1)regularity[英][,reɡju'l?r?ti][美]['r?gj?'l?r?t?]正则性
1.Analysis of function regularity by wavelet;用小波分析函数的正则性
2.Two key technologies for image wavelet transform:The regularity of filters and the process of signal boundary;图像小波变换中的两个关键技术——滤波器的正则性与信号的边界处理
英文短句/例句
1.On Degenerate Weakly (K_1,K_2)-quasiregular Mappings;退化弱(K_1,K_2)—拟正则映射的正则性
2.complete regularity separation axiom完全正则性分离公理
3.On Von Neumann regularity of AGP-injective rings;AGP—内射环的Von Neumann正则性
4.VON NEUMANN REGULARITY OF GP-V’-RINGSGP-V'-环的von Neumann正则性
5.Rugularity and Uniqueness of the Boltzmann Type Equations;Boltzmann型方程的正则性与唯一性
6.Conditions for Determining the Regularity of Bézier Curve and Surfacebézierb>曲线b>曲面正则性的判别条件
7.Regularity of Degenerate Weakly (L_1, L_2)-BLD Mappings;退化的弱(L_1,L_2)-BLD映射的正则性
8.A New Regularity in L-fuzzy Topological Space;L-fuzzy拓扑空间中一种新的正则性
9.The Unity of Contract Freedom Principle and Contract Justice Principle;论合同自由原则与合同正义原则的统一性
10.The Properties of Regular Tournment Matrices and Eigenvalue of Regular Circulant Tournament Matrices;正则竞赛矩阵的性质和正则循环竞赛矩阵的特征值
11.On some properties of k-Regular functions and Riemann boundary value problems with conjugate for k-Regular functionk-正则函数的某些性质及其共轭k-正则函数的Riemann边值问题
12.The Properties and Criterion of Normal Functions and α-normal Functions;正规函数与α-正规函数的性质及判别准则
13.Regularization without transformation for bilinear problems应用于双线性问题的无变换正则化
14.The Regularizing Solution of Nonlinear Abelian IntegralEquation非线性阿贝耳积分方程的正则化求解
15.The Properties for Biregular Function in Clifford Analysis;Clifford分析中双正则函数的性质
16.Some Properties on Regular ~*-Semigroups and One Sided Homomorphisms on Semigroups;正则~*-半群的性质和半群的单边同态
17.The Distributing of Terminals and the Property of Steiner Vertices on the Steiner Tree Problem;Steiner树问题中正则点分布与Steiner点性质
18.The Existence of Strongly Non-Regular Operators between Banach Lattices;Banach格上强非正则算子的存在性
相关短句/例句
regular[英]['reɡj?l?(r)][美]['r?gj?l?]正则性
1.In this paper the JORDAN-HOLDER Theorem of transposition hyperlattice is introduced on the base of the closed set and regular of hyperlattice,and some related properties of them are also studied.在超格的闭集合和超格的正则性的基础上,给出了对换超格上的约当定理,并研究了一些相关的性质。
2.About Non-regular N-Spaces and Characterization of Metrizable Spaces in Terms of g-function;通过减弱正则性条件重新定义了N-空间,并称之为非正则的N-空间。
3)regularity properties正则性
1.Some regularity properties of Φ-nonexpansion mappings on M-PN spaces are discussed.讨论了M PN空间的Φ 非扩张映象的正则性质 ,定理 1和定理 2给出了相应的不动点性质 ,推广了Assad Seesa的结果。
4)regulation[英][,reɡju'le??n][美]['r?gj?'le??n]正则性
1.At the same time,they investigated also the regulation,deadbeat control and separation principle of the system at such an input.通过讨论离散广义系统中的无振控制以及带有外加扰动的鲁棒控制问题,提出了在Ex(k)或x(k)不能直接得到时,设计观测器,并采用与众不同的输入u(k)=KEx(k),同时研究了在此输入情况下系统的正则性,分离性,无振控制
2.At the same time, the regulation, deadbeat control and seperation of the system at such an input were investigated.通过讨论离散广义系统中的无振控制以及带有外加扰动的鲁棒控制问题,提出了在Ex(t)或x(t)不能直接得到时,设计观测器,采用了与众不同的输入u=kEx(t),同时研究了在此输入情况下系统的正则性,无振控制及分离性。
5)Lipschitz regularityLipschitz正则性
1.Use Lipschitz regularity to detect some aberrant phenomena;利用Lipschitz正则性对网络几类异常的分析
6)irregularity[英][?,reɡj?'l?r?ti][美][?'r?gj?'l?r?t?]非正则性
1.The maximum of d +(x)-d -(y) over all vertices x and y of digraph D(x=y is admissible) is called the irregularity of D,denoted by i(D),if (iD)=0,then we say D is regular;if i(D)=1,we say D is almost regular .设D是一个有向图 ,D中所有可能的两点x与y(x与y可以相同 )的出度与入度之差的绝对值的最大值叫做有向图D的非正则性 ,并记为i(D) 。
延伸阅读
非正则性指标非正则性指标irrequiarity indices 兄,(一A‘)“又,(A),i=l,…,n.结果,对于Ha而ton系统的变分方程组,其正则性的必要和充分条件是 又,(A)=一又。十:_:(A),i=1,…,k(nePc职cK戚定理(h巧ids幼此0众沈n)). 其他非正则指标,见〔4]一「61.非正MIJ性指标[加明呻‘钾加血es;“eopa。。月研oeTu幼冲枷职e盯叫,线性常微分方程组的 在每个有限区间上可积的映射A:R十~Hom(R月,R”)(或R+~Hom(C门,C月))构成的空间上的非负函数,,使得。(A)等于零的必要和充分条件是方程组 交=A(t)x(*)为正则线性方程组(川刻盯址眨甘system). 最熟知(且最容易定义)的非正则性指标如下所述. l)瓜nyHoB非正则性指标(卜姆pUnov近叫汕州ty访dex)(11」): 气(‘)一‘氨(‘,:甄封仃“·,“一其中又*(A)是方程组(,)的几,nyHoB特征指数(L界Punov cha皿cteristic exponent),按降阶排列,而trA(t)是映射A(t)的迹. 2) PerID幻非正则性指标(RnUn谊闪画州ty)([21): “,(A)一1黔(又,(A)+‘一(一A’)),其中A‘(t)是A(t)的伴随映射.如果系统(*)是H肚ai地刀系统(H盯间to币ansysteln) aH_一, 4=气等,尸。R·, ,aP’‘ 刁H_一。 户二一书于,qoR·, r日q则n二2丸,而