塑_业工__妇匕__“__土 /l/2飞,卜, “,‘一”(2) 设 (声扮石‘) 一厂冷二一下一一Bessel插值公式取下列形式([l},口1) BZ十:(一‘.“h)(3) 、一、/:{,一井片/少沪 ’/一{2}’一2’