良基集,well-founded set
non-well-founded set非良基集
1.In recent 30 years,great development in non-well-founded set theory has taken place.非良基集合论是研究循环的或超常集合的理论。
3)well set良集
1.Defines the concept of well sets in MS(axiomatic medium set theory) and discusses its characters.在中介公理集合论系统(MS)中重新定义了良集的概念,讨论了它的性质。
4)Non-well-founded Set and Its Functions非良基集及其作用
5)well-founded relation良基
1.Some conclusions about well-founded relations are given taking of the concepts about well-structured graphs.结合集合论中的良基定理,建立了良好构成的图的概念,利用图的知识来得到良基定理的等价定理,是图论在集合中的一个应用。
6)well-determined set良好子集
延伸阅读

良集良集fine set 良集【丘姆就;pa3pe狱eo.oe Muo戮eeT.o]【补注】通常称为薄集(thinset).