M-矩阵,M-matrix
1)M-matrixM-矩阵
1.Some inequalitites on the Schur complement of inverse M-matrix;关于逆M-矩阵Schur补的几个不等式
2.The Properties of the M-matrix and Notes about the M-matrix Hadamard Inequality;M-矩阵的性质与Hadamard-Fisher不等式的注记
英文短句/例句

1.On Hadamard Product of Tridingonal Inverse M-Matrices三对角逆M-矩阵的Hadamard积
2.Criteria for Nonsingular H-Matrices and M-Matrices非奇异H-矩阵与M-矩阵的判定准则
3.Criteria for Generalized Diagonally Dominant Matrices and Nonsingular M-matrix;广义对角占优矩阵与非奇M-矩阵的判定
4.The Lower Bound of the Determinant for Hadamard Product of an Inverse M-matrix and a Positive Definite Matrix;逆M-矩阵与正定矩阵Hadamard乘积行列式的下界
5.The Necessary and Sufficient Condition of Inverse M-Matrices非负矩阵是逆M-矩阵的充要条件及其它
6.PE_k solution for linear equation system with special M-matrix as its coefficient matrix系数矩阵为特殊M-矩阵的线性方程组的PE_k解法
7.Iterative Algorithms for M-matrix and Its ‖A~(-1)‖_∞;M-矩阵及其‖A~(-1)‖_∞计算的迭代算法
8.Closure Properties of Inverse M-matrix under Hadamard Product逆M-矩阵在Hadamard积下的封闭性
9.Diagonally Dominant,Determinant,Order Principal Matrix,Transpose Properties of Generalizations of-matrices广义M-矩阵对角占优、行列式、转置及顺序主子矩阵的性质
10.The Properties and Inverse Eigenvalue Problem of the Circluant M-matrix and Its inverse;循环M-矩阵及其逆的性质与逆特征值问题
11.Further Oiscussion About the Schur Complement and the Inverse M-Matrix Problem;关于Schur补和逆M-矩阵问题的进一步讨论
12.On Characteristics of(m,l)Rank-idempotent Matrix and(m,l)Idempotent Matrix(m,/)秩幂等矩阵和(m,/)幂等矩阵的特性研究
13.The Answer of the Matrix Equation X~n=B~m and the Discussion of the Matrix Irintegral Number Power;矩阵方程X~n=B~m的解及矩阵非整数次幂探讨
14.Solution of Matrix Equation A_(m×n)X_(n×s)=B_(m×s) with Some Applications;矩阵方程A_(m×n)X_(n×s)=B_(m×s)的解及其应用
15.Study on the Evaluation of Brand Extension Based on C-M Matrix;基于C-M矩阵的品牌延伸评价研究
16.Parallel ILU factorization Preconditioners for Symmetric M-matrix;对称M矩阵的并行不完全分解预条件
17.Incomplete LU-decomposition of Symmetric M-matrix;浅析对称M矩阵的不完全LU分解算法
18.A New Improvement of Hadamard Inequality for Sub-M Matries;次M矩阵的Hadamard不等式的进一步改进
相关短句/例句

M-matricesM-矩阵
1.The Relation of M-Matrices and Generalized Positive Definite Matrices;M-矩阵与广义正定矩阵的关系
2.A New Criteria Algorithm for Nonsingular M-matrices非奇异M-矩阵的新判定算法
3)M matrixM-矩阵
4)"Mechanism-Model" matrix"M-M"矩阵
5)M-matrixM矩阵
1.Method for judging inverse M-matrix and its parallel algorithm;一种基于并行算法的逆M矩阵的判定方法
2.A method of judging M-matrix and its parallel algorithm;M矩阵的判定及其应用算法
3.Parallel ILU factorization Preconditioners for Symmetric M-matrix;对称M矩阵的并行不完全分解预条件
6)M matrixM矩阵
1.Parallel algorithm for judging a block-tridiagonal M matrix;块三对角M矩阵的并行判定方法
2.Some Inequalities for Determinants of Inverce M matrix;逆M矩阵的几个行列式不等式
延伸阅读

Cartan矩阵Cartan矩阵Cartan matrix 当它的Cartan矩阵是不可分解的:xndecom拼巧able),即在指标的某些置换后,不可能表为对角块矩阵. 令g=q、十十q。是g分解为单子代数的直和,A,是单I一ie代数g的C盯tan矩阵·则对角块矩阵 {…一{一:……是9的Cartan笼,阵.(对单Lze代数的Cartan矩阵的具体形式,见半单lje代数(Lie al罗bra,semi一slmple).) Cartan矩阵的分量“。二2恤等)/(“r·咐有下列性质: 拭.2:“‘()a,、Z,对,势了 以0二冷u/二11Cartan矩阵与用’‘三成元和关系来kjJ画q密切侧关即g中存在线性无关的生成兀e‘,厂、八,(i=飞、·…:)(称为典范生成元(以n、,,11以l罗nerators。),满足下歹,1关系: 卜,_用/氏h;I气州二“叮(2) }h,厂一“/」,lh‘寿}二以任意两个典范生成儿组可由q的自同构互相变换.典范产仁成元还满足关系 (ad引“’价二。,扭d厂)‘仁’.石二。,,若/,(3)据定义这里(adx汗一卜川对丁一给定的生成兀组。、fh(i一l,二,心关系(2)和(3)定义了g戈见[2〕). 对满足(I)的任意矩阵A,设以。,f,h,(i=l,;)为生成一f以(2),〔3)为定义关系的klLie代数为g妇),则乌训)是有限维的,当且仅当A是一个一半单bc代数的Cartan矩阵{3]I补注]满足条初门)的矩阵左定义一个有限维l玲代数,当且仪当它是王定的;在其他情况,如半正定情形,出现其他有趣的代数,见Kac一M以月y代数(K-a。M以刘y al罗bra),{A2」. 设L是特征为0的代数闭域上的半单Lic代数,则满足条件(2)的生成元e,厂,h,的集合也称为Cheva-lley生成元(Chevalley罗nerators)或Chevalley基份hevalley basis)这样的生成元的存在性定理称为C讹valley定理(Chevalley theorem).关系(2),(,;)定义Lie代数的结果常称为Serre定理(Serre th即。。、2)域K上带单位元的有限维结合代数A的Cartan琴阵是矩阵(ctj)(i·,一‘,“‘、‘),由有限维不可约左A模的完全集N!,…,从来定义.明确地说,气是满足Hom(月,N)并O的不可分解投射左A模月的合成列中凡出现的次数.对每个N,这样的只存在巨在同构意义下是唯一确定的 在一定情况下,〔artan矩阵〔”被证明是对称正定的,甚至C二D了D,这里D是整数矩阵。