子群,subgroup
1)subgroup[英]['s?bɡru:p][美]['s?b'grup]子群
1.Directed subgroup graph for studying the subgroup properties of finite groups;利用有向子群图研究有限群的子群性质
2.Relation between direct sum group and subgroup of direct sum group;直和群及其子群之间的关系
3.Study on structure of subgroup of direct sum group;直和群的子群结构的研究
英文短句/例句

1.THE e-PAIRS FOR MAXIMAL SUBGROUPS AND C-NORMAL SUBGROUPS;有限群极大子群θ-子群偶与C-正规子群
2.The p~*-Nilpotency and θ-Pairs for Subgroups on Finite Groups;有限群的p~*-幂零性和子群的θ-子群
3.The Deskins Maximal Completions and Complemented Subgroups of Finite Groups;有限群极大子群的Deskins完备与补子群
4.Non-Abelian Subgroup of Order p~3 Contained in the Frattini Subgroup of p-Groups;p-群Frattini子群中p~3阶非交换的子群
5.πFrat(G) Subgroup of Periodic FC-group周期FC-群的_πFrat(G)子群
6.Automorphisms of the Maximal Unipotent Subgroups of Ree Group and Suzuki Group;Ree群、Suzuki群的极大幺幂子群的自同构
7.The Influence of (?)-subgroups, π-quasinormally Embedded Subgroups and (?)-subgroups on the Structure of Finite Groups;(?)-子群,π-拟正规嵌入子群和(?)-子群对有限群结构的影响
8.The Influence of C-normality and θ-pairs of Subgroups on the Structure of Finite Groups;子群的C-正规性、θ-子群偶对有限群结构的影响
9.Afinite group when its sylow groups s maximal subgroups are m-normal;sylow子群的极大子群都在G内m-正规的有限群
10.The Influence of c~*-normal Subgroups and H-Subgroups on the Structure of Finite Groupsc~*-正规子群和H-子群对有限群结构的影响
11.Finite groups in whose second maximal subgroups the cyclic subgroups of order 2 are complemented二次极大子群中的2阶子群可补的有限群
12.OVERGROUPS OF THE DIAGONAL SUBGROUP IN THE UPPER TRIANGULAR SUBGROUP OVER COMMUTATIVE RINGS可换环上对角子群在上三角子群中的扩群
13.A Theorem On Maximal Subgroups of Sylow Subgroups;关于Sylow子群的极大子群的一个定理
14.The Normalizer of Hall Subgroups and the Structure of Finite GroupsHall-子群的正规化子与有限群结构
15.Study of Particle Swarm Optimizers Based on Population Entropy and Structure;基于种群熵和种群结构的粒子群算法研究
16.On Groups All of Whose Proper Subgroups Have Prime Power Order关于任一真子群为p-群的有限群的研究
17.An Action from Automorphism Group on Actor Group to Characteristic Group自同构群到对特征子群的商群上一作用
18.On the Autmorphism Groups of Metacyclic p-group with a Cyclic Maximal Subgroup具有循环极大子群的亚循环p-群的自同构群
相关短句/例句

subgroups子群
1.The Existence of Nilpotent Hall π Subgroups;幂零Hall π-子群的存在性
2.Because the inverse of Lagrange theorem of finite group is not hold,it is difficult to determine all the subgroups of A_n,to determive whether An has the same order subgroups for any positive factor of the absolute value of |An|.由于有限群的L agrange定理的逆不成立,当n较大时,要确定n次交代群An的所有子群,以及对于An的任一正因数,要确定A n是否有这个阶数的子群都要较困难的,文章通过计算5-循环置换各次方幂,再把各次方幂中的第4个数字去掉,得到4个2×2置换的乘积,从而构造出A 5的6个10阶子集,并证明了每个子集是A5的子群
3.Using Lagrange s theorem and the concept of n-letters symmetric group,we have Proved the only existence 30 certainly subgroups of the 4-letters symmetric group S4, getting rid of 2 normal subgroups, it has 9 2-order cyclic subgroups , 4 3-order cyclic subgroups,3 4-order cyclic subgroups, 4 Klein 4-elements groups 4 S4 (at the time of isomorphic meaning), 3 8-elements groups and 1 A4.使用Lagrange定理及n次对称群的基本概念证明了4次对称群存在且只存在30个子群,并给出了每个子 群。
3)subpopulation[英]['s?b,p?pju'lei??n][美][,s?bpɑpj?'le??n]子群
1.New Two-subpopulation Particle Swarm Optimization Algorithm一种新的双子群PSO算法
2.Particle Swarm Optimizer (PSO) with the idea of SSMPSO (shuffled subpopulations and mutation PSO) was improved.提出一种子群混合与变异的微粒群算法(SSMPSO),按适应值大小将微粒均匀分为两个子群分别进行目标优化,当子群在一定进化代数内未满足收敛条件时重新混合为一个种群。
4)sub-cluster群子
1.Studies on the Relationship of Mechanical Properties and Micro-morphology and Sub-cluster Parameters of High Toughened and Strengthened PPO/PA6 Alloy;高强高韧PPO/PA6合金的力学性能—亚微相态—群子参数之间关系的研究
2.Studies on the Relationship of Combustibility and Mechanism of Combustion and Sub-cluster Parameters of Flame Retarded PET and Its Fibers;阻燃PET及其纤维的燃烧性能—燃烧机理—群子参数之间关系的研究
3.In order to describe all types of viscosity-composition curves of polymer blends wihh mathematical model, sub-cluster equations were derived on the basis of "sub-cluster theory".为用统一的数学模型对高分子合金的粘度-组成曲线进行描述,运用群子理论的基本概念,推导出了不同形式的“群子方程”。
5)multipopulation PSO多子群粒子群
6)quantization of subgroup子群量子化
延伸阅读

子群设<g,·>是一个群,h是g的子集,若h在运算·下也是群,则称h是g的子群。作为二元关系,子群关系具有传递性。即若h是g的子群而k是h的子群,则k也是g的子群。关于群的子群的判别问题,有下列命题:1.设h是群<g,·>的非空子集,则h是g的子群当且仅当h满足下列两条件之一:(1)对任意a,b∈h,a·b∈h 且a^(-1)∈h;(2)对任意a,b∈h, a·b^(-1)∈h。任何群<g,·>有两个平凡的子群:g和,其中e是g的幺元。相关词条:陪集,正规子群,中心