S-拟正规,S-quasinormal
1)S-quasinormalS-拟正规
1.Influence of S-quasinormal Subgroups on the Structure of Finite Groups;S-拟正规子群对有限群结构的影响
2.Localized s-quasinormality of Some Subgroups of Finite groups有限群子群的局部s-拟正规性
3.We define s1(G) and s2(G) as the number of different orders of non-subnormal subgroups and the number of different orders of non-S-quasinormal subgroups,respectively.设G是有限群,s1(G)表示G的非次正规子群的不同阶的个数,s2(G)表示G的非S-拟正规子群的不同阶的个数。
英文短句/例句

1.The Influence of S-quasinormal Subgroups on the Structure of Finite GroupsS-拟正规子群对有限群结构的影响
2.The Influence of CS-quasinormality of Some Subgroups on the Structure of Finite GroupsCS-拟正规子群对有限群结构的影响
3.SS-Quasinormal Subgoups and Solvability of Finite GroupsSS-拟正规子群与有限群的可解性
4.The Influence of Some s-quasinormal Subgroups on the Structure of a Finite Group某些s-拟正规子群对有限群结构的影响
5.Strong S completely regular and strong S completely normal spaces;强S-完全正则与强S-完全正规空间
6.The S-T Identity on Generating Functional of Regular Vertex Angle;关于正规顶角生成泛函的S-T恒等式
7.One weakening of normality is quasinormality.正规性的一种减弱形式是拟正规性。
8.The Influence of Normal Index and S-normality of Subgroups on the Structure of Finite Groups;子群的正规指数、子群的S-正规性对有限群结构的影响
9.Define and Properies of Quasi-normalizer and Quasi-centralizer;拟正规化子拟中心化子的定义及相关性质
10.Influences of the Centralier and S-Normality of a Minimal Subgroup on the Structure of a Finite Group;极小子群的中心化子及s正规性对群结构的影响
11.Method '%s' hides virtual method of base type '%s'方法'%s'隐藏了基类型为'%s'的虚拟方法
12.Discussion of Monte Carlo Simulation for Computing Normalizing Constants;关于计算正规化常数的Monte Carlo模拟方法的讨论
13.The Normal form and Finite determinancy of Semiquasihomogeneous Function Germs半拟齐次函数芽的正规型和有限决定性
14.s-regular Dihedral Coverings of the Heawood;Heawood的s-正则二面体覆盖
15."The movie is a compendium of tortures that would horrify the regulars at an S&M club."这部影片是折磨虐待的概要,也许能让S&M俱乐部的正规会员们心寒恐慌。
16.Combining C/S and B/S for the Information System of Land Use Planning;B/S与C/S相结合的土地利用规划信息系统
17.(s, k)-Major Order and (s, k)-Major Efficiency of Multiobjective Programming;(s,k)-较多序类和多目标规划的(s,k)-较多有效性
18.Modifications to component %s where recorded In form %s but the ancestor component was not found In form %s.修正组件%s--在窗体%s记录中,但是祖先组件在窗体%s中没有发现.
相关短句/例句

s-quasinormal subgroups-拟正规子群
3)p-(S) quasi normal subgroupp-(S-)拟正规子群
4)A being quasi (S quais)normal in BA在B中拟(S-拟)正规
5)S-quasinormally embedded subgroupS-拟正规嵌入子群
1.It says that H is an S-quasinormal subgroup of G if HP=PH for any Sylow subgroup P of G;H is an S-quasinormally embedded subgroup of G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G;H is a C*-normal subgroup of G if there exists a normal subgroup K of G such that G=HK and H∩K is S-quasinormally embedded in G.称H是G的S-拟正规子群,如果对G的任意Sylow子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的。
6)s-seminormalS-半正规
1.Finite Groups Whose Maximal Subgroups of Sylow Subgroups are s-seminormal;Sylow子群的极大子群皆s-半正规的有限群(英文)
2.On s-seminormal Subgroups of Finite Groups II;关于有限群的s-半正规子群II(英文)
3.On s-seminormal Subgroups of Finite Groups I;关于有限群的s-半正规子群I(英文)
延伸阅读

《建设强大的现代化正规化的革命军队》《建设强大的现代化正规化的革命军队》Build a Powerful Modernized and Regularized Revolutionary Army ihllQ:命军,d‘一)才‘l’}二刁、卜鲜内‘乍1在华 全文《邓小 走规许的特}仁战的水、卜.推动旱的和易。,},于卜石,匕’建处的现J ianshe Qiangda de XiandaZhengguihua de Geming!undui《建设强大的现代化正规化的革队))(B“11‘l‘才p‘,、,,。,介,IM‘,‘le‘:,i:‘ReguI’Iri:ed Re、1‘,11才rior了u尽A月7了介)关J:新时期‘引从建设日标和任务问是事著作。是邓小平J几1981年gJ」191北某地检阅军事演习部队时的讲话,约800字,收人1994年川J」{I}版的、卜文选》第2卷。 讲话称赞演习检验厂部队现代化、化建设的成果,较好地体现】’现代战’点,摸索J‘现代条件卜诸军兵种协},叮经验,提高厂部队的军政素质和实,l戊对全军的建设、战备和训练是个有力讲话指出,霸权}:义严币地威胁若世占平和:1,l司的安个,必须保于,’f高度的警才囚人民解放军是人民民i二专政的‘}剐虽启负肴保IJ.社会1己义子11}xJ,保I之“【,LI了设的光荣使命,必须建没成为一支强、响月~‘‘~代化、正规化的革命军队。全定要坚持四项基本原则,加治思想建设;改善武器装备,国防现代化;继承和发扬人队的光荣传统,加强军政训练一步增强部队的军政素质,现代条件下诸军兵种协同作.力;加强作风培养,严格组律,扎扎实实地做好反侵略.的准备。 《建设强大的现代化正规革命军队》为新时期军队建明了方向和目标。 (王长多 一一咋跳J与击勺︻L儿fr盯山日目吞杏尹Z﹂﹂J口仁七托︶旧J写盈匕卜廿凡口汽卜芯的指卜﹄飞兄)