机翼形,airfoil-shaped
1)airfoil-shaped机翼形
1.Experimental research on airfoil-shaped flow flume;机翼形量水槽的试验研究
2.Experiment on Airfoil-shaped Measuring Flume in Trapezoidal Canal梯形渠道机翼形量水槽试验
英文短句/例句

1.The Investigation of Wing Shapes at Low-Reynolds-Number低雷诺数条件下微型无人机机翼形状的研究
2.Shape Parameter Optimization for Wing and Wingtip Based on RBF基于径向基函数的机翼和翼梢小翼外形优化
3.The Joukowski airfoil problem is the simplest application of conformal mapping to airfoil design.joukowski问题是最简单的翼型形映射应用到机翼设计.
4.The inverse Zimmerman wing shows a better longitudinal stability and flow-field stability.与矩形翼相比,反齐默曼机翼有较好的稳定性.
5.Design of Flapping Mechanism for a Micro Air Vehicle Based on Mathematical Morphology;基于数学形态学的微扑翼飞行器翅翼机构设计
6.Study of the Wing Shape of Flapping-Wing MAV扑翼飞行器机翼平面形状设计方法研究
7.A Compliant Rib Based Morphing Wing Geometric Parameters Design基于柔性翼肋的变形机翼几何参数设计
8.delta wing (hang gliders)三角形机翼(悬挂式滑翔机)
9.Numerical Simulation of the Dynamic Aerodynamic Characteristics about Partial Flexible Airfoils and Folding Wing Aircraft局部主动变形翼型和折叠翼变形飞机动态气动特性数值模拟研究
10.Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft某无人机柔性机翼后缘变形机构的拓扑优化
11.The forces on an isolated tail are represented just like those on an isolated wing.作用在单独尾翼上的力的表示方法正和单独机翼的情形一样。
12.and the rms of both wing tips and apex reaches maximum value for elastic wing around the stall angle α=20°.而在失速迎角α=20°附近,机翼顶点和翼梢变形的方差最大。
13.Analysis of Stretching Deformation of the Spiral Wing Drive Mechanism Many Flexible Body Simulation伸缩机翼变形机构多柔性体动力学仿真分析
14.fuselage-wing-tail combination configuration机身-机翼-尾翼组合体
15.camber changing flap改变机翼弯度的襟翼
16.main foil flap hydraulic actuator主翼襟翼液压执行机构
17.Calculation of the Drag of Wings with Arbitrary Planform by Use of Network Method at Supersonic and Subsonic Speed用网格法计算任意平面形状超、亚音速机翼阻力
18.A Study on Two-level Optimization Approach for Aerodynamic Design of Wing Shape;面向机翼气动外形优化的二级优化方法研究
相关短句/例句

deformation of wing机翼变形
3)morphing aircraft wing变形机翼
1.In order to simulate the bird flying,we design a three-dimensioal morphing aircraft wing.为了模仿鸟类的飞行,利用杆索柔性机构的杆变形特性和柔性索为驱动,采用结构优化方法设计三维展向变形机翼,使其在各种飞行状态下都能保持最优气动性能。
4)wing contour机翼外形
5)arrow wing箭形机翼
6)ring air foil环形机翼
延伸阅读

超临界机翼  采用特殊翼剖面(翼型)的机翼。它能提高机翼的临界马赫数,使机翼在高亚音速时阻力急剧增大的现象推迟发生。它的翼型被称为超临界翼型,由美国R.T.惠特科姆于 1967年首先提出。 其形状特征是前缘较普通翼型钝圆,上表面平坦,下表面接近后缘处有反凹(见图),后缘薄,而且向下弯曲。气流绕过普通翼型前缘时速度增加较多(前缘越尖,迎角越大,增加越多),在翼型上表面流速继续增加。翼型厚度越大,上表面越向上隆起,速度增加也越多。飞行速度足够高时(相当马赫数0.85~0.9),翼型上表面的局部流速可达到音速。这时的飞行马赫数称为临界马赫数。飞行速度再增加,上表面便会出现强烈的激波,引起气流分离,使机翼阻力急剧增加。为了保持飞机飞行的经济性,飞行马赫数不宜超过临界马赫数。想要提高飞行速度就要设法提高机翼临界马赫数。减小机翼厚度或采用后掠机翼(见后掠翼飞机)可以提高临界马赫数,但是这样会增加机翼重量。采用超临界机翼可提高临界马赫数,同时不必付出增加机翼重量的代价。超临界翼型的前缘钝圆,气流绕流时速度增加较少,平坦的上表面又使局部流速变化不大。这样,只有在飞行马赫数较高时,上表面局部气流才达到音速,即其临界马赫数较高。在达到音速后,局部气流速度的增长较慢,形成的激波较弱,阻力增加也较缓慢。超临界机翼还可用于减轻飞机结构重量。如果带后掠翼的高亚音速飞机改用超临界机翼,在保持飞行速度不变的情况下,可以在机翼厚度不变时改用平直机翼,这样就可减轻机翼重量,同时改善机翼的低速气动特性。如维持后掠角不变而采用厚机翼,同样可降低机翼重量,还可增加机翼内的容积,用以放置燃油或其他设备。超临界机翼由于前缘钝圆,低速和跨音速的升力特性比较好,有可能应用在超音速飞机上。