数列,sequence
1)sequence[英]['si:kw?ns][美]['sikw?ns]数列
1.The General Expression of the sequence Defined by U_( n+1) =a+b/U_ n and Its Application;一类数列的通项公式及其应用
2.Study of the Methods in Solving General Terms Through the Sequence Given by Recursion Relations;以递推关系式给出的数列求通项问题的研究
3.Super and Inferior Limits of the Sequences;数列的上极限与下极限探析
英文短句/例句

1.a column for the tens and a column for the units十位数列和个位数列.
2.Series of Fibonacci and the Determinant of the Diagonal Form;Fibonacci数列与对角形行列式
3.Fibonacci Numbers and Euclidean Algorithm;Fibonacci数列与Euclidean除法
4.The period of a set of modular sequence of Fibonacci Sequence;Fibonacci数列的一组模数列的周期
5.The Quotient s Integrity of Fibonacci Number and Lucas Number;Fibonacci数列和Lucas数列商的整性Ⅱ
6.Period of Fibonacci sequence modulo F_k(k>3)Fibonacci数列关于模F_k(k>3)的模数列的周期
7.Using two line of three row determinant to prove three numbers being distance of equality sequence利用二行3列式证明三数成等差数列
8.The number or range of numbers in a set that occurs the most frequently.众数一组中出现最频繁的数或数列
9.The number of elements in a finite set.指数有限数列中元素的数量
10.The ordinal number matching the number nine in a series.第九在数列中与数字9相配的序数词
11.The Mean Value of Arithmetic Function on Special Sequencs关于一些特殊数列上数论函数的均值
12.Mathematical Recreation(Ⅴ):Generalized Fibonacci's Number and Sum of Power Series数学娱乐(五)——推广Fibonacci数列与幂级数和
13.The Number of Primes in a Class of Arithmetic Progression一类特殊等差数列中的素数个数问题
14.The number of rows or columns in a determinant or matrix.行列数行列式或矩阵中行或列的数目
15.a set of data arranged in rows and columns.以行列排列的一组数据。
16.series and tail series整数系列与零头系列
17.similar permutations【数】同班[相似]排列
18.odd permutation【数】奇排列, 奇置换
相关短句/例句

sequence of number数列
1.The L Hospitcl rule in sequence of number;数列中的"洛必达法则"
2.Sometimes,the problem of sequence of number summation is a little troublesome,even there is no way to deal with it.数列求和问题有时比较麻烦,甚至无从下手。
3.The essay puts forward a few methods to figure the limit of sequence of number by giving examples.研究了数列极限的几种特殊求解方法。
3)sequences[英]['si:kw?ns][美]['sikw?ns]数列
1.Some interesting sequences and their combinatorial identities;一些有趣数列及其组合恒等式
2.This article discusses the contents and the relations and conversion of series, sequences and integrals.本文就数列、级数、积分等内容,讨论了它们之间的联系及转化。
4)series[英]['s??ri:z][美]['s?riz]数列
1.On the Nature of Fibonacci Series;关于斐波那契数列的性质探讨
2.Several Substitution Method in the Series Calculation;数列问题中的几类代换法
3.This paper discusses one new kind of algebraic operation on series and its character.本文讨论源于参数切换机械系统的数列代数运算及其性质。
5)number sequence数列
1.The proof on the boundedness,monotonicity and limit of number sequence{n/(n!)~(1/n)}数列{n/(n!)~(1/n)}的单调有界性及极限的证明
2.In this paper,the weight of a subsequence for a number sequence is defined,then a theorem,that is,an arithmetic mean sequence for a sequence with finite partition corre spond to convergent subsequence convergence to a li near combination of subsequence limit and the coefficient are the weight of a subsequence,is given.对一般数列的情况进行了讨论,给出了数列的子列权的概念,得出了关于数列的算术平均序列的一个定理,即存在有限划分的收敛子列的数列,其算数平均序列收敛于其子列极限的线性组合,而系数正是相应子列的权。
3.The thesis firstly gives an introduction to Stolz theorem which in style and style,then popularizes it from the situation of number sequence to the situation of function.极限论中求型和型的数列极限,应用Stolz定理非常有效,Stolz定理可说是求数列极限的洛必达(LHospital)法则。
6)sequence of numbers数列
1.Probe into the Problem of convergence for sequence of numbers {a_n};数列{a_n}收敛问题的探索
2.Prove one simple nature of convergence for sequence of numbers , Popularize this to convergence series.证明了收敛数列的一个简单性质。
3.It is equal in value of proved that it had necessary limit which sequence of numbers are monotonous and bounded or converge of Cauchy s norm.单调有界数列必有极限是极限理论中一个很重要的结论 ,而柯西收敛准则则以另一种形式表达了这一结论。
延伸阅读

数列数列number,sequenceof按照一定次序排列着并且能依次与自然数1,2,……(或由1到n)对应的一列数。由有限个数排成称为有限数列;由无穷多个数排成的称为无穷数列。每个数列都可以看作是定义在自然数集N或其子集{1,2,…,n}上的函数。数列中每个位置上的数都称为项。第一个位置上的数称为首项,第二个称为第二项,依此类推。如果数列的第n项可以用一个含有n的解析式来表示,并且n能代表任意项数,那么这样的解析式称为数列的通项公式。例如,全体正偶数由小到大排成的数列2,4,6,…,第nan可表为2nan=2nn=1,2,…)就是通项公式;正奇数数列1,3,5,…的通项公式是an=2n-1。当一个数列的通项公式已被掌握时,这个数列的性质就可以用数学方法进行分析研究。如果数列{an}的各项满足an+1≥anan+1>an),n=1,2,…,就称数列{an}为递增(严格递增)数列;如果满足an+1≤anan+1<αn),n=1,2,…,就称为递减(严格递减)数列。如果数列{an}的各项对于某个正数M,满足|an|≤Mn=1,2,…,就称数列{an}为有界数列。