1)RITP反向碘转移聚合(RITP)
2)hydrogen migration polymerization氢转移聚合反应
3)reverse atom transfer radical polymerization反向原子转移自由基聚合
1.Preparation of polystyrene film on glass surface via surface-initiated reverse atom transfer radical polymerization利用表面引发反向原子转移自由基聚合制备聚苯乙烯膜
2.Research progress of reverse atom transfer radical polymerization反向原子转移自由基聚合研究进展
3.The reverse atom transfer radical polymerizations of methyl methacrylate(MMA) and butyl acrylate(BA) were carried out at 80 ℃ using N,N,N′,N′-teramethylethylendiamin(TMEDA)/CuBr_2 as the catalyst,AIBN as initiator,and xylene as solvent.以偶氮二异丁睛(AIBN)为引发剂,N,N,N,′N′-四甲基乙二胺(TMEDA)/CuB r2为催化剂,二甲苯为溶剂,分别进行了甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)的反向原子转移自由基聚合(RATRP)。
英文短句/例句
1.Studies of Reverse Atom Transfer Radical Polymerization and It's Used in Synthesizing Functional Polymers;反向原子转移自由基聚合及其在功能高聚物制备中的应用研究
2.Preparation of polystyrene film on glass surface via surface-initiated reverse atom transfer radical polymerization利用表面引发反向原子转移自由基聚合制备聚苯乙烯膜
3.Reverse atom transfer radical polymerization of arylamine catalyzed by iron(Ⅲ) systemFe(Ⅲ)体系催化的丙烯酰胺反向原子转移自由基聚合
4.A Research on Synthesis of Nickel, Cobalt, Copper (Ⅱ) Complex and Their Application to RATRP;后过渡金属镍,钴,铜(Ⅱ)配合物的合成及其用于反向原子转移自由基聚合的研究
5.The Reasearch of Ratrp of Styrene in Microemulsion;苯乙烯反向原子转移自由基微乳液聚合的研究
6.Preparation of PS-g-PMMA via atom transfer radical polymerization原子转移自由基聚合法合成PS-g-PMMA
7.Reversed Atom Transfer Radical Polymerization of Styrenein the Initiator of AIBN/CuCl_2/bpy;反原子转移自由基聚合的研究——AIBN/CuCl_2/bpy引发St聚合
8.Radical Chain Transfer Reaction and Polymer Design;自由基链转移反应与聚合物分子设计
9.Preparation of Polymer Nanoparticles by Homogeneous Solution Atom Transfer Radical Polymerization原子转移自由基溶液聚合制备聚合物纳米粒子
10.Fabrication of Organic/Inorganic Hybrid Composites by Surface-Initiated Atom Transfer Radical Polymerization表面引发原子转移自由基聚合反应制备有机/无机复合材料
11.Progress in preparation of hyperbranched polymers via atom transfer radical polymerization原子转移自由基聚合制备超支化聚合物进展
12.The Synthesis of Hydrogel by Atom Transfer Radical Copolymerization and the Polymerization Kinetics;原子转移自由基交联共聚合成水凝胶及其反应动力学研究
13.Study of Atom Transfer Radical Polymerization Mediated by Iron~Ⅱ Chloride/Itaconic Acid;铁(Ⅱ)/衣糠酸催化体系应用于原子转移自由基聚合反应的研究
14.Preparation of PS-b-PHEMA Brushes via Atom Transfer Radical Polymerization;原子转移自由基聚合制备PS-b-PHEMA嵌段共聚物刷
15.Preparation of Block Copolymer by Iodine Degenerative Transfer Radical Polymerization碘原子退化转移自由基聚合制备嵌段共聚物
16.Research Progress of Ionic Liquids in Atom Transfer Radical Polymerization离子液体参与原子转移自由基聚合的研究进展
17.RESEARCH PROGRESS IN POLYMER BRUSHES SYNTHESIZED BY ATRP原子转移自由基方法合成聚合物刷的研究进展
18.Atom transfer radical polymerization of 2,2,2-trifluoroethylmethacrylate甲基丙烯酸2,2,2-三氟乙酯的原子转移自由基聚合
相关短句/例句
hydrogen migration polymerization氢转移聚合反应
3)reverse atom transfer radical polymerization反向原子转移自由基聚合
1.Preparation of polystyrene film on glass surface via surface-initiated reverse atom transfer radical polymerization利用表面引发反向原子转移自由基聚合制备聚苯乙烯膜
2.Research progress of reverse atom transfer radical polymerization反向原子转移自由基聚合研究进展
3.The reverse atom transfer radical polymerizations of methyl methacrylate(MMA) and butyl acrylate(BA) were carried out at 80 ℃ using N,N,N′,N′-teramethylethylendiamin(TMEDA)/CuBr_2 as the catalyst,AIBN as initiator,and xylene as solvent.以偶氮二异丁睛(AIBN)为引发剂,N,N,N,′N′-四甲基乙二胺(TMEDA)/CuB r2为催化剂,二甲苯为溶剂,分别进行了甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)的反向原子转移自由基聚合(RATRP)。
4)Reverse ATRP反向原子转移自由基聚合
1.Reverse ATRP of MMA Catalyzed by AIBN/SmCl_3/Lactic Acid System;AIBN/SmCl_3/乳酸体系催化甲基丙烯酸甲酯的反向原子转移自由基聚合
2.Reverse ATRP was first reported by Matyjaszewski in 1995 and it is a development and improvement of conventional ATRP.反向原子转移自由基聚合 (ReverseATRP)的概念始提出于 1995年 ,是对传统ATRP的改进和拓展 。
5)RATRP反向原子转移自由基聚合(RATRP)
6)chain-transfer radical polyperization自由基链转移聚合反应
延伸阅读
氢转移聚合 又称质子转移聚合。丙烯酰胺在偶氮二异丁腈或过氧化物作用下,通常按照自由基引发加成聚合方式,按链式反应机理,生成由碳-碳链构成的乙烯类聚合物,其结构式为:(见聚合反应)。但在少量阻聚剂存在下,通过碱性引发剂叔丁醇钠,在100℃搅拌5~20小时后能得聚β-氨基丙酸,也称耐纶3。这类聚合反应因有氢离子的转移,故称氢转移聚合。它是由引发剂的负离子与单体作用,先形成酰胺负离子,然后以逐步聚合方式形成聚合物: 由以上反应可以看出,在此聚合过程中,增长中心既不是负碳离子,也不是自由基,而是丙烯酰胺的氮负离子与单体的双键加成。低聚体的存在以及分子量随反应时间增长而增大,说明反应是逐步进行的。也有人认为上述聚合是经分子内H+转移而进行的: 虽然从丙烯酰胺得到了耐纶3,但由于分子量不够大以及其他原因,迄今未能商业化。