1)quantum mechanics curvature interpretation量子力学曲率解释
英文短句/例句
1.Discussion of Philosophical Basis of Reality Theory for Curvity Interpretation of Quantum Mechanics;论量子力学曲率解释实在论哲学基础
2.Quantum mechanics interpretation the limits--And to defend orthodox interpretation;量子力学解释限度——兼为正统解释辩护
3.From Copenhagen Interpretation to Decoherence Interpretation--Construction and Comparison of Interpretation of Quantum Mechanics从哥本哈根解释到退相干解释——量子力学解释的建构与比较
4.Tension between interpretation force and additional requirements:multi-perspective interpretation of quantum mechanics解释力与附加性要求之间的张力——多元视域的量子力学解释
5.Reflections on Copenhagen School Explanation of Quantum Mechanics;对量子力学哥本哈根学派之解释的思考
6.the modern form of quantum theory; an extension of of quantum mechanics based on Schrodinger's equation; atomic events are explained as interactions between particle waves.今日之量子论;量子力学根据Schrodinger方程的衍生;以粒子波解释原子事件。
7.The Ontological lnterpretation of Quantum Mechanics--A brief introduction to David Bohm s View;量子力学的本体论解释——戴维·玻姆观点简介
8.The damage factor D and the release rate of damage strain energy Y are two important parameters in Damage Mechanics.损伤因子D和损伤应变能释放率Y是损伤力学中的两个重要参量。
9.We must now see how quantum mechanics accounts for these results.现在我们就必须看一下量子力学是如何解释这些结果的。
10.Quantum mechanics has had enormous success in explaining many of the features of our world.在解释我们世界的很多特征方面量子力学取得了无数成功。
11.The Paradigm Information of Theory of Observocontrol Relativity--concurrently comment on the two new kinds of explanation of quantum mechanics;观控相对论的信息范型——兼评两种量子力学的新解释
12.The Law of Thermodynamics explains the transfer of heat.热力学定律解释了热量转化的原理。
13.Quantum mechanics uses complex number wave functions (sometimes referred to as orbitals in the case of atomic electrons), and more generally, elements of a complex vector space to explain such effects.量子力学用复数波功能(有时指轨道内的原子电子),而更通常用复向量空间原理来解释这类作用。
14.While quantum mechanics describes the world of the very small, it also is needed to explain certain" macroscopic quantum systems" such as superconductors and superfluids.虽然量子力学描述很小的世界,也需要用它来解释某种“肉眼可见的量子系统”例如超导和超流体。
15.It misses the opportunity to give some appreciation of the beauty of quantum mechanics-and to expliain exactly where the subject becomes so confounding.本书错过了欣赏量子力学之美的机会,也未能解释清楚何以这门学科变得如此令人困惑难解。
16.This simple treatment also rationalizes the observed insensitivity of burning rates to chemical factors and pressure level.这个简单表达式也能解释观测到的燃烧速率对化学因素和压力量级的不敏感性。
17.Since its inception, the many counter-intuitive results of quantum mechanics have provoked strong philosophical debate and many interpretations.从开始以来,量子力学很多反直觉结果已经掀起了哲学辩论和许多解释。
18.Learning Hidden Variables in Bayesian Network Based on Explanation Ability基于局部解释能力的贝叶斯网络隐藏变量学习
相关短句/例句
interpretation of quantum mechanics量子力学解释
1.Four clues to the argument over interpretation of quantum mechanics;量子力学解释之论争的四条线索
2.Tension between interpretation force and additional requirements:multi-perspective interpretation of quantum mechanics解释力与附加性要求之间的张力——多元视域的量子力学解释
3.This paper affirms the advantages of the newly issued curvature interpretation of quantum mechanics,praises the improved "realism of interaction",which resolves the problem of agnosticism.重点强调了直觉图像思维模式对于理解量子物理学和对于科学创造的启发性功能,并用多元主义方法论的观点,分析了几种典型的量子力学解释,表明它们各有独特的一面。
3)the new explanation of quantum mechanics量子力学新解释
4)explanation of curvature曲率解释
1.The basic hypothesis in the explanation of curvature in quantum mechanic involves the following postulates as state function,operand,quantum measure,mean value,Schrodinger equation and identical particle.量子力学曲率解释中的基本假设由态函数公设、算符公设、量子测量公设、平均值公设、薛定谔方程公设、全同粒子公设构成。
5)quantum mechanics solution量子力学解
6)interpretations of quantum mechanics量子力学诠释
1.This review recalls the conceptual origins of various interpretations of quantum mechanics.首先回顾了量子力学诠释的各种研究的思想起源 。
延伸阅读
量子力学中的力学量和算符 在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r0或动量具有某一确定值p0的几率却是完全确定的。量子力学中力学量的这些特点是经典力学中的力学量所没有的。为了反映这些特点,在量子力学中引进算符来表示力学量。 算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分: 可简单地写为 其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是 。 又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为