1)USLE equationUSLE方程
2)unversal soil loss equation韦斯曼(USLE)方程
3)universal soil loss equationUSLE
1.Areas that had suffered soil erosion were analysed and mapped using the Universal Soil Loss Equation(USLE).将地理信息系统与通用土壤流失方程(USLE)相结合进行密云县土壤侵蚀量的预测。
英文短句/例句
1.Study on the Soil Erosion Control Benefit by Using the Method in Combination of GIS and USLE;基于GIS和USLE的土壤侵蚀控制效果研究
2.Study on the Application of USLE Model to Purple Soil Area in Central SichuanUSLE模型在川中紫色土区应用研究
3.Soil erosion of Yuzhong County based on GIS and RS基于GIS与USLE的榆中县土壤侵蚀
4.GIS-assisted Improving USLE for the Loess Plateau Soil Erosion基于GIS、RS的黄土高原USLE模型改进方法
5.Study on Soil Erosion Quantitative Monitoring Based on USLE in Karst Region;基于USLE的喀斯特地区水土流失定量监测研究
6.Application of WEPP Model in Purple Soil Area and the Comparison of WEPP Model with USLE Model;WEPP模型在紫色土地区的应用及与USLE的对比研究
7.Experimental Study on USLE Model in Granite Gneiss Region of Northern Jiangsu Province苏北花岗片麻岩地区USLE模型的试验研究
8.Study on Prediction of Soil Erosion Based on GIS and USLE--Taking Dahongshan Iron Mine at Xinping of Yunnan Province as A Case Study基于GIS和USLE的土壤侵蚀预测研究——以云南新平大红山铁矿为例
相关短句/例句
unversal soil loss equation韦斯曼(USLE)方程
3)universal soil loss equationUSLE
1.Areas that had suffered soil erosion were analysed and mapped using the Universal Soil Loss Equation(USLE).将地理信息系统与通用土壤流失方程(USLE)相结合进行密云县土壤侵蚀量的预测。
4)M-USLE modelM-USLE模型
5)USLE modelUSLE模型
1.In the acquisition of comprehensive graphics information and on the basis of written information,Universal Soil-loss Equation(USLE model) which is used in common in the USA and the Relative Wind Erosion of Soil Model are established for the soil water erosion and wind erosion of Taipusi County.本文以内蒙古锡林郭勒盟太仆寺旗为研究区域,在全面获取图形资料和文字资料的基础上,应用美国通用土壤流失方程(USLE模型)和风蚀相对模型分别建立太仆寺旗土壤水力侵蚀模型和风力侵蚀模型,并根据实际情况确立了模型中各参数值,预测了太仆寺旗土壤侵蚀情况,从而为阴山北麓地区土壤侵蚀的分析预测提供科学依据。
2.By correlation analysis on the runoff and soil loss for 364 times rainfall,a simple and convenient mathematical formula that is suitable to calculate rainfall erosion factor R value for local area was established and other factors of USLE model were also determined.通过对364次降雨径流与土壤流失量的相关分析,得出适合本地区降雨侵蚀力因子R值的简便算式,确定了USLE模型中其他诸因子的取值。
3.By correlation analysis of runoff and soil loss from 364 events of rainfall,a simplified and convenient mathematical formula that is suitable to calculate rainfall erosion factor R value for the local region was established and other factors of USLE model were also determined.针对苏北花岗片麻岩地区水土流失的自然状况,建立了6种径流小区进行试验研究,通过对各小区364次降雨径流与土壤流失量的相关分析,得出适合本地区降雨侵蚀力因子R值的简便算式,确定了USLE模型中其它诸因子的取值。
6)Chinese USLE中式USLE
延伸阅读
泊松方程和拉普拉斯方程 势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。 简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程: , 式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程 。 在各分区的公共界面上,V满足边值关系 式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。 边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为 式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述: 在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为 选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程 式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程 静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。 参考书目 郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。 J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)